Merge remote-tracking branch 'origin/main' into ddsketch

This commit is contained in:
Sam Gwydir 2022-11-15 13:19:42 -08:00
commit 99d4bacf5d
40 changed files with 868 additions and 401 deletions

View File

@ -70,10 +70,13 @@ void ApiWorkload::start() {
schedule([this]() {
// 1. Clear data
clearData([this]() {
// 2. Populate initial data
populateData([this]() {
// 3. Generate random workload
runTests();
// 2. Workload setup
setup([this]() {
// 3. Populate initial data
populateData([this]() {
// 4. Generate random workload
runTests();
});
});
});
});
@ -249,6 +252,10 @@ void ApiWorkload::populateData(TTaskFct cont) {
}
}
void ApiWorkload::setup(TTaskFct cont) {
schedule(cont);
}
void ApiWorkload::randomInsertOp(TTaskFct cont, std::optional<int> tenantId) {
int numKeys = Random::get().randomInt(1, maxKeysPerTransaction);
auto kvPairs = std::make_shared<std::vector<fdb::KeyValue>>();
@ -322,4 +329,85 @@ std::optional<fdb::BytesRef> ApiWorkload::getTenant(std::optional<int> tenantId)
}
}
std::string ApiWorkload::debugTenantStr(std::optional<int> tenantId) {
return tenantId.has_value() ? fmt::format("(tenant {0})", tenantId.value()) : "()";
}
// BlobGranule setup.
// This blobbifies ['\x00', '\xff') per tenant or for the whole database if there are no tenants.
void ApiWorkload::setupBlobGranules(TTaskFct cont) {
// This count is used to synchronize the # of tenant blobbifyRange() calls to ensure
// we only start the workload once blobbification has fully finished.
auto blobbifiedCount = std::make_shared<std::atomic<int>>(1);
if (tenants.empty()) {
blobbifiedCount->store(1);
blobbifyTenant({}, blobbifiedCount, cont);
} else {
blobbifiedCount->store(tenants.size());
for (int i = 0; i < tenants.size(); i++) {
schedule([=]() { blobbifyTenant(i, blobbifiedCount, cont); });
}
}
}
void ApiWorkload::blobbifyTenant(std::optional<int> tenantId,
std::shared_ptr<std::atomic<int>> blobbifiedCount,
TTaskFct cont) {
auto retBlobbifyRange = std::make_shared<bool>(false);
execOperation(
[=](auto ctx) {
fdb::Key begin(1, '\x00');
fdb::Key end(1, '\xff');
info(fmt::format("setup: blobbifying {}: [\\x00 - \\xff)\n", debugTenantStr(tenantId)));
fdb::Future f = ctx->dbOps()->blobbifyRange(begin, end).eraseType();
ctx->continueAfter(f, [ctx, retBlobbifyRange, f]() {
*retBlobbifyRange = f.get<fdb::future_var::Bool>();
ctx->done();
});
},
[=]() {
if (!*retBlobbifyRange) {
schedule([=]() { blobbifyTenant(tenantId, blobbifiedCount, cont); });
} else {
schedule([=]() { verifyTenant(tenantId, blobbifiedCount, cont); });
}
},
/*tenant=*/getTenant(tenantId),
/* failOnError = */ false);
}
void ApiWorkload::verifyTenant(std::optional<int> tenantId,
std::shared_ptr<std::atomic<int>> blobbifiedCount,
TTaskFct cont) {
auto retVerifyVersion = std::make_shared<int64_t>(-1);
execOperation(
[=](auto ctx) {
fdb::Key begin(1, '\x00');
fdb::Key end(1, '\xff');
info(fmt::format("setup: verifying {}: [\\x00 - \\xff)\n", debugTenantStr(tenantId)));
fdb::Future f = ctx->dbOps()->verifyBlobRange(begin, end, /*latest_version*/ -2).eraseType();
ctx->continueAfter(f, [ctx, retVerifyVersion, f]() {
*retVerifyVersion = f.get<fdb::future_var::Int64>();
ctx->done();
});
},
[=]() {
if (*retVerifyVersion == -1) {
schedule([=]() { verifyTenant(tenantId, blobbifiedCount, cont); });
} else {
if (blobbifiedCount->fetch_sub(1) == 1) {
schedule(cont);
}
}
},
/*tenant=*/getTenant(tenantId),
/* failOnError = */ false);
}
} // namespace FdbApiTester

