foundationdb/fdbrpc/TokenSign.cpp

593 lines
21 KiB
C++

/*
* TokenSign.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbrpc/TokenSign.h"
#include "flow/network.h"
#include "flow/serialize.h"
#include "flow/Arena.h"
#include "flow/Error.h"
#include "flow/IRandom.h"
#include "flow/MkCert.h"
#include "flow/Platform.h"
#include "flow/ScopeExit.h"
#include "flow/Trace.h"
#include "flow/UnitTest.h"
#include <fmt/format.h>
#include <string_view>
#include <type_traits>
#include <utility>
#if defined(HAVE_WOLFSSL)
#include <wolfssl/options.h>
#endif
#include <openssl/ec.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/x509.h>
#include <rapidjson/document.h>
#include <rapidjson/writer.h>
#include <rapidjson/stringbuffer.h>
#include <rapidjson/error/en.h>
#include "fdbrpc/Base64UrlEncode.h"
#include "fdbrpc/Base64UrlDecode.h"
namespace {
// test-only constants for generating random tenant/key names
constexpr int MaxIssuerNameLenPlus1 = 25;
constexpr int MaxTenantNameLenPlus1 = 17;
constexpr int MaxKeyNameLenPlus1 = 21;
void trace(const char* type) {
auto te = TraceEvent(SevWarnAlways, type);
te.suppressFor(60);
if (auto err = ::ERR_get_error()) {
char buf[256]{
0,
};
::ERR_error_string_n(err, buf, sizeof(buf));
te.detail("OpenSSLError", static_cast<const char*>(buf));
}
}
[[noreturn]] void traceAndThrow(const char* type) {
trace(type);
throw digital_signature_ops_error();
}
StringRef genRandomAlphanumStringRef(Arena& arena, IRandom& rng, int maxLenPlusOne) {
const auto len = rng.randomInt(1, maxLenPlusOne);
auto strRaw = new (arena) uint8_t[len];
for (auto i = 0; i < len; i++)
strRaw[i] = (uint8_t)rng.randomAlphaNumeric();
return StringRef(strRaw, len);
}
} // namespace
namespace authz {
using MessageDigestMethod = const EVP_MD*;
Algorithm algorithmFromString(StringRef s) noexcept {
if (s == "RS256"_sr)
return Algorithm::RS256;
else if (s == "ES256"_sr)
return Algorithm::ES256;
else
return Algorithm::UNKNOWN;
}
StringRef signString(Arena& arena, StringRef string, PrivateKey privateKey, int keyAlgNid, MessageDigestMethod digest);
bool verifyStringSignature(StringRef string,
StringRef signature,
PublicKey publicKey,
int keyAlgNid,
MessageDigestMethod digest);
std::pair<int /*key algorithm nid*/, MessageDigestMethod> getMethod(Algorithm alg) {
if (alg == Algorithm::RS256) {
return { EVP_PKEY_RSA, ::EVP_sha256() };
} else if (alg == Algorithm::ES256) {
return { EVP_PKEY_EC, ::EVP_sha256() };
} else {
return { NID_undef, nullptr };
}
}
std::string_view getAlgorithmName(Algorithm alg) {
if (alg == Algorithm::RS256)
return { "RS256" };
else if (alg == Algorithm::ES256)
return { "ES256" };
else
UNREACHABLE();
}
StringRef signString(Arena& arena, StringRef string, PrivateKey privateKey, int keyAlgNid, MessageDigestMethod digest) {
ASSERT_NE(keyAlgNid, NID_undef);
auto key = privateKey.nativeHandle();
auto const privateKeyAlgNid = ::EVP_PKEY_base_id(key);
if (privateKeyAlgNid != keyAlgNid) {
TraceEvent(SevWarnAlways, "TokenSignAlgoMismatch")
.suppressFor(10)
.detail("ExpectedAlg", OBJ_nid2sn(keyAlgNid))
.detail("PublicKeyAlg", OBJ_nid2sn(privateKeyAlgNid));
throw digital_signature_ops_error();
}
auto mdctx = ::EVP_MD_CTX_create();
if (!mdctx)
traceAndThrow("SignTokenInitFail");
auto mdctxGuard = ScopeExit([mdctx]() { ::EVP_MD_CTX_free(mdctx); });
if (1 != ::EVP_DigestSignInit(mdctx, nullptr, digest, nullptr, key))
