foundationdb/fdbserver/RestoreApplier.actor.cpp

582 lines
25 KiB
C++

/*
* RestoreApplier.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This file defines the functions used by the RestoreApplier role.
// RestoreApplier role starts at restoreApplierCore actor
#include "fdbclient/NativeAPI.actor.h"
#include "fdbclient/SystemData.h"
#include "fdbclient/BackupAgent.actor.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbclient/MutationList.h"
#include "fdbclient/BackupContainer.h"
#include "fdbserver/Knobs.h"
#include "fdbserver/RestoreCommon.actor.h"
#include "fdbserver/RestoreUtil.h"
#include "fdbserver/RestoreRoleCommon.actor.h"
#include "fdbserver/RestoreApplier.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
ACTOR static Future<Void> handleSendMutationVectorRequest(RestoreSendVersionedMutationsRequest req,
Reference<RestoreApplierData> self);
ACTOR static Future<Void> handleApplyToDBRequest(RestoreVersionBatchRequest req, Reference<RestoreApplierData> self,
Database cx);
ACTOR Future<Void> restoreApplierCore(RestoreApplierInterface applierInterf, int nodeIndex, Database cx) {
state Reference<RestoreApplierData> self =
Reference<RestoreApplierData>(new RestoreApplierData(applierInterf.id(), nodeIndex));
state ActorCollection actors(false);
state Future<Void> exitRole = Never();
state Future<Void> updateProcessStatsTimer = delay(SERVER_KNOBS->FASTRESTORE_UPDATE_PROCESS_STATS_INTERVAL);
actors.add(traceProcessMetrics(self, "RestoreApplier"));
actors.add(traceRoleVersionBatchProgress(self, "RestoreApplier"));
loop {
state std::string requestTypeStr = "[Init]";
try {
choose {
when(RestoreSimpleRequest req = waitNext(applierInterf.heartbeat.getFuture())) {
requestTypeStr = "heartbeat";
actors.add(handleHeartbeat(req, applierInterf.id()));
}
when(RestoreSendVersionedMutationsRequest req =
waitNext(applierInterf.sendMutationVector.getFuture())) {
requestTypeStr = "sendMutationVector";
actors.add(handleSendMutationVectorRequest(req, self));
}
when(RestoreVersionBatchRequest req = waitNext(applierInterf.applyToDB.getFuture())) {
requestTypeStr = "applyToDB";
actors.add(handleApplyToDBRequest(req, self, cx));
}
when(RestoreVersionBatchRequest req = waitNext(applierInterf.initVersionBatch.getFuture())) {
requestTypeStr = "initVersionBatch";
actors.add(handleInitVersionBatchRequest(req, self));
}
when(RestoreFinishRequest req = waitNext(applierInterf.finishRestore.getFuture())) {
requestTypeStr = "finishRestore";
handleFinishRestoreRequest(req, self);
if (req.terminate) {
exitRole = Void();
}
}
when(wait(updateProcessStatsTimer)) {
updateProcessStats(self);
updateProcessStatsTimer = delay(SERVER_KNOBS->FASTRESTORE_UPDATE_PROCESS_STATS_INTERVAL);
}
when(wait(exitRole)) {
TraceEvent("RestoreApplierCoreExitRole", self->id());
break;
}
}
} catch (Error& e) {
TraceEvent(SevWarn, "FastRestoreApplierError", self->id())
.detail("RequestType", requestTypeStr)
.error(e, true);
break;
}
}
return Void();
}
// The actor may be invovked multiple times and executed async.
// No race condition as long as we do not wait or yield when operate the shared
// data. Multiple such actors can run on different fileIDs.
// Different files may contain mutations of the same commit versions, but with
// different subsequence number.
// Only one actor can process mutations from the same file.
ACTOR static Future<Void> handleSendMutationVectorRequest(RestoreSendVersionedMutationsRequest req,
Reference<RestoreApplierData> self) {
state Reference<ApplierBatchData> batchData = self->batch[req.batchIndex];
// Assume: processedFileState[req.asset] will not be erased while the actor is active.