View File

@ -41,6 +41,9 @@ public:
virtual void checkProgress() override;
// Workload specific setup phase.
virtual void setup(TTaskFct cont);
// Running specific tests
// The default implementation generates a workload consisting of
// random operations generated by randomOperation
@ -126,6 +129,12 @@ protected:
void randomClearRangeOp(TTaskFct cont, std::optional<int> tenantId);
std::optional<fdb::BytesRef> getTenant(std::optional<int> tenantId);
std::string debugTenantStr(std::optional<int> tenantId);
// Generic BlobGranules setup.
void setupBlobGranules(TTaskFct cont);
void blobbifyTenant(std::optional<int> tenantId, std::shared_ptr<std::atomic<int>> blobbifiedCount, TTaskFct cont);
void verifyTenant(std::optional<int> tenantId, std::shared_ptr<std::atomic<int>> blobbifiedCount, TTaskFct cont);
private:
void populateDataTx(TTaskFct cont, std::optional<int> tenantId);

View File

@ -52,26 +52,23 @@ private:
};
std::vector<OpType> excludedOpTypes;
void setup(TTaskFct cont) override { setupBlobGranules(cont); }
// Allow reads at the start to get blob_granule_transaction_too_old if BG data isn't initialized yet
// FIXME: should still guarantee a read succeeds eventually somehow
// FIXME: this needs to be per tenant if tenant ids are set
std::unordered_set<std::optional<int>> tenantsWithReadSuccess;
inline void setReadSuccess(std::optional<int> tenantId) { tenantsWithReadSuccess.insert(tenantId); }
inline bool seenReadSuccess(std::optional<int> tenantId) { return tenantsWithReadSuccess.count(tenantId); }
std::string tenantDebugString(std::optional<int> tenantId) {
return tenantId.has_value() ? fmt::format(" (tenant {0})", tenantId.value()) : "";
}
void debugOp(std::string opName, fdb::Key begin, fdb::Key end, std::optional<int> tenantId, std::string message) {
if (BG_API_DEBUG_VERBOSE) {
info(fmt::format("{0}: [{1} - {2}){3}: {4}",
info(fmt::format("{0}: [{1} - {2}) {3}: {4}",
opName,
fdb::toCharsRef(begin),
fdb::toCharsRef(end),
tenantDebugString(tenantId),
debugTenantStr(tenantId),
message));
}
}
@ -117,7 +114,7 @@ private:
results.get()->assign(resVector.begin(), resVector.end());
bool previousSuccess = seenReadSuccess(tenantId);
if (!previousSuccess) {
info(fmt::format("Read{0}: first success\n", tenantDebugString(tenantId)));
info(fmt::format("Read {0}: first success\n", debugTenantStr(tenantId)));
setReadSuccess(tenantId);
} else {
debugOp("Read", begin, end, tenantId, "complete");
@ -289,20 +286,19 @@ private:
}
// TODO: tenant support
void randomGetBlobRangesOp(TTaskFct cont) {
void randomGetBlobRangesOp(TTaskFct cont, std::optional<int> tenantId) {
fdb::Key begin = randomKeyName();
fdb::Key end = randomKeyName();
auto results = std::make_shared<std::vector<fdb::KeyRange>>();
if (begin > end) {
std::swap(begin, end);
}
std::optional<int> tenantId = {};
debugOp("GetBlobRanges", begin, end, tenantId, "starting");
execOperation(
[begin, end, results](auto ctx) {
fdb::Future f = ctx->db().listBlobbifiedRanges(begin, end, 1000).eraseType();
fdb::Future f = ctx->dbOps()->listBlobbifiedRanges(begin, end, 1000).eraseType();
ctx->continueAfter(f, [ctx, f, results]() {
*results = copyKeyRangeArray(f.get<fdb::future_var::KeyRangeRefArray>());
ctx->done();
@ -314,25 +310,24 @@ private:
this->validateRanges(results, begin, end, seenReadSuccess(tenantId));
schedule(cont);
},
getTenant(tenantId),
/* failOnError = */ false);
}
// TODO: tenant support
void randomVerifyOp(TTaskFct cont) {
void randomVerifyOp(TTaskFct cont, std::optional<int> tenantId) {
fdb::Key begin = randomKeyName();
fdb::Key end = randomKeyName();
std::optional<int> tenantId;
if (begin > end) {
std::swap(begin, end);
}
auto verifyVersion = std::make_shared<int64_t>(false);
debugOp("Verify", begin, end, tenantId, "starting");
auto verifyVersion = std::make_shared<int64_t>(-1);
execOperation(
[begin, end, verifyVersion](auto ctx) