Merge pull request #7769 from sfc-gh-mpilman/features/always-inject-faults

Separated normal workloads and failure injection
This commit is contained in:
Markus Pilman 2022-09-19 11:48:36 -06:00 committed by GitHub
commit bd8347d92e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 599 additions and 307 deletions

View File

@ -66,6 +66,7 @@ struct WorkloadRequest {
double databasePingDelay;
int64_t sharedRandomNumber;
bool useDatabase;
bool runFailureWorkloads = true;
Optional<TenantNameRef> defaultTenant;
// The vector of option lists are to construct compound workloads. If there
@ -98,6 +99,7 @@ struct WorkloadRequest {
clientCount,
reply,
defaultTenant,
runFailureWorkloads,
arena);
}
};

View File

@ -92,6 +92,63 @@ private:
virtual void getMetrics(std::vector<PerfMetric>& m) = 0;
};
struct CompoundWorkload;
class DeterministicRandom;
struct NoOptions {};
struct FailureInjectionWorkload : TestWorkload {
FailureInjectionWorkload(WorkloadContext const&);
virtual ~FailureInjectionWorkload() {}
virtual bool add(DeterministicRandom& random, WorkloadRequest const& work, CompoundWorkload const& workload);
virtual void initFailureInjectionMode(DeterministicRandom& random, unsigned count);
Future<Void> setupInjectionWorkload(Database const& cx, Future<Void> done);
Future<Void> startInjectionWorkload(Database const& cx, Future<Void> done);
Future<bool> checkInjectionWorkload(Database const& cx, Future<bool> done);
};
struct IFailureInjectorFactory : ReferenceCounted<IFailureInjectorFactory> {
virtual ~IFailureInjectorFactory() = default;
static std::vector<Reference<IFailureInjectorFactory>>& factories() {
static std::vector<Reference<IFailureInjectorFactory>> _factories;
return _factories;
}
virtual Reference<FailureInjectionWorkload> create(WorkloadContext const& wcx) = 0;
};
template <class W>
struct FailureInjectorFactory : IFailureInjectorFactory {
static_assert(std::is_base_of<FailureInjectionWorkload, W>::value);
FailureInjectorFactory() {
IFailureInjectorFactory::factories().push_back(Reference<IFailureInjectorFactory>::addRef(this));
}
Reference<FailureInjectionWorkload> create(WorkloadContext const& wcx) override {
return makeReference<W>(wcx, NoOptions());
}
};
struct CompoundWorkload : TestWorkload {
bool runFailureWorkloads = true;
std::vector<Reference<TestWorkload>> workloads;
std::vector<Reference<FailureInjectionWorkload>> failureInjection;
CompoundWorkload(WorkloadContext& wcx);
CompoundWorkload* add(Reference<TestWorkload>&& w);
void addFailureInjection(WorkloadRequest& work);
std::string description() const override;
Future<Void> setup(Database const& cx) override;
Future<Void> start(Database const& cx) override;
Future<bool> check(Database const& cx) override;
Future<std::vector<PerfMetric>> getMetrics() override;
double getCheckTimeout() const override;
void getMetrics(std::vector<PerfMetric>&) override;
};
struct WorkloadProcess;
struct ClientWorkload : TestWorkload {
WorkloadProcess* impl;
@ -223,6 +280,7 @@ public:
bool dumpAfterTest;
bool clearAfterTest;
bool useDB;
bool runFailureWorkloads = true;
double startDelay;
int phases;
Standalone<VectorRef<VectorRef<KeyValueRef>>> options;

View File

@ -26,6 +26,7 @@
#include <toml.hpp>
#include "flow/ActorCollection.h"
#include "flow/DeterministicRandom.h"
#include "fdbrpc/sim_validation.h"
#include "fdbrpc/simulator.h"
#include "fdbclient/ClusterInterface.h"
@ -271,104 +272,185 @@ Standalone<VectorRef<KeyValueRef>> checkAllOptionsConsumed(VectorRef<KeyValueRef
return unconsumed;
}
struct CompoundWorkload : TestWorkload {
std::vector<Reference<TestWorkload>> workloads;
CompoundWorkload::CompoundWorkload(WorkloadContext& wcx) : TestWorkload(wcx) {}
CompoundWorkload(WorkloadContext& wcx) : TestWorkload(wcx) {}
CompoundWorkload* add(Reference<TestWorkload>&& w) {
workloads.push_back(std::move(w));
return this;
}
CompoundWorkload* CompoundWorkload::add(Reference<TestWorkload>&& w) {
workloads.push_back(std::move(w));
return this;
}
std::string description() const override {
std::string d;
for (int w = 0; w < workloads.size(); w++)
d += workloads[w]->description() + (w == workloads.size() - 1 ? "" : ";");
return d;
std::string CompoundWorkload::description() const {
std::vector<std::string> names;
names.reserve(workloads.size());
for (auto const& w : workloads) {
names.push_back(w->description());
}
Future<Void> setup(Database const& cx) override {
std::vector<Future<Void>> all;
all.reserve(workloads.size());
for (int w = 0; w < workloads.size(); w++)
all.push_back(workloads[w]->setup(cx));
return waitForAll(all);
return fmt::format("{}", fmt::join(std::move(names), ";"));
}
Future<Void> CompoundWorkload::setup(Database const& cx) {
std::vector<Future<Void>> all;
all.reserve(workloads.size());
for (int w = 0; w < workloads.size(); w++)
all.push_back(workloads[w]->setup(cx));
auto done = waitForAll(all);
if (failureInjection.empty()) {
return done;
}
Future<Void> start(Database const& cx) override {
std::vector<Future<Void>> all;
all.reserve(workloads.size());
auto wCount = std::make_shared<unsigned>(0);
for (int i = 0; i < workloads.size(); i++) {
std::string workloadName = workloads[i]->description();
++(*wCount);
TraceEvent("WorkloadRunStatus")
.detail("Name", workloadName)
.detail("Count", *wCount)
.detail("Phase", "Start");
all.push_back(fmap(
[workloadName, wCount](Void value) {
--(*wCount);
TraceEvent("WorkloadRunStatus")
.detail("Name", workloadName)
.detail("Remaining", *wCount)
.detail("Phase", "End");
return Void();
},
workloads[i]->start(cx)));
std::vector<Future<Void>> res;
res.reserve(failureInjection.size());
for (auto& f : failureInjection) {
res.push_back(f->setupInjectionWorkload(cx, done));
}
return waitForAll(res);
}
Future<Void> CompoundWorkload::start(Database const& cx) {
std::vector<Future<Void>> all;
all.reserve(workloads.size() + failureInjection.size());
auto wCount = std::make_shared<unsigned>(0);
auto startWorkload = [&](TestWorkload& workload) -> Future<Void> {
auto workloadName = workload.description();
++(*wCount);
TraceEvent("WorkloadRunStatus").detail("Name", workloadName).detail("Count", *wCount).detail("Phase", "Start");
return fmap(
[workloadName, wCount](Void value) {
--(*wCount);
TraceEvent("WorkloadRunStatus")
.detail("Name", workloadName)
.detail("Remaining", *wCount)
.detail("Phase", "End");
return Void();
},
workload.start(cx));
};
for (auto& workload : workloads) {
all.push_back(startWorkload(*workload));
}
for (auto& workload : failureInjection) {
all.push_back(startWorkload(*workload));
}
return waitForAll(all);
}
Future<bool> CompoundWorkload::check(Database const& cx) {
std::vector<Future<bool>> all;
all.reserve(workloads.size() + failureInjection.size());
auto wCount = std::make_shared<unsigned>(0);
auto starter = [&](TestWorkload& workload) -> Future<bool> {
++(*wCount);
std::string workloadName = workload.description();
TraceEvent("WorkloadCheckStatus")
.detail("Name", workloadName)
.detail("Count", *wCount)
.detail("Phase", "Start");
return fmap(
[workloadName, wCount](bool ret) {
--(*wCount);
TraceEvent("WorkloadCheckStatus")
.detail("Name", workloadName)
.detail("Remaining", *wCount)
.detail("Phase", "End");
return true;
},
workload.check(cx));
};
for (auto& workload : workloads) {
all.push_back(starter(*workload));
}
for (auto& workload : failureInjection) {
all.push_back(starter(*workload));
}
return allTrue(all);
}
ACTOR Future<std::vector<PerfMetric>> getMetricsCompoundWorkload(CompoundWorkload* self) {
state std::vector<Future<std::vector<PerfMetric>>> results;
for (int w = 0; w < self->workloads.size(); w++) {
std::vector<PerfMetric> p;
results.push_back(self->workloads[w]->getMetrics());
}
wait(waitForAll(results));
std::vector<PerfMetric> res;
for (int i = 0; i < results.size(); ++i) {
auto const& p = results[i].get();
for (auto const& m : p) {
res.push_back(m.withPrefix(self->workloads[i]->description() + "."));
}
return waitForAll(all);
}
Future<bool> check(Database const& cx) override {
std::vector<Future<bool>> all;
all.reserve(workloads.size());
auto wCount = std::make_shared<unsigned>(0);
for (int i = 0; i < workloads.size(); i++) {
++(*wCount);
std::string workloadName = workloads[i]->description();
TraceEvent("WorkloadCheckStatus")
.detail("Name", workloadName)
.detail("Count", *wCount)
.detail("Phase", "Start");
all.push_back(fmap(
[workloadName, wCount](bool ret) {
--(*wCount);
TraceEvent("WorkloadCheckStatus")
.detail("Name", workloadName)
.detail("Remaining", *wCount)
.detail("Phase", "End");
return true;
},
workloads[i]->check(cx)));
}
return allTrue(all);
}
return res;
}
ACTOR static Future<std::vector<PerfMetric>> getMetrics(CompoundWorkload* self) {
state std::vector<Future<std::vector<PerfMetric>>> results;
for (int w = 0; w < self->workloads.size(); w++) {
std::vector<PerfMetric> p;
results.push_back(self->workloads[w]->getMetrics());
}
wait(waitForAll(results));
std::vector<PerfMetric> res;
for (int i = 0; i < results.size(); ++i) {
auto const& p = results[i].get();
for (auto const& m : p) {
res.push_back(m.withPrefix(self->workloads[i]->description() + "."));
}
}
return res;
void CompoundWorkload::addFailureInjection(WorkloadRequest& work) {
if (!work.runFailureWorkloads || !FLOW_KNOBS->ENABLE_SIMULATION_IMPROVEMENTS) {
return;
}
Future<std::vector<PerfMetric>> getMetrics() override { return getMetrics(this); }
double getCheckTimeout() const override {
double m = 0;
for (int w = 0; w < workloads.size(); w++)
m = std::max(workloads[w]->getCheckTimeout(), m);
return m;
// Some common workloads won't work with failure injection workloads
for (auto const& w : workloads) {
auto desc = w->description();
if (desc == "ChangeConfig") {
return;
} else if (desc == "SaveAndKill") {
return;
}
}
auto& factories = IFailureInjectorFactory::factories();
DeterministicRandom random(sharedRandomNumber);
for (auto& factory : factories) {
auto workload = factory->create(*this);
while (workload->add(random, work, *this)) {
failureInjection.push_back(workload);
workload = factory->create(*this);
}
}
}
void getMetrics(std::vector<PerfMetric>&) override { ASSERT(false); }
};
Future<std::vector<PerfMetric>> CompoundWorkload::getMetrics() {
return getMetricsCompoundWorkload(this);
}
double CompoundWorkload::getCheckTimeout() const {
double m = 0;
for (int w = 0; w < workloads.size(); w++)
m = std::max(workloads[w]->getCheckTimeout(), m);
return m;
}
void CompoundWorkload::getMetrics(std::vector<PerfMetric>&) {
ASSERT(false);
}
FailureInjectionWorkload::FailureInjectionWorkload(WorkloadContext const& wcx) : TestWorkload(wcx) {}
bool FailureInjectionWorkload::add(DeterministicRandom& random,
const WorkloadRequest& work,
const CompoundWorkload& workload) {
auto desc = description();
unsigned alreadyAdded = std::count_if(workload.workloads.begin(), workload.workloads.end(), [&desc](auto const& w) {
return w->description() == desc;
});
alreadyAdded += std::count_if(workload.failureInjection.begin(),
workload.failureInjection.end(),
[&desc](auto const& w) { return w->description() == desc; });
bool willAdd = alreadyAdded < 3 && work.useDatabase && 0.1 / (1 + alreadyAdded) > random.random01();
if (willAdd) {
initFailureInjectionMode(random, alreadyAdded);
}
return willAdd;
}
void FailureInjectionWorkload::initFailureInjectionMode(DeterministicRandom& random, unsigned count) {}
Future<Void> FailureInjectionWorkload::setupInjectionWorkload(const Database& cx, Future<Void> done) {
return holdWhile(this->setup(cx), done);
}
Future<Void> FailureInjectionWorkload::startInjectionWorkload(const Database& cx, Future<Void> done) {
return holdWhile(this->start(cx), done);
}
Future<bool> FailureInjectionWorkload::checkInjectionWorkload(const Database& cx, Future<bool> done) {
return holdWhile(this->check(cx), done);
}
ACTOR Future<Reference<TestWorkload>> getWorkloadIface(WorkloadRequest work,
Reference<IClusterConnectionRecord> ccr,
@ -422,10 +504,6 @@ ACTOR Future<Reference<TestWorkload>> getWorkloadIface(WorkloadRequest work,
fprintf(stderr, "ERROR: No options were provided for workload.\n");
throw test_specification_invalid();
}
if (work.options.size() == 1) {
Reference<TestWorkload> res = wait(getWorkloadIface(work, ccr, work.options[0], dbInfo));
return res;
}
wcx.clientId = work.clientId;
wcx.clientCount = work.clientCount;
@ -440,6 +518,7 @@ ACTOR Future<Reference<TestWorkload>> getWorkloadIface(WorkloadRequest work,
for (int i = 0; i < work.options.size(); i++) {
compound->add(ifaces[i].getValue());
}
compound->addFailureInjection(work);
return compound;
}
@ -736,7 +815,7 @@ ACTOR Future<Void> testerServerCore(TesterInterface interf,
state PromiseStream<Future<Void>> addWorkload;
state Future<Void> workerFatalError = actorCollection(addWorkload.getFuture());
TraceEvent("StartingTesterServerCore", interf.id());
TraceEvent("StartingTesterServerCore", interf.id()).log();
loop choose {
when(wait(workerFatalError)) {}
when(WorkloadRequest work = waitNext(interf.recruitments.getFuture())) {
@ -883,6 +962,7 @@ ACTOR Future<DistributedTestResults> runWorkload(Database cx,
WorkloadRequest req;
req.title = spec.title;
req.useDatabase = spec.useDB;
req.runFailureWorkloads = spec.runFailureWorkloads;
req.timeout = spec.timeout;
req.databasePingDelay = spec.useDB ? spec.databasePingDelay : 0.0;
req.options = spec.options;
@ -976,6 +1056,7 @@ ACTOR Future<Void> changeConfiguration(Database cx, std::vector<TesterInterface>
state TestSpec spec;
Standalone<VectorRef<KeyValueRef>> options;
spec.title = LiteralStringRef("ChangeConfig");
spec.runFailureWorkloads = false;
options.push_back_deep(options.arena(),
KeyValueRef(LiteralStringRef("testName"), LiteralStringRef("ChangeConfig")));
options.push_back_deep(options.arena(), KeyValueRef(LiteralStringRef("configMode"), configMode));
@ -1022,6 +1103,7 @@ ACTOR Future<Void> checkConsistency(Database cx,
}
spec.title = LiteralStringRef("ConsistencyCheck");
spec.databasePingDelay = databasePingDelay;
spec.runFailureWorkloads = false;
spec.timeout = 32000;
options.push_back_deep(options.arena(),
KeyValueRef(LiteralStringRef("testName"), LiteralStringRef("ConsistencyCheck")));
@ -1317,6 +1399,8 @@ std::map<std::string, std::function<void(const std::string& value, TestSpec* spe
if (value == "false")
spec->restorePerpetualWiggleSetting = false;
} },
{ "runFailureWorkloads",
[](const std::string& value, TestSpec* spec) { spec->runFailureWorkloads = (value == "true"); } },
};
std::vector<TestSpec> readTests(std::ifstream& ifs) {
@ -1541,6 +1625,24 @@ ACTOR Future<Void> monitorServerDBInfo(Reference<AsyncVar<Optional<ClusterContro
}
}
ACTOR Future<Void> initializeSimConfig(Database db) {
state Transaction tr(db);
ASSERT(g_network->isSimulated());
loop {
try {
DatabaseConfiguration dbConfig = wait(getDatabaseConfiguration(&tr));
g_simulator->storagePolicy = dbConfig.storagePolicy;
g_simulator->tLogPolicy = dbConfig.tLogPolicy;
g_simulator->tLogWriteAntiQuorum = dbConfig.tLogWriteAntiQuorum;
g_simulator->remoteTLogPolicy = dbConfig.getRemoteTLogPolicy();
g_simulator->usableRegions = dbConfig.usableRegions;
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
/**
* \brief Test orchestrator: sends test specification to testers in the right order and collects the results.
*
@ -1621,6 +1723,7 @@ ACTOR Future<Void> runTests(Reference<AsyncVar<Optional<struct ClusterController
// Change the configuration (and/or create the database) if necessary
printf("startingConfiguration:%s start\n", startingConfiguration.toString().c_str());
fmt::print("useDB: {}\n", useDB);
printSimulatedTopology();
if (useDB && startingConfiguration != StringRef()) {
try {
@ -1655,6 +1758,9 @@ ACTOR Future<Void> runTests(Reference<AsyncVar<Optional<struct ClusterController
}
wait(waitForAll(tenantFutures));
if (g_network->isSimulated()) {
wait(initializeSimConfig(cx));
}
}
if (useDB && waitForQuiescenceBegin) {
@ -1674,6 +1780,7 @@ ACTOR Future<Void> runTests(Reference<AsyncVar<Optional<struct ClusterController
if (perpetualWiggleEnabled) { // restore the enabled perpetual storage wiggle setting
printf("Set perpetual_storage_wiggle=1 ...\n");
Version cVer = wait(setPerpetualStorageWiggle(cx, true, LockAware::True));
(void)cVer;
printf("Set perpetual_storage_wiggle=1 Done.\n");
}
}
@ -1822,6 +1929,7 @@ ACTOR Future<Void> runTests(Reference<IClusterConnectionRecord> connRecord,
TestSpec spec;
Standalone<VectorRef<KeyValueRef>> options;
spec.title = LiteralStringRef("ConsistencyCheck");
spec.runFailureWorkloads = false;
spec.databasePingDelay = 0;
spec.timeout = 0;
spec.waitForQuiescenceBegin = false;

View File

@ -28,19 +28,19 @@
#include "fdbserver/Status.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct DiskFailureInjectionWorkload : TestWorkload {
struct DiskFailureInjectionWorkload : FailureInjectionWorkload {
bool enabled;
double testDuration;
double startDelay;
bool throttleDisk;
int workersToThrottle;
double stallInterval;
double stallPeriod;
double throttlePeriod;
bool corruptFile;
int workersToCorrupt;
double percentBitFlips;
double periodicBroadcastInterval;
double testDuration = 60.0;
double startDelay = 0.0;
bool throttleDisk = false;
int workersToThrottle = 3;
double stallInterval = 0.0;
double stallPeriod = 60.0;
double throttlePeriod = 60.0;
bool corruptFile = false;
int workersToCorrupt = 1;
double percentBitFlips = 10;
double periodicBroadcastInterval = 5.0;
std::vector<NetworkAddress> chosenWorkers;
std::vector<Future<Void>> clients;
// Verification Mode: We run the workload indefinitely in this mode.
@ -48,22 +48,27 @@ struct DiskFailureInjectionWorkload : TestWorkload {
// that we haven't lost the chaos event. testDuration is ignored in this mode
bool verificationMode;
DiskFailureInjectionWorkload(WorkloadContext const& wcx) : TestWorkload(wcx) {
DiskFailureInjectionWorkload(WorkloadContext const& wcx, NoOptions) : FailureInjectionWorkload(wcx) {}
DiskFailureInjectionWorkload(WorkloadContext const& wcx) : FailureInjectionWorkload(wcx) {
enabled = !clientId; // only do this on the "first" client
startDelay = getOption(options, LiteralStringRef("startDelay"), 0.0);
testDuration = getOption(options, LiteralStringRef("testDuration"), 60.0);
verificationMode = getOption(options, LiteralStringRef("verificationMode"), false);
throttleDisk = getOption(options, LiteralStringRef("throttleDisk"), false);
workersToThrottle = getOption(options, LiteralStringRef("workersToThrottle"), 3);
stallInterval = getOption(options, LiteralStringRef("stallInterval"), 0.0);
stallPeriod = getOption(options, LiteralStringRef("stallPeriod"), 60.0);
throttlePeriod = getOption(options, LiteralStringRef("throttlePeriod"), 60.0);
corruptFile = getOption(options, LiteralStringRef("corruptFile"), false);
workersToCorrupt = getOption(options, LiteralStringRef("workersToCorrupt"), 1);
percentBitFlips = getOption(options, LiteralStringRef("percentBitFlips"), 10.0);
periodicBroadcastInterval = getOption(options, LiteralStringRef("periodicBroadcastInterval"), 5.0);
startDelay = getOption(options, LiteralStringRef("startDelay"), startDelay);
testDuration = getOption(options, LiteralStringRef("testDuration"), testDuration);
verificationMode = getOption(options, LiteralStringRef("verificationMode"), verificationMode);
throttleDisk = getOption(options, LiteralStringRef("throttleDisk"), throttleDisk);
workersToThrottle = getOption(options, LiteralStringRef("workersToThrottle"), workersToThrottle);
stallInterval = getOption(options, LiteralStringRef("stallInterval"), stallInterval);
stallPeriod = getOption(options, LiteralStringRef("stallPeriod"), stallPeriod);
throttlePeriod = getOption(options, LiteralStringRef("throttlePeriod"), throttlePeriod);
corruptFile = getOption(options, LiteralStringRef("corruptFile"), corruptFile);
workersToCorrupt = getOption(options, LiteralStringRef("workersToCorrupt"), workersToCorrupt);
percentBitFlips = getOption(options, LiteralStringRef("percentBitFlips"), percentBitFlips);
periodicBroadcastInterval =
getOption(options, LiteralStringRef("periodicBroadcastInterval"), periodicBroadcastInterval);
}
void initFailureInjectionMode(DeterministicRandom& random, unsigned count) override { enabled = clientId == 0; }
std::string description() const override {
if (g_simulator == g_network)
return "DiskFailureInjection";
@ -275,3 +280,4 @@ struct DiskFailureInjectionWorkload : TestWorkload {
}
};
WorkloadFactory<DiskFailureInjectionWorkload> DiskFailureInjectionWorkloadFactory("DiskFailureInjection");
FailureInjectorFactory<DiskFailureInjectionWorkload> DiskFailureInjectionWorkloadFailureInjectionFactory;

View File

@ -27,6 +27,7 @@
#include "fdbrpc/simulator.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "flow/FaultInjection.h"
#include "flow/DeterministicRandom.h"
#include "flow/actorcompiler.h" // This must be the last #include.
static std::set<int> const& normalAttritionErrors() {
@ -60,50 +61,99 @@ ACTOR Future<bool> ignoreSSFailuresForDuration(Database cx, double duration) {
}
}
struct MachineAttritionWorkload : TestWorkload {
struct MachineAttritionWorkload : FailureInjectionWorkload {
bool enabled;
int machinesToKill, machinesToLeave, workersToKill, workersToLeave;
double testDuration, suspendDuration, liveDuration;
bool reboot;
bool killDc;
bool killMachine;
bool killDatahall;
bool killProcess;
bool killZone;
bool killSelf;
int machinesToKill = 2, machinesToLeave = 1, workersToKill = 2, workersToLeave = 1;
double testDuration = 10.0, suspendDuration = 1.0, liveDuration = 5.0;
bool iterate = false;
bool reboot = false;
bool killDc = false;
bool killMachine = false;
bool killDatahall = false;
bool killProcess = false;
bool killZone = false;
bool killSelf = false;
std::vector<std::string> targetIds;
bool replacement;
bool waitForVersion;
bool allowFaultInjection;
Future<bool> ignoreSSFailures;
bool replacement = false;
bool waitForVersion = false;
bool allowFaultInjection = true;
Future<bool> ignoreSSFailures = true;
double maxRunDuration = 60.0, backoff = 1.5;
// This is set in setup from the list of workers when the cluster is started
std::vector<LocalityData> machines;
MachineAttritionWorkload(WorkloadContext const& wcx) : TestWorkload(wcx) {
MachineAttritionWorkload(WorkloadContext const& wcx, NoOptions) : FailureInjectionWorkload(wcx) {
enabled = !clientId && g_network->isSimulated() && faultInjectionActivated;
suspendDuration = 10.0;
iterate = true;
}
MachineAttritionWorkload(WorkloadContext const& wcx) : FailureInjectionWorkload(wcx) {
// only do this on the "first" client, and only when in simulation and only when fault injection is enabled
enabled = !clientId && g_network->isSimulated() && faultInjectionActivated;
machinesToKill = getOption(options, LiteralStringRef("machinesToKill"), 2);
machinesToLeave = getOption(options, LiteralStringRef("machinesToLeave"), 1);
workersToKill = getOption(options, LiteralStringRef("workersToKill"), 2);
workersToLeave = getOption(options, LiteralStringRef("workersToLeave"), 1);
testDuration = getOption(options, LiteralStringRef("testDuration"), 10.0);
suspendDuration = getOption(options, LiteralStringRef("suspendDuration"), 1.0);
liveDuration = getOption(options, LiteralStringRef("liveDuration"), 5.0);
reboot = getOption(options, LiteralStringRef("reboot"), false);
machinesToKill = getOption(options, LiteralStringRef("machinesToKill"), machinesToKill);
machinesToLeave = getOption(options, LiteralStringRef("machinesToLeave"), machinesToLeave);
workersToKill = getOption(options, LiteralStringRef("workersToKill"), workersToKill);
workersToLeave = getOption(options, LiteralStringRef("workersToLeave"), workersToLeave);
testDuration = getOption(options, LiteralStringRef("testDuration"), testDuration);
suspendDuration = getOption(options, LiteralStringRef("suspendDuration"), suspendDuration);
liveDuration = getOption(options, LiteralStringRef("liveDuration"), liveDuration);
reboot = getOption(options, LiteralStringRef("reboot"), reboot);
killDc = getOption(
options, LiteralStringRef("killDc"), g_network->isSimulated() && deterministicRandom()->random01() < 0.25);
killMachine = getOption(options, LiteralStringRef("killMachine"), false);
killDatahall = getOption(options, LiteralStringRef("killDatahall"), false);
killProcess = getOption(options, LiteralStringRef("killProcess"), false);
killZone = getOption(options, LiteralStringRef("killZone"), false);
killSelf = getOption(options, LiteralStringRef("killSelf"), false);
killMachine = getOption(options, LiteralStringRef("killMachine"), killMachine);
killDatahall = getOption(options, LiteralStringRef("killDatahall"), killDatahall);
killProcess = getOption(options, LiteralStringRef("killProcess"), killProcess);
killZone = getOption(options, LiteralStringRef("killZone"), killZone);
killSelf = getOption(options, LiteralStringRef("killSelf"), killSelf);
targetIds = getOption(options, LiteralStringRef("targetIds"), std::vector<std::string>());
replacement =
getOption(options, LiteralStringRef("replacement"), reboot && deterministicRandom()->random01() < 0.5);
waitForVersion = getOption(options, LiteralStringRef("waitForVersion"), false);
allowFaultInjection = getOption(options, LiteralStringRef("allowFaultInjection"), true);
ignoreSSFailures = true;
waitForVersion = getOption(options, LiteralStringRef("waitForVersion"), waitForVersion);
allowFaultInjection = getOption(options, LiteralStringRef("allowFaultInjection"), allowFaultInjection);
}
bool add(DeterministicRandom& random, WorkloadRequest const& work, CompoundWorkload const& workload) override {
auto desc = this->description();
unsigned alreadyAdded = std::count_if(workload.workloads.begin(),
workload.workloads.end(),
[&desc](auto const& w) { return w->description() == desc; });
alreadyAdded += std::count_if(workload.failureInjection.begin(),
workload.failureInjection.end(),
[&desc](auto const& w) { return w->description() == desc; });
auto res = work.useDatabase && random.random01() < 1.0 / (2.0 + alreadyAdded);
if (res) {
initializeForInjection(random);
}
TraceEvent("AddingFailureInjection")
.detail("Reboot", reboot)
.detail("Replacement", replacement)
.detail("AllowFaultInjection", allowFaultInjection)
.detail("KillDC", killDc)
.detail("KillDataHall", killDatahall)
.detail("KillZone", killZone);
return res;
}
void initializeForInjection(DeterministicRandom& random) {
reboot = random.random01() < 0.25;
replacement = random.random01() < 0.25;
allowFaultInjection = random.random01() < 0.5;
suspendDuration = 10.0 * random.random01();
if (g_network->isSimulated()) {
std::set<Optional<StringRef>> dataCenters;
std::set<Optional<StringRef>> dataHalls;
std::set<Optional<StringRef>> zones;
for (auto process : g_simulator->getAllProcesses()) {
dataCenters.emplace(process->locality.dcId().castTo<StringRef>());
dataHalls.emplace(process->locality.dataHallId().castTo<StringRef>());
zones.emplace(process->locality.zoneId().castTo<StringRef>());
}
killDc = dataCenters.size() > 0 && random.random01() > (dataHalls.size() < 0 ? 0.1 : 0.25);
killDatahall = dataHalls.size() > 0 && killDc && random.random01() < 0.5;
killZone = zones.size() > 0 && random.random01() < 0.2;
}
}
static std::vector<ISimulator::ProcessInfo*> getServers() {
@ -198,7 +248,8 @@ struct MachineAttritionWorkload : TestWorkload {
}
deterministicRandom()->randomShuffle(workers);
wait(delay(self->liveDuration));
// if a specific kill is requested, it must be accompanied by a set of target IDs otherwise no kills will occur
// if a specific kill is requested, it must be accompanied by a set of target IDs otherwise no kills will
// occur
if (self->killDc) {
TraceEvent("Assassination").detail("TargetDataCenterIds", describe(self->targetIds));
sendRebootRequests(workers,
@ -275,140 +326,150 @@ struct MachineAttritionWorkload : TestWorkload {
ACTOR static Future<Void> machineKillWorker(MachineAttritionWorkload* self, double meanDelay, Database cx) {
ASSERT(g_network->isSimulated());
state double delayBeforeKill;
state double suspendDuration = self->suspendDuration;
state double startTime = now();
if (self->killDc) {
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
wait(delay(delayBeforeKill));
// decide on a machine to kill
ASSERT(self->machines.size());
Optional<Standalone<StringRef>> target = self->machines.back().dcId();
ISimulator::KillType kt = ISimulator::Reboot;
if (!self->reboot) {
int killType = deterministicRandom()->randomInt(0, 3); // FIXME: enable disk stalls
if (killType == 0)
kt = ISimulator::KillInstantly;
else if (killType == 1)
kt = ISimulator::InjectFaults;
else if (killType == 2)
kt = ISimulator::RebootAndDelete;
else
kt = ISimulator::FailDisk;
}
TraceEvent("Assassination")
.detail("TargetDatacenter", target)
.detail("Reboot", self->reboot)
.detail("KillType", kt);
g_simulator->killDataCenter(target, kt);
} else if (self->killDatahall) {
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
wait(delay(delayBeforeKill));
// It only makes sense to kill a single data hall.
ASSERT(self->targetIds.size() == 1);
auto target = self->targetIds.front();
auto kt = ISimulator::KillInstantly;
TraceEvent("Assassination").detail("TargetDataHall", target).detail("KillType", kt);
g_simulator->killDataHall(target, kt);
} else {
state int killedMachines = 0;
while (killedMachines < self->machinesToKill && self->machines.size() > self->machinesToLeave) {
TraceEvent("WorkerKillBegin")
.detail("KilledMachines", killedMachines)
.detail("MachinesToKill", self->machinesToKill)
.detail("MachinesToLeave", self->machinesToLeave)
.detail("Machines", self->machines.size());
CODE_PROBE(true, "Killing a machine");
loop {
if (self->killDc) {
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
wait(delay(delayBeforeKill));
TraceEvent("WorkerKillAfterDelay").log();
if (self->waitForVersion) {
state Transaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
wait(success(tr.getReadVersion()));
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
// decide on a machine to kill
state LocalityData targetMachine = self->machines.back();
if (BUGGIFY_WITH_PROB(0.01)) {
CODE_PROBE(true, "Marked a zone for maintenance before killing it");
wait(success(
setHealthyZone(cx, targetMachine.zoneId().get(), deterministicRandom()->random01() * 20)));
} else if (BUGGIFY_WITH_PROB(0.005)) {
CODE_PROBE(true, "Disable DD for all storage server failures");
self->ignoreSSFailures =
uncancellable(ignoreSSFailuresForDuration(cx, deterministicRandom()->random01() * 5));
}
ASSERT(self->machines.size());
Optional<Standalone<StringRef>> target = self->machines.back().dcId();
ISimulator::KillType kt = ISimulator::Reboot;
if (!self->reboot) {
int killType = deterministicRandom()->randomInt(0, 3); // FIXME: enable disk stalls
if (killType == 0)
kt = ISimulator::KillInstantly;
else if (killType == 1)
kt = ISimulator::InjectFaults;
else if (killType == 2)
kt = ISimulator::RebootAndDelete;
else
kt = ISimulator::FailDisk;
}
TraceEvent("Assassination")
.detail("TargetMachine", targetMachine.toString())
.detail("ZoneId", targetMachine.zoneId())
.detail("TargetDatacenter", target)
.detail("Reboot", self->reboot)
.detail("KilledMachines", killedMachines)
.detail("MachinesToKill", self->machinesToKill)
.detail("MachinesToLeave", self->machinesToLeave)
.detail("Machines", self->machines.size())
.detail("Replace", self->replacement);
if (self->reboot) {
if (deterministicRandom()->random01() > 0.5) {
g_simulator->rebootProcess(targetMachine.zoneId(), deterministicRandom()->random01() > 0.5);
} else {
g_simulator->killZone(targetMachine.zoneId(), ISimulator::Reboot);
}
} else {
auto randomDouble = deterministicRandom()->random01();
TraceEvent("WorkerKill")
.detail("MachineCount", self->machines.size())
.detail("RandomValue", randomDouble);
if (randomDouble < 0.33) {
TraceEvent("RebootAndDelete").detail("TargetMachine", targetMachine.toString());
g_simulator->killZone(targetMachine.zoneId(), ISimulator::RebootAndDelete);
} else {
auto kt = ISimulator::KillInstantly;
if (self->allowFaultInjection) {
if (randomDouble < 0.50) {
kt = ISimulator::InjectFaults;
}
// FIXME: enable disk stalls
/*
if( randomDouble < 0.56 ) {
kt = ISimulator::InjectFaults;
} else if( randomDouble < 0.66 ) {
kt = ISimulator::FailDisk;
}
*/
}
g_simulator->killZone(targetMachine.zoneId(), kt);
}
}
killedMachines++;
if (self->replacement) {
// Replace by reshuffling, since we always pick from the back.
deterministicRandom()->randomShuffle(self->machines);
} else {
self->machines.pop_back();
}
wait(delay(meanDelay - delayBeforeKill) && success(self->ignoreSSFailures));
.detail("KillType", kt);
g_simulator->killDataCenter(target, kt);
} else if (self->killDatahall) {
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
TraceEvent("WorkerKillAfterMeanDelay").detail("DelayBeforeKill", delayBeforeKill);
wait(delay(delayBeforeKill));
// It only makes sense to kill a single data hall.
ASSERT(self->targetIds.size() == 1);
auto target = self->targetIds.front();
auto kt = ISimulator::KillInstantly;
TraceEvent("Assassination").detail("TargetDataHall", target).detail("KillType", kt);
g_simulator->killDataHall(target, kt);
} else {
state int killedMachines = 0;
while (killedMachines < self->machinesToKill && self->machines.size() > self->machinesToLeave) {
TraceEvent("WorkerKillBegin")
.detail("KilledMachines", killedMachines)
.detail("MachinesToKill", self->machinesToKill)
.detail("MachinesToLeave", self->machinesToLeave)
.detail("Machines", self->machines.size());
CODE_PROBE(true, "Killing a machine");
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
wait(delay(delayBeforeKill));
TraceEvent("WorkerKillAfterDelay").log();
if (self->waitForVersion) {
state Transaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
wait(success(tr.getReadVersion()));
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
// decide on a machine to kill
state LocalityData targetMachine = self->machines.back();
if (BUGGIFY_WITH_PROB(0.01)) {
CODE_PROBE(true, "Marked a zone for maintenance before killing it");
wait(success(
setHealthyZone(cx, targetMachine.zoneId().get(), deterministicRandom()->random01() * 20)));
} else if (BUGGIFY_WITH_PROB(0.005)) {
CODE_PROBE(true, "Disable DD for all storage server failures");
self->ignoreSSFailures =
uncancellable(ignoreSSFailuresForDuration(cx, deterministicRandom()->random01() * 5));
}
TraceEvent("Assassination")
.detail("TargetMachine", targetMachine.toString())
.detail("ZoneId", targetMachine.zoneId())
.detail("Reboot", self->reboot)
.detail("KilledMachines", killedMachines)
.detail("MachinesToKill", self->machinesToKill)
.detail("MachinesToLeave", self->machinesToLeave)
.detail("Machines", self->machines.size())
.detail("Replace", self->replacement);
if (self->reboot) {
if (deterministicRandom()->random01() > 0.5) {
g_simulator->rebootProcess(targetMachine.zoneId(), deterministicRandom()->random01() > 0.5);
} else {
g_simulator->killZone(targetMachine.zoneId(), ISimulator::Reboot);
}
} else {
auto randomDouble = deterministicRandom()->random01();
TraceEvent("WorkerKill")
.detail("MachineCount", self->machines.size())
.detail("RandomValue", randomDouble);
if (randomDouble < 0.33) {
TraceEvent("RebootAndDelete").detail("TargetMachine", targetMachine.toString());
g_simulator->killZone(targetMachine.zoneId(), ISimulator::RebootAndDelete);
} else {
auto kt = ISimulator::KillInstantly;
if (self->allowFaultInjection) {
if (randomDouble < 0.50) {
kt = ISimulator::InjectFaults;
}
// FIXME: enable disk stalls
/*
if( randomDouble < 0.56 ) {
kt = ISimulator::InjectFaults;
} else if( randomDouble < 0.66 ) {
kt = ISimulator::FailDisk;
}
*/
}
g_simulator->killZone(targetMachine.zoneId(), kt);
}
}
killedMachines++;
if (self->replacement) {
// Replace by reshuffling, since we always pick from the back.
deterministicRandom()->randomShuffle(self->machines);
} else {
self->machines.pop_back();
}
wait(delay(meanDelay - delayBeforeKill) && success(self->ignoreSSFailures));
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
TraceEvent("WorkerKillAfterMeanDelay").detail("DelayBeforeKill", delayBeforeKill);
}
}
if (!self->iterate || now() - startTime > self->maxRunDuration) {
break;
} else {
wait(delay(suspendDuration));
suspendDuration *= self->backoff;
}
}
@ -419,3 +480,4 @@ struct MachineAttritionWorkload : TestWorkload {
};
WorkloadFactory<MachineAttritionWorkload> MachineAttritionWorkloadFactory("Attrition");
FailureInjectorFactory<MachineAttritionWorkload> MachineAttritionFailureWorkloadFactory;

View File

@ -18,24 +18,48 @@
* limitations under the License.
*/
#include "flow/DeterministicRandom.h"
#include "fdbrpc/simulator.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbrpc/simulator.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct RandomCloggingWorkload : TestWorkload {
struct RandomCloggingWorkload : FailureInjectionWorkload {
bool enabled;
double testDuration;
double scale, clogginess;
int swizzleClog;
double testDuration = 10.0;
double scale = 1.0, clogginess = 1.0;
int swizzleClog = 0;
bool iterate = false;
double maxRunDuration = 60.0, backoff = 1.5, suspend = 10.0;
RandomCloggingWorkload(WorkloadContext const& wcx) : TestWorkload(wcx) {
RandomCloggingWorkload(WorkloadContext const& wcx, NoOptions) : FailureInjectionWorkload(wcx) {}
RandomCloggingWorkload(WorkloadContext const& wcx) : FailureInjectionWorkload(wcx) {
enabled = !clientId; // only do this on the "first" client
testDuration = getOption(options, LiteralStringRef("testDuration"), 10.0);
scale = getOption(options, LiteralStringRef("scale"), 1.0);
clogginess = getOption(options, LiteralStringRef("clogginess"), 1.0);
swizzleClog = getOption(options, LiteralStringRef("swizzle"), 0);
testDuration = getOption(options, LiteralStringRef("testDuration"), testDuration);
scale = getOption(options, LiteralStringRef("scale"), scale);
clogginess = getOption(options, LiteralStringRef("clogginess"), clogginess);
swizzleClog = getOption(options, LiteralStringRef("swizzle"), swizzleClog);
}
bool add(DeterministicRandom& random, WorkloadRequest const& work, CompoundWorkload const& workload) override {
auto desc = description();
unsigned alreadyAdded = std::count_if(workload.workloads.begin(),
workload.workloads.end(),
[&desc](auto const& w) { return w->description() == desc; });
alreadyAdded += std::count_if(workload.failureInjection.begin(),
workload.failureInjection.end(),
[&desc](auto const& w) { return w->description() == desc; });
bool willAdd = work.useDatabase && 0.25 / (1 + alreadyAdded) > random.random01();
if (willAdd) {
enabled = this->clientId == 0;
scale = std::max(random.random01(), 0.1);
clogginess = std::max(random.random01(), 0.1);
swizzleClog = random.random01() < 0.3;
iterate = random.random01() < 0.5;
}
return willAdd;
}
std::string description() const override {
@ -46,17 +70,31 @@ struct RandomCloggingWorkload : TestWorkload {
}
Future<Void> setup(Database const& cx) override { return Void(); }
Future<Void> start(Database const& cx) override {
if (g_simulator == g_network && enabled)
return timeout(
reportErrors(swizzleClog ? swizzleClogClient(this) : clogClient(this), "RandomCloggingError"),
testDuration,
Void());
else
return Void();
if (g_network->isSimulated() && enabled) {
return _start(this);
}
return Void();
}
Future<bool> check(Database const& cx) override { return true; }
void getMetrics(std::vector<PerfMetric>& m) override {}
ACTOR static Future<Void> _start(RandomCloggingWorkload* self) {
state Future<Void> done = delay(self->maxRunDuration);
loop {
wait(done ||
timeout(reportErrors(self->swizzleClog ? self->swizzleClogClient(self) : self->clogClient(self),
"RandomCloggingError"),
self->testDuration,
Void()));
if (!done.isReady() && self->iterate) {
wait(delay(self->suspend));
self->suspend *= self->backoff;
} else {
return Void();
}
}
}
ACTOR void doClog(ISimulator::ProcessInfo* machine, double t, double delay = 0.0) {
wait(::delay(delay));
g_simulator->clogInterface(machine->address.ip, t);
@ -114,3 +152,4 @@ struct RandomCloggingWorkload : TestWorkload {
};
WorkloadFactory<RandomCloggingWorkload> RandomCloggingWorkloadFactory("RandomClogging");
FailureInjectorFactory<RandomCloggingWorkload> RandomCloggingFailureInjectionFactory;

View File

@ -29,17 +29,21 @@
#include "fdbserver/QuietDatabase.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct MoveKeysWorkload : TestWorkload {
struct MoveKeysWorkload : FailureInjectionWorkload {
bool enabled;
double testDuration, meanDelay;
double maxKeyspace;
double testDuration = 10.0, meanDelay = 0.05;
double maxKeyspace = 0.1;
DatabaseConfiguration configuration;
MoveKeysWorkload(WorkloadContext const& wcx) : TestWorkload(wcx) {
MoveKeysWorkload(WorkloadContext const& wcx, NoOptions) : FailureInjectionWorkload(wcx) {
enabled = !clientId && g_network->isSimulated(); // only do this on the "first" client
meanDelay = getOption(options, LiteralStringRef("meanDelay"), 0.05);
testDuration = getOption(options, LiteralStringRef("testDuration"), 10.0);
maxKeyspace = getOption(options, LiteralStringRef("maxKeyspace"), 0.1);
}
MoveKeysWorkload(WorkloadContext const& wcx) : FailureInjectionWorkload(wcx) {
enabled = !clientId && g_network->isSimulated(); // only do this on the "first" client
meanDelay = getOption(options, LiteralStringRef("meanDelay"), meanDelay);
testDuration = getOption(options, LiteralStringRef("testDuration"), testDuration);
maxKeyspace = getOption(options, LiteralStringRef("maxKeyspace"), maxKeyspace);
}
std::string description() const override { return "MoveKeysWorkload"; }
@ -232,3 +236,4 @@ struct MoveKeysWorkload : TestWorkload {
};
WorkloadFactory<MoveKeysWorkload> MoveKeysWorkloadFactory("RandomMoveKeys");
FailureInjectorFactory<MoveKeysWorkload> MoveKeysFailureInjectionFactory;

View File

@ -18,6 +18,7 @@
* limitations under the License.
*/
#include "flow/DeterministicRandom.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
@ -31,17 +32,25 @@
// The workload first clogs network link between the chosen proxy and all tLogs but the unclogTlog;
// While the network is still clogged, the workload kills the proxy and clogs the unclogged tlog's interface.
// Note: The clogged network link's latency will become "clogDuration".
struct RollbackWorkload : TestWorkload {
bool enableFailures, multiple, enabled;
double meanDelay, clogDuration, testDuration;
struct RollbackWorkload : FailureInjectionWorkload {
bool enableFailures = false, multiple = true, enabled;
double meanDelay = 20.0, clogDuration = clogDuration = 3.0, testDuration = 10.0;
RollbackWorkload(WorkloadContext const& wcx) : TestWorkload(wcx) {
RollbackWorkload(WorkloadContext const& wcx, NoOptions) : FailureInjectionWorkload(wcx) {}
RollbackWorkload(WorkloadContext const& wcx) : FailureInjectionWorkload(wcx) {
enabled = !clientId; // only do this on the "first" client
meanDelay = getOption(options, LiteralStringRef("meanDelay"), 20.0); // Only matters if multiple==true
clogDuration = getOption(options, LiteralStringRef("clogDuration"), 3.0);
testDuration = getOption(options, LiteralStringRef("testDuration"), 10.0);
enableFailures = getOption(options, LiteralStringRef("enableFailures"), false);
multiple = getOption(options, LiteralStringRef("multiple"), true);
meanDelay = getOption(options, LiteralStringRef("meanDelay"), meanDelay); // Only matters if multiple==true
clogDuration = getOption(options, LiteralStringRef("clogDuration"), clogDuration);
testDuration = getOption(options, LiteralStringRef("testDuration"), testDuration);
enableFailures = getOption(options, LiteralStringRef("enableFailures"), enableFailures);
multiple = getOption(options, LiteralStringRef("multiple"), multiple);
}
void initFailureInjectionMode(DeterministicRandom& random, unsigned count) override {
enabled = clientId == 0;
multiple = random.coinflip();
enableFailures = random.random01() < 0.2;
}
std::string description() const override { return "RollbackWorkload"; }
@ -122,3 +131,4 @@ struct RollbackWorkload : TestWorkload {
};
WorkloadFactory<RollbackWorkload> RollbackWorkloadFactory("Rollback");
FailureInjectorFactory<RollbackWorkload> RollbackFailureInjectorFactory;

View File

@ -240,6 +240,7 @@ void FlowKnobs::initialize(Randomize randomize, IsSimulated isSimulated) {
init( SIM_SPEEDUP_AFTER_SECONDS, 450 );
init( MAX_TRACE_LINES, 1'000'000 );
init( CODE_COV_TRACE_EVENT_SEVERITY, 10 ); // Code coverage TraceEvent severity level
init( ENABLE_SIMULATION_IMPROVEMENTS, false ); // Separate normal workloads and failure injection
//TDMetrics
init( MAX_METRICS, 600 );

View File

@ -290,6 +290,7 @@ public:
int SIM_CONNECT_ERROR_MODE;
double SIM_SPEEDUP_AFTER_SECONDS;
int MAX_TRACE_LINES;
bool ENABLE_SIMULATION_IMPROVEMENTS;
// Tracefiles
int ZERO_LENGTH_FILE_PAD;