traceAndThrow("SignTokenInitFail");
if (1 != ::EVP_DigestSignUpdate(mdctx, string.begin(), string.size()))
traceAndThrow("SignTokenUpdateFail");
auto sigLen = size_t{};
if (1 != ::EVP_DigestSignFinal(mdctx, nullptr, &sigLen)) // assess the length first
traceAndThrow("SignTokenGetSigLenFail");
auto sigBuf = new (arena) uint8_t[sigLen];
if (1 != ::EVP_DigestSignFinal(mdctx, sigBuf, &sigLen))
traceAndThrow("SignTokenFinalizeFail");
return StringRef(sigBuf, sigLen);
}
bool verifyStringSignature(StringRef string,
StringRef signature,
PublicKey publicKey,
int keyAlgNid,
MessageDigestMethod digest) {
ASSERT_NE(keyAlgNid, NID_undef);
auto key = publicKey.nativeHandle();
auto const publicKeyAlgNid = ::EVP_PKEY_base_id(key);
if (keyAlgNid != publicKeyAlgNid) {
TraceEvent(SevWarnAlways, "TokenVerifyAlgoMismatch")
.suppressFor(10)
.detail("ExpectedAlg", OBJ_nid2sn(keyAlgNid))
.detail("PublicKeyAlg", OBJ_nid2sn(publicKeyAlgNid));
return false; // public key's algorithm doesn't match string's
}
auto mdctx = ::EVP_MD_CTX_create();
if (!mdctx) {
trace("VerifyTokenInitFail");
return false;
}
auto mdctxGuard = ScopeExit([mdctx]() { ::EVP_MD_CTX_free(mdctx); });
if (1 != ::EVP_DigestVerifyInit(mdctx, nullptr, digest, nullptr, key)) {
trace("VerifyTokenInitFail");
return false;
}
if (1 != ::EVP_DigestVerifyUpdate(mdctx, string.begin(), string.size())) {
trace("VerifyTokenUpdateFail");
return false;
}
if (1 != ::EVP_DigestVerifyFinal(mdctx, signature.begin(), signature.size())) {
auto te = TraceEvent(SevWarnAlways, "VerifyTokenFail");
te.suppressFor(5);
return false;
}
return true;
}
} // namespace authz
namespace authz::flatbuffers {
SignedTokenRef signToken(Arena& arena, TokenRef token, StringRef keyName, PrivateKey privateKey) {
auto ret = SignedTokenRef{};
auto writer = ObjectWriter([&arena](size_t len) { return new (arena) uint8_t[len]; }, IncludeVersion());
writer.serialize(token);
auto tokenStr = writer.toStringRef();
auto [keyAlgNid, digest] = getMethod(Algorithm::ES256);
auto sig = signString(arena, tokenStr, privateKey, keyAlgNid, digest);
ret.token = tokenStr;
ret.signature = sig;
ret.keyName = StringRef(arena, keyName);
return ret;
}
bool verifyToken(SignedTokenRef signedToken, PublicKey publicKey) {
auto [keyAlgNid, digest] = getMethod(Algorithm::ES256);
return verifyStringSignature(signedToken.token, signedToken.signature, publicKey, keyAlgNid, digest);
}
TokenRef makeRandomTokenSpec(Arena& arena, IRandom& rng) {
auto token = TokenRef{};
token.expiresAt = timer_monotonic() * (0.5 + rng.random01());
const auto numTenants = rng.randomInt(1, 3);
for (auto i = 0; i < numTenants; i++) {
token.tenants.push_back(arena, genRandomAlphanumStringRef(arena, rng, MaxTenantNameLenPlus1));
}
return token;
}
} // namespace authz::flatbuffers
namespace authz::jwt {
template <class FieldType, class Writer>
void putField(Optional<FieldType> const& field, Writer& wr, const char* fieldName) {
if (!field.present())
return;
wr.Key(fieldName);
auto const& value = field.get();
static_assert(std::is_same_v<StringRef, FieldType> || std::is_same_v<FieldType, uint64_t> ||
std::is_same_v<FieldType, VectorRef<StringRef>>);
if constexpr (std::is_same_v<StringRef, FieldType>) {
wr.String(reinterpret_cast<const char*>(value.begin()), value.size());
} else if constexpr (std::is_same_v<FieldType, uint64_t>) {
wr.Uint64(value);
} else {
wr.StartArray();
for (auto elem : value) {
wr.String(reinterpret_cast<const char*>(elem.begin()), elem.size());
}
wr.EndArray();
}
}
StringRef makeTokenPart(Arena& arena, TokenRef tokenSpec) {
using Buffer = rapidjson::StringBuffer;
using Writer = rapidjson::Writer<Buffer>;
auto headerBuffer = Buffer();
auto payloadBuffer = Buffer();
auto header = Writer(headerBuffer);
auto payload = Writer(payloadBuffer);
header.StartObject();
header.Key("typ");
header.String("JWT");
header.Key("alg");
auto algo = getAlgorithmName(tokenSpec.algorithm);
header.String(algo.data(), algo.size());
header.EndObject();
payload.StartObject();
putField(tokenSpec.issuer, payload, "iss");
putField(tokenSpec.subject, payload, "sub");
putField(tokenSpec.audience, payload, "aud");
putField(tokenSpec.issuedAtUnixTime, payload, "iat");
putField(tokenSpec.expiresAtUnixTime, payload, "exp");
putField(tokenSpec.notBeforeUnixTime, payload, "nbf");
putField(tokenSpec.keyId, payload, "kid");
putField(tokenSpec.tokenId, payload, "jti");
putField(tokenSpec.tenants, payload, "tenants");
payload.EndObject();
auto const headerPartLen = base64url::encodedLength(headerBuffer.GetSize());
auto const payloadPartLen = base64url::encodedLength(payloadBuffer.GetSize());
auto const totalLen = headerPartLen + 1 + payloadPartLen;
auto out = new (arena) uint8_t[totalLen];
auto cur = out;
cur += base64url::encode(reinterpret_cast<const uint8_t*>(headerBuffer.GetString()), headerBuffer.GetSize(), cur);
ASSERT_EQ(cur - out, headerPartLen);
*cur++ = '.';
cur += base64url::encode(reinterpret_cast<const uint8_t*>(payloadBuffer.GetString()), payloadBuffer.GetSize(), cur);
ASSERT_EQ(cur - out, totalLen);
return StringRef(out, totalLen);
}
StringRef makePlainSignature(Arena& arena, Algorithm alg, StringRef tokenPart, PrivateKey privateKey) {
auto [keyAlgNid, digest] = getMethod(alg);
return signString(arena, tokenPart, privateKey, keyAlgNid, digest);
}
StringRef signToken(Arena& arena, TokenRef tokenSpec, PrivateKey privateKey) {
auto tmpArena = Arena();
auto tokenPart = makeTokenPart(tmpArena, tokenSpec);
auto plainSig = makePlainSignature(tmpArena, tokenSpec.algorithm, tokenPart, privateKey);
auto const sigPartLen = base64url::encodedLength(plainSig.size());
auto const totalLen = tokenPart.size() + 1 + sigPartLen;
auto out = new (arena) uint8_t[totalLen];
auto cur = out;
::memcpy(cur, tokenPart.begin(), tokenPart.size());
cur += tokenPart.size();
*cur++ = '.';
cur += base64url::encode(plainSig.begin(), plainSig.size(), cur);
ASSERT_EQ(cur - out, totalLen);
return StringRef(out, totalLen);
}
bool parseHeaderPart(TokenRef& token, StringRef b64urlHeader) {
auto tmpArena = Arena();
auto [header, valid] = base64url::decode(tmpArena, b64urlHeader);
if (!valid)
return false;
auto d = rapidjson::Document();
d.Parse(reinterpret_cast<const char*>(header.begin()), header.size());
if (d.HasParseError()) {
TraceEvent(SevWarnAlways, "TokenHeaderJsonParseError")
.suppressFor(10)
.detail("Header", header.toString())
.detail("Message", GetParseError_En(d.GetParseError()))
.detail("Offset", d.GetErrorOffset());
return false;
}
if (d.IsObject() && d.HasMember("alg") && d.HasMember("typ")) {
auto const& alg = d["alg"];
auto const& typ = d["typ"];
if (alg.IsString() && typ.IsString()) {
auto algValue = StringRef(reinterpret_cast<const uint8_t*>(alg.GetString()), alg.GetStringLength());
auto algType = algorithmFromString(algValue);
if (algType == Algorithm::UNKNOWN)
return false;
token.algorithm = algType;
auto typValue = StringRef(reinterpret_cast<const uint8_t*>(typ.GetString()), typ.GetStringLength());
if (typValue != "JWT"_sr)
return false;
return true;
}
}
return false;
}
template <class FieldType>
bool parseField(Arena& arena, Optional<FieldType>& out, const rapidjson::Document& d, const char* fieldName) {
if (!d.HasMember(fieldName))
return true;
auto const& field = d[fieldName];
static_assert(std::is_same_v<StringRef, FieldType> || std::is_same_v<FieldType, uint64_t> ||
std::is_same_v<FieldType, VectorRef<StringRef>>);
if constexpr (std::is_same_v<FieldType, StringRef>) {
if (!field.IsString())
return false;
out = StringRef(arena, reinterpret_cast<const uint8_t*>(field.GetString()), field.GetStringLength());
} else if constexpr (std::is_same_v<FieldType, uint64_t>) {
if (!field.IsUint64())
return false;
out = field.GetUint64();
} else {
if (!field.IsArray())
return false;
if (field.Size() > 0) {
auto vector = new (arena) StringRef[field.Size()];
for (auto i = 0; i < field.Size(); i++) {
if (!field[i].IsString())
return false;
vector[i] = StringRef(
arena, reinterpret_cast<const uint8_t*>(field[i].GetString()), field[i].GetStringLength());
}
out = VectorRef<StringRef>(vector, field.Size());
} else {
out = VectorRef<StringRef>();
}
}
return true;
}
bool parsePayloadPart(Arena& arena, TokenRef& token, StringRef b64urlPayload) {
auto tmpArena = Arena();
auto [payload, valid] = base64url::decode(tmpArena, b64urlPayload);
auto d = rapidjson::Document();
d.Parse(reinterpret_cast<const char*>(payload.begin()), payload.size());
if (d.HasParseError()) {
TraceEvent(SevWarnAlways, "TokenPayloadJsonParseError")
.suppressFor(10)
.detail("Payload", payload.toString())
.detail("Message", GetParseError_En(d.GetParseError()))
.detail("Offset", d.GetErrorOffset());
return false;
}
if (!d.IsObject())
return false;
if (!parseField(arena, token.issuer, d, "iss"))
return false;
if (!parseField(arena, token.subject, d, "sub"))
return false;
if (!parseField(arena, token.audience, d, "aud"))
return false;
if (!parseField(arena, token.tokenId, d, "jti"))
return false;
if (!parseField(arena, token.issuedAtUnixTime, d, "iat"))
return false;
if (!parseField(arena, token.expiresAtUnixTime, d, "exp"))
return false;
if (!parseField(arena, token.notBeforeUnixTime, d, "nbf"))
return false;
if (!parseField(arena, token.keyId, d, "kid"))
return false;
if (!parseField(arena, token.tenants, d, "tenants"))
return false;
return true;
}
bool parseSignaturePart(Arena& arena, TokenRef& token, StringRef b64urlSignature) {
auto [sig, valid] = base64url::decode(arena, b64urlSignature);
if (valid)
token.signature = sig;
return valid;
}
bool parseToken(Arena& arena, TokenRef& token, StringRef signedToken) {
auto b64urlHeader = signedToken.eat("."_sr);
auto b64urlPayload = signedToken.eat("."_sr);
auto b64urlSignature = signedToken;
if (b64urlHeader.empty() || b64urlPayload.empty() || b64urlSignature.empty())
return false;
if (!parseHeaderPart(token, b64urlHeader))
return false;
if (!parsePayloadPart(arena, token, b64urlPayload))
return false;
if (!parseSignaturePart(arena, token, b64urlSignature))
return false;
return true;
}
bool verifyToken(StringRef signedToken, PublicKey publicKey) {
auto arena = Arena();
auto fullToken = signedToken;
auto b64urlHeader = signedToken.eat("."_sr);
auto b64urlPayload = signedToken.eat("."_sr);
auto b64urlSignature = signedToken;
if (b64urlHeader.empty() || b64urlPayload.empty() || b64urlSignature.empty())
return false;
auto b64urlTokenPart = fullToken.substr(0, b64urlHeader.size() + 1 + b64urlPayload.size());
auto [sig, valid] = base64url::decode(arena, b64urlSignature);
if (!valid)
return false;
auto parsedToken = TokenRef();
if (!parseHeaderPart(parsedToken, b64urlHeader))
return false;
auto [keyAlgNid, digest] = getMethod(parsedToken.algorithm);
return verifyStringSignature(b64urlTokenPart, sig, publicKey, keyAlgNid, digest);
}
TokenRef makeRandomTokenSpec(Arena& arena, IRandom& rng, Algorithm alg) {
if (alg != Algorithm::ES256) {
throw unsupported_operation();
}
auto ret = TokenRef{};
ret.algorithm = alg;
ret.issuer = genRandomAlphanumStringRef(arena, rng, MaxIssuerNameLenPlus1);
ret.subject = genRandomAlphanumStringRef(arena, rng, MaxIssuerNameLenPlus1);
ret.tokenId = genRandomAlphanumStringRef(arena, rng, 31);
auto numAudience = rng.randomInt(1, 5);
auto aud = new (arena) StringRef[numAudience];
for (auto i = 0; i < numAudience; i++)
aud[i] = genRandomAlphanumStringRef(arena, rng, MaxTenantNameLenPlus1);
ret.audience = VectorRef<StringRef>(aud, numAudience);
ret.issuedAtUnixTime = timer_int() / 1'000'000'000ul;
ret.notBeforeUnixTime = timer_int() / 1'000'000'000ul;
ret.expiresAtUnixTime = ret.issuedAtUnixTime.get() + rng.randomInt(360, 1080 + 1);
ret.keyId = genRandomAlphanumStringRef(arena, rng, MaxKeyNameLenPlus1);
auto numTenants = rng.randomInt(1, 3);
auto tenants = new (arena) StringRef[numTenants];
for (auto i = 0; i < numTenants; i++)
tenants[i] = genRandomAlphanumStringRef(arena, rng, MaxTenantNameLenPlus1);
ret.tenants = VectorRef<StringRef>(tenants, numTenants);
return ret;
}
} // namespace authz::jwt
void forceLinkTokenSignTests() {}
TEST_CASE("/fdbrpc/TokenSign/FlatBuffer") {
const auto numIters = 100;
for (auto i = 0; i < numIters; i++) {
auto arena = Arena();
auto privateKey = mkcert::makeEcP256();
auto& rng = *deterministicRandom();
auto tokenSpec = authz::flatbuffers::makeRandomTokenSpec(arena, rng);
auto keyName = genRandomAlphanumStringRef(arena, rng, MaxKeyNameLenPlus1);
auto signedToken = authz::flatbuffers::signToken(arena, tokenSpec, keyName, privateKey);
const auto verifyExpectOk = authz::flatbuffers::verifyToken(signedToken, privateKey.toPublicKey());
ASSERT(verifyExpectOk);
// try tampering with signed token by adding one more tenant
tokenSpec.tenants.push_back(arena, genRandomAlphanumStringRef(arena, rng, MaxTenantNameLenPlus1));
auto writer = ObjectWriter([&arena](size_t len) { return new (arena) uint8_t[len]; }, IncludeVersion());
writer.serialize(tokenSpec);
signedToken.token = writer.toStringRef();
const auto verifyExpectFail = authz::flatbuffers::verifyToken(signedToken, privateKey.toPublicKey());
ASSERT(!verifyExpectFail);
}
printf("%d runs OK\n", numIters);
return Void();
}
TEST_CASE("/fdbrpc/TokenSign/JWT") {
const auto numIters = 100;
for (auto i = 0; i < numIters; i++) {
auto arena = Arena();
auto privateKey = mkcert::makeEcP256();
auto& rng = *deterministicRandom();
auto tokenSpec = authz::jwt::makeRandomTokenSpec(arena, rng, authz::Algorithm::ES256);
auto signedToken = authz::jwt::signToken(arena, tokenSpec, privateKey);
const auto verifyExpectOk = authz::jwt::verifyToken(signedToken, privateKey.toPublicKey());
ASSERT(verifyExpectOk);
auto signaturePart = signedToken;
signaturePart.eat("."_sr);
signaturePart.eat("."_sr);
{
auto parsedToken = authz::jwt::TokenRef{};
auto tmpArena = Arena();
auto parseOk = parseToken(tmpArena, parsedToken, signedToken);
ASSERT(parseOk);
ASSERT_EQ(tokenSpec.algorithm, parsedToken.algorithm);
ASSERT(tokenSpec.issuer == parsedToken.issuer);
ASSERT(tokenSpec.subject == parsedToken.subject);
ASSERT(tokenSpec.tokenId == parsedToken.tokenId);
ASSERT(tokenSpec.audience == parsedToken.audience);
ASSERT(tokenSpec.keyId == parsedToken.keyId);
ASSERT_EQ(tokenSpec.issuedAtUnixTime.get(), parsedToken.issuedAtUnixTime.get());
ASSERT_EQ(tokenSpec.expiresAtUnixTime.get(), parsedToken.expiresAtUnixTime.get());
ASSERT_EQ(tokenSpec.notBeforeUnixTime.get(), parsedToken.notBeforeUnixTime.get());
ASSERT(tokenSpec.tenants == parsedToken.tenants);
auto [sig, sigValid] = base64url::decode(tmpArena, signaturePart);
ASSERT(sigValid);
ASSERT(sig == parsedToken.signature);
}
// try tampering with signed token by adding one more tenant
tokenSpec.tenants.get().push_back(arena, genRandomAlphanumStringRef(arena, rng, MaxTenantNameLenPlus1));
auto tamperedTokenPart = makeTokenPart(arena, tokenSpec);
auto tamperedTokenString = fmt::format("{}.{}", tamperedTokenPart.toString(), signaturePart.toString());
const auto verifyExpectFail = authz::jwt::verifyToken(StringRef(tamperedTokenString), privateKey.toPublicKey());
ASSERT(!verifyExpectFail);
}
printf("%d runs OK\n", numIters);
return Void();
}
TEST_CASE("/fdbrpc/TokenSign/bench") {
constexpr auto repeat = 10;
constexpr auto numSamples = 10000;
auto keys = std::vector<PrivateKey>(numSamples);
auto pubKeys = std::vector<PublicKey>(numSamples);
for (auto i = 0; i < numSamples; i++) {
keys[i] = mkcert::makeEcP256();
pubKeys[i] = keys[i].toPublicKey();
}
fmt::print("{} keys generated\n", numSamples);
auto& rng = *deterministicRandom();
auto arena = Arena();
auto jwts = new (arena) StringRef[numSamples];
auto fbs = new (arena) StringRef[numSamples];
{
auto tmpArena = Arena();
for (auto i = 0; i < numSamples; i++) {
auto jwtSpec = authz::jwt::makeRandomTokenSpec(tmpArena, rng, authz::Algorithm::ES256);
jwts[i] = authz::jwt::signToken(arena, jwtSpec, keys[i]);
auto fbSpec = authz::flatbuffers::makeRandomTokenSpec(tmpArena, rng);
auto fbToken = authz::flatbuffers::signToken(tmpArena, fbSpec, "defaultKey"_sr, keys[i]);
auto wr = ObjectWriter([&arena](size_t len) { return new (arena) uint8_t[len]; }, Unversioned());
wr.serialize(fbToken);
fbs[i] = wr.toStringRef();
}
}
fmt::print("{} FB/JWT tokens generated\n", numSamples);
auto jwtBegin = timer_monotonic();
for (auto rep = 0; rep < repeat; rep++) {
for (auto i = 0; i < numSamples; i++) {
auto verifyOk = authz::jwt::verifyToken(jwts[i], pubKeys[i]);
ASSERT(verifyOk);
}
}
auto jwtEnd = timer_monotonic();
fmt::print("JWT: {:.2f} OPS\n", repeat * numSamples / (jwtEnd - jwtBegin));
auto fbBegin = timer_monotonic();
for (auto rep = 0; rep < repeat; rep++) {
for (auto i = 0; i < numSamples; i++) {
auto signedToken = ObjectReader::fromStringRef<authz::flatbuffers::SignedTokenRef>(fbs[i], Unversioned());
auto verifyOk = authz::flatbuffers::verifyToken(signedToken, pubKeys[i]);
ASSERT(verifyOk);
}
}
auto fbEnd = timer_monotonic();
fmt::print("FlatBuffers: {:.2f} OPS\n", repeat * numSamples / (fbEnd - fbBegin));
return Void();
}