// Note: Insert new items into processedFileState will not invalidate the reference.
state NotifiedVersion& curMsgIndex = batchData->processedFileState[req.asset];
TraceEvent(SevInfo, "FastRestoreApplierPhaseReceiveMutations", self->id())
.suppressFor(1.0)
.detail("BatchIndex", req.batchIndex)
.detail("RestoreAsset", req.asset.toString())
.detail("RestoreAssetMesssageIndex", curMsgIndex.get())
.detail("Request", req.toString())
.detail("CurrentMemory", getSystemStatistics().processMemory)
.detail("PreviousVersionBatchState", batchData->vbState.get());
wait(isSchedulable(self, req.batchIndex, __FUNCTION__));
wait(curMsgIndex.whenAtLeast(req.msgIndex - 1));
batchData->vbState = ApplierVersionBatchState::RECEIVE_MUTATIONS;
state bool isDuplicated = true;
if (curMsgIndex.get() == req.msgIndex - 1) {
isDuplicated = false;
for (int mIndex = 0; mIndex < req.versionedMutations.size(); mIndex++) {
const VersionedMutation& versionedMutation = req.versionedMutations[mIndex];
TraceEvent(SevFRMutationInfo, "FastRestoreApplierPhaseReceiveMutations", self->id())
.detail("RestoreAsset", req.asset.toString())
.detail("Version", versionedMutation.version.toString())
.detail("Index", mIndex)
.detail("MutationReceived", versionedMutation.mutation.toString());
batchData->counters.receivedBytes += versionedMutation.mutation.totalSize();
batchData->counters.receivedWeightedBytes +=
versionedMutation.mutation.weightedTotalSize(); // atomicOp will be amplified
batchData->counters.receivedMutations += 1;
batchData->counters.receivedAtomicOps +=
isAtomicOp((MutationRef::Type)versionedMutation.mutation.type) ? 1 : 0;
// Sanity check
ASSERT_WE_THINK(req.asset.isInVersionRange(versionedMutation.version.version));
ASSERT_WE_THINK(req.asset.isInKeyRange(versionedMutation.mutation));
// Note: Log and range mutations may be delivered out of order. Can we handle it?
batchData->addMutation(versionedMutation.mutation, versionedMutation.version);
ASSERT(versionedMutation.mutation.type != MutationRef::SetVersionstampedKey &&
versionedMutation.mutation.type != MutationRef::SetVersionstampedValue);
}
curMsgIndex.set(req.msgIndex);
}
req.reply.send(RestoreCommonReply(self->id(), isDuplicated));
TraceEvent(SevInfo, "FastRestoreApplierPhaseReceiveMutationsDone", self->id())
.suppressFor(1.0)
.detail("BatchIndex", req.batchIndex)
.detail("RestoreAsset", req.asset.toString())
.detail("ProcessedMessageIndex", curMsgIndex.get())
.detail("Request", req.toString());
return Void();
}
// Clear all ranges in input ranges
ACTOR static Future<Void> applyClearRangeMutations(Standalone<VectorRef<KeyRangeRef>> ranges, double delayTime,
Database cx, UID applierID, int batchIndex) {
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
state int retries = 0;
state double numOps = 0;
wait(delay(delayTime + deterministicRandom()->random01() * delayTime));
TraceEvent("FastRestoreApplierClearRangeMutationsStart", applierID)
.detail("BatchIndex", batchIndex)
.detail("Ranges", ranges.size())
.detail("DelayTime", delayTime);
loop {
try {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
for (auto& range : ranges) {
debugFRMutation("FastRestoreApplierApplyClearRangeMutation", 0,
MutationRef(MutationRef::ClearRange, range.begin, range.end));
tr->clear(range);
++numOps;
if (numOps >= SERVER_KNOBS->FASTRESTORE_TXN_CLEAR_MAX) {
TraceEvent(SevWarnAlways, "FastRestoreApplierClearRangeMutationsTooManyClearsInTxn")
.suppressFor(1.0)
.detail("Clears", numOps)
.detail("Ranges", ranges.size())
.detail("Range", range.toString());
}
}
wait(tr->commit());
break;
} catch (Error& e) {
retries++;
if (retries > SERVER_KNOBS->FASTRESTORE_TXN_RETRY_MAX) {
TraceEvent(SevWarnAlways, "RestoreApplierApplyClearRangeMutationsStuck", applierID)
.detail("BatchIndex", batchIndex)
.detail("ClearRanges", ranges.size())
.error(e);
}
wait(tr->onError(e));
}
}
return Void();
}
// Get keys in incompleteStagingKeys and precompute the stagingKey which is stored in batchData->stagingKeys
ACTOR static Future<Void> getAndComputeStagingKeys(
std::map<Key, std::map<Key, StagingKey>::iterator> incompleteStagingKeys, double delayTime, Database cx,
UID applierID, int batchIndex) {
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
state std::vector<Future<Optional<Value>>> fValues;
state int retries = 0;
wait(delay(delayTime + deterministicRandom()->random01() * delayTime));
TraceEvent("FastRestoreApplierGetAndComputeStagingKeysStart", applierID)
.detail("BatchIndex", batchIndex)
.detail("GetKeys", incompleteStagingKeys.size())
.detail("DelayTime", delayTime);
loop {
try {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
for (auto& key : incompleteStagingKeys) {
fValues.push_back(tr->get(key.first));
}
wait(waitForAll(fValues));
break;
} catch (Error& e) {
if (retries++ > 10) {
TraceEvent(SevError, "FastRestoreApplierGetAndComputeStagingKeysGetKeysStuck", applierID)
.detail("BatchIndex", batchIndex)
.detail("GetKeys", incompleteStagingKeys.size())
.error(e);
break;
}
wait(tr->onError(e));
fValues.clear();
}
}
ASSERT(fValues.size() == incompleteStagingKeys.size());
int i = 0;
for (auto& key : incompleteStagingKeys) {
if (!fValues[i].get().present()) { // Debug info to understand which key does not exist in DB
TraceEvent(SevWarn, "FastRestoreApplierGetAndComputeStagingKeysNoBaseValueInDB", applierID)
.detail("BatchIndex", batchIndex)
.detail("Key", key.first)
.detail("Reason", "Not found in DB")
.detail("PendingMutations", key.second->second.pendingMutations.size())
.detail("StagingKeyType", (int)key.second->second.type);
for (auto& vm : key.second->second.pendingMutations) {
TraceEvent(SevWarn, "FastRestoreApplierGetAndComputeStagingKeysNoBaseValueInDB")
.detail("PendingMutationVersion", vm.first.toString())
.detail("PendingMutation", vm.second.toString());
}
key.second->second.precomputeResult("GetAndComputeStagingKeysNoBaseValueInDB", applierID, batchIndex);
} else {
// The key's version ideally should be the most recently committed version.
// But as long as it is > 1 and less than the start version of the version batch, it is the same result.
MutationRef m(MutationRef::SetValue, key.first, fValues[i].get().get());
key.second->second.add(m, LogMessageVersion(1));
key.second->second.precomputeResult("GetAndComputeStagingKeys", applierID, batchIndex);
}
i++;
}
TraceEvent("FastRestoreApplierGetAndComputeStagingKeysDone", applierID)
.detail("BatchIndex", batchIndex)
.detail("GetKeys", incompleteStagingKeys.size());
return Void();
}
ACTOR static Future<Void> precomputeMutationsResult(Reference<ApplierBatchData> batchData, UID applierID,
int64_t batchIndex, Database cx) {
// Apply range mutations (i.e., clearRange) to database cx
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResultStart", applierID)
.detail("BatchIndex", batchIndex)
.detail("Step", "Applying clear range mutations to DB")
.detail("ClearRanges", batchData->stagingKeyRanges.size());
state std::vector<Future<Void>> fClearRanges;
Standalone<VectorRef<KeyRangeRef>> clearRanges;
double curTxnSize = 0;
double delayTime = 0;
for (auto& rangeMutation : batchData->stagingKeyRanges) {
KeyRangeRef range(rangeMutation.mutation.param1, rangeMutation.mutation.param2);
debugFRMutation("FastRestoreApplierPrecomputeMutationsResultClearRange", rangeMutation.version.version,
MutationRef(MutationRef::ClearRange, range.begin, range.end));
clearRanges.push_back_deep(clearRanges.arena(), range);
curTxnSize += range.expectedSize();
if (curTxnSize >= SERVER_KNOBS->FASTRESTORE_TXN_BATCH_MAX_BYTES) {
fClearRanges.push_back(applyClearRangeMutations(clearRanges, delayTime, cx, applierID, batchIndex));
delayTime += 0.1;
clearRanges = Standalone<VectorRef<KeyRangeRef>>();
curTxnSize = 0;
}
}
if (curTxnSize > 0) {
fClearRanges.push_back(applyClearRangeMutations(clearRanges, delayTime, cx, applierID, batchIndex));
}
// Apply range mutations (i.e., clearRange) to stagingKeyRanges
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResult", applierID)
.detail("BatchIndex", batchIndex)
.detail("Step", "Applying clear range mutations to staging keys")
.detail("ClearRanges", batchData->stagingKeyRanges.size())
.detail("FutureClearRanges", fClearRanges.size());
for (auto& rangeMutation : batchData->stagingKeyRanges) {
ASSERT(rangeMutation.mutation.param1 <= rangeMutation.mutation.param2);
std::map<Key, StagingKey>::iterator lb = batchData->stagingKeys.lower_bound(rangeMutation.mutation.param1);
std::map<Key, StagingKey>::iterator ub = batchData->stagingKeys.lower_bound(rangeMutation.mutation.param2);
while (lb != ub) {
if (lb->first >= rangeMutation.mutation.param2) {
TraceEvent(SevError, "FastRestoreApplerPhasePrecomputeMutationsResultIncorrectUpperBound")
.detail("Key", lb->first)
.detail("ClearRangeUpperBound", rangeMutation.mutation.param2)
.detail("UsedUpperBound", ub->first);
}
// We make the beginKey = endKey for the ClearRange on purpose so that
// we can sanity check ClearRange mutation when we apply it to DB.
MutationRef clearKey(MutationRef::ClearRange, lb->first, lb->first);
lb->second.add(clearKey, rangeMutation.version);
lb++;
}
}
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResult", applierID)
.detail("BatchIndex", batchIndex)
.detail("Step", "Wait on applying clear range mutations to DB")
.detail("FutureClearRanges", fClearRanges.size());
wait(waitForAll(fClearRanges));
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResult", applierID)
.detail("BatchIndex", batchIndex)
.detail("Step", "Getting and computing staging keys")
.detail("StagingKeys", batchData->stagingKeys.size());
// Get keys in stagingKeys which does not have a baseline key by reading database cx, and precompute the key's value
std::vector<Future<Void>> fGetAndComputeKeys;
std::map<Key, std::map<Key, StagingKey>::iterator> incompleteStagingKeys;
std::map<Key, StagingKey>::iterator stagingKeyIter = batchData->stagingKeys.begin();
int numKeysInBatch = 0;
double delayTime = 0; // Start transactions at different time to avoid overwelming FDB.
for (; stagingKeyIter != batchData->stagingKeys.end(); stagingKeyIter++) {
if (!stagingKeyIter->second.hasBaseValue()) {
incompleteStagingKeys.emplace(stagingKeyIter->first, stagingKeyIter);
batchData->counters.fetchKeys += 1;
numKeysInBatch++;
}
if (numKeysInBatch == SERVER_KNOBS->FASTRESTORE_APPLIER_FETCH_KEYS_SIZE) {
fGetAndComputeKeys.push_back(
getAndComputeStagingKeys(incompleteStagingKeys, delayTime, cx, applierID, batchIndex));
delayTime += 0.1;
numKeysInBatch = 0;
incompleteStagingKeys.clear();
}
}
if (numKeysInBatch > 0) {
fGetAndComputeKeys.push_back(
getAndComputeStagingKeys(incompleteStagingKeys, delayTime, cx, applierID, batchIndex));
}
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResult", applierID)
.detail("BatchIndex", batchIndex)
.detail("Step", "Compute the other staging keys")
.detail("StagingKeys", batchData->stagingKeys.size());
// Pre-compute pendingMutations to other keys in stagingKeys that has base value
for (stagingKeyIter = batchData->stagingKeys.begin(); stagingKeyIter != batchData->stagingKeys.end();
stagingKeyIter++) {
if (stagingKeyIter->second.hasBaseValue()) {
stagingKeyIter->second.precomputeResult("HasBaseValue", applierID, batchIndex);
}
}
TraceEvent("FastRestoreApplierGetAndComputeStagingKeysWaitOn", applierID);
wait(waitForAll(fGetAndComputeKeys));
// Sanity check all stagingKeys have been precomputed
ASSERT_WE_THINK(batchData->allKeysPrecomputed());
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResultDone", applierID).detail("BatchIndex", batchIndex);
return Void();
}
// Apply mutations in batchData->stagingKeys [begin, end).
ACTOR static Future<Void> applyStagingKeysBatch(std::map<Key, StagingKey>::iterator begin,
std::map<Key, StagingKey>::iterator end, Database cx,
FlowLock* applyStagingKeysBatchLock, UID applierID) {
wait(applyStagingKeysBatchLock->take(TaskPriority::RestoreApplierWriteDB));
state FlowLock::Releaser releaser(*applyStagingKeysBatchLock);
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
state int sets = 0;
state int clears = 0;
state Key endKey = begin->second.key;
TraceEvent("FastRestoreApplierPhaseApplyStagingKeysBatch", applierID).detail("Begin", begin->first);
loop {
try {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
std::map<Key, StagingKey>::iterator iter = begin;
while (iter != end) {
if (iter->second.type == MutationRef::SetValue) {
tr->set(iter->second.key, iter->second.val);
TraceEvent(SevFRMutationInfo, "FastRestoreApplierPhaseApplyStagingKeysBatch", applierID)
.detail("SetKey", iter->second.key);
sets++;
} else if (iter->second.type == MutationRef::ClearRange) {
if (iter->second.key != iter->second.val) {
TraceEvent(SevError, "FastRestoreApplierPhaseApplyStagingKeysBatchClearTooMuchData", applierID)
.detail("KeyBegin", iter->second.key)
.detail("KeyEnd", iter->second.val)
.detail("Version", iter->second.version.version)
.detail("SubVersion", iter->second.version.sub);
}
tr->clear(singleKeyRange(iter->second.key));
TraceEvent(SevFRMutationInfo, "FastRestoreApplierPhaseApplyStagingKeysBatch", applierID)
.detail("ClearKey", iter->second.key);
clears++;
} else {
ASSERT(false);
}
endKey = iter != end ? iter->second.key : endKey;
iter++;
if (sets > 10000000 || clears > 10000000) {
TraceEvent(SevError, "FastRestoreApplierPhaseApplyStagingKeysBatchInfiniteLoop", applierID)
.detail("Begin", begin->first)
.detail("Sets", sets)
.detail("Clears", clears);
}
}
TraceEvent("FastRestoreApplierPhaseApplyStagingKeysBatchPrecommit", applierID)
.detail("Begin", begin->first)
.detail("End", endKey)
.detail("Sets", sets)
.detail("Clears", clears);
wait(tr->commit());
break;
} catch (Error& e) {
wait(tr->onError(e));
}
}
return Void();
}
// Apply mutations in stagingKeys in batches in parallel
ACTOR static Future<Void> applyStagingKeys(Reference<ApplierBatchData> batchData, UID applierID, int64_t batchIndex,
Database cx) {
std::map<Key, StagingKey>::iterator begin = batchData->stagingKeys.begin();
std::map<Key, StagingKey>::iterator cur = begin;
double txnSize = 0;
std::vector<Future<Void>> fBatches;
TraceEvent("FastRestoreApplerPhaseApplyStagingKeysStart", applierID)
.detail("BatchIndex", batchIndex)
.detail("StagingKeys", batchData->stagingKeys.size());
while (cur != batchData->stagingKeys.end()) {
txnSize += cur->second.expectedMutationSize();
if (txnSize > SERVER_KNOBS->FASTRESTORE_TXN_BATCH_MAX_BYTES) {
fBatches.push_back(applyStagingKeysBatch(begin, cur, cx, &batchData->applyStagingKeysBatchLock, applierID));
begin = cur;
txnSize = 0;
}
cur++;
}
if (begin != batchData->stagingKeys.end()) {
fBatches.push_back(applyStagingKeysBatch(begin, cur, cx, &batchData->applyStagingKeysBatchLock, applierID));
}
wait(waitForAll(fBatches));
TraceEvent("FastRestoreApplerPhaseApplyStagingKeysDone", applierID)
.detail("BatchIndex", batchIndex)
.detail("StagingKeys", batchData->stagingKeys.size());
return Void();
}
// Write mutations to the destination DB
ACTOR Future<Void> writeMutationsToDB(UID applierID, int64_t batchIndex, Reference<ApplierBatchData> batchData,
Database cx) {
TraceEvent("FastRestoreApplerPhaseApplyTxnStart", applierID).detail("BatchIndex", batchIndex);
wait(precomputeMutationsResult(batchData, applierID, batchIndex, cx));
wait(applyStagingKeys(batchData, applierID, batchIndex, cx));
TraceEvent("FastRestoreApplerPhaseApplyTxnDone", applierID).detail("BatchIndex", batchIndex);
return Void();
}
ACTOR static Future<Void> handleApplyToDBRequest(RestoreVersionBatchRequest req, Reference<RestoreApplierData> self,
Database cx) {
TraceEvent("FastRestoreApplierPhaseHandleApplyToDBStart", self->id())
.detail("BatchIndex", req.batchIndex)
.detail("FinishedBatch", self->finishedBatch.get());
// Ensure batch (i-1) is applied before batch i
wait(self->finishedBatch.whenAtLeast(req.batchIndex - 1));
state bool isDuplicated = true;
if (self->finishedBatch.get() == req.batchIndex - 1) {
Reference<ApplierBatchData> batchData = self->batch[req.batchIndex];
TraceEvent("FastRestoreApplierPhaseHandleApplyToDBRunning", self->id())
.detail("BatchIndex", req.batchIndex)
.detail("FinishedBatch", self->finishedBatch.get())
.detail("HasStarted", batchData->dbApplier.present())
.detail("WroteToDBDone", batchData->dbApplier.present() ? batchData->dbApplier.get().isReady() : 0)
.detail("PreviousVersionBatchState", batchData->vbState.get());
ASSERT(batchData.isValid());
if (!batchData->dbApplier.present()) {
isDuplicated = false;
batchData->dbApplier = Never();
batchData->dbApplier = writeMutationsToDB(self->id(), req.batchIndex, batchData, cx);
batchData->vbState = ApplierVersionBatchState::WRITE_TO_DB;
}
ASSERT(batchData->dbApplier.present());
wait(batchData->dbApplier.get());
// Multiple actor invokation can wait on req.batchIndex-1;
// Avoid setting finishedBatch when finishedBatch > req.batchIndex
if (self->finishedBatch.get() == req.batchIndex - 1) {
self->finishedBatch.set(req.batchIndex);
self->batch[req.batchIndex]->vbState = ApplierVersionBatchState::DONE;
// Free memory for the version batch
self->batch.erase(req.batchIndex);
if (self->delayedActors > 0) {
self->checkMemory.trigger();
}
}
}
req.reply.send(RestoreCommonReply(self->id(), isDuplicated));
TraceEvent("FastRestoreApplierPhaseHandleApplyToDBDone", self->id())
.detail("BatchIndex", req.batchIndex)
.detail("FinishedBatch", self->finishedBatch.get())
.detail("IsDuplicated", isDuplicated);
return Void();
}
// Copy from WriteDuringRead.actor.cpp with small modifications
// Not all AtomicOps are handled in this function: SetVersionstampedKey, SetVersionstampedValue, and CompareAndClear
Value applyAtomicOp(Optional<StringRef> existingValue, Value value, MutationRef::Type type) {
Arena arena;
if (type == MutationRef::AddValue)
return doLittleEndianAdd(existingValue, value, arena);
else if (type == MutationRef::AppendIfFits)
return doAppendIfFits(existingValue, value, arena);
else if (type == MutationRef::And || type == MutationRef::AndV2)
return doAndV2(existingValue, value, arena);
else if (type == MutationRef::Or)
return doOr(existingValue, value, arena);
else if (type == MutationRef::Xor)
return doXor(existingValue, value, arena);
else if (type == MutationRef::Max)
return doMax(existingValue, value, arena);
else if (type == MutationRef::Min || type == MutationRef::MinV2)
return doMinV2(existingValue, value, arena);
else if (type == MutationRef::ByteMin)
return doByteMin(existingValue, value, arena);
else if (type == MutationRef::ByteMax)
return doByteMax(existingValue, value, arena);
else {
TraceEvent(SevError, "ApplyAtomicOpUnhandledType")
.detail("TypeCode", (int)type)
.detail("TypeName", getTypeString(type));
ASSERT(false);
}
return Value();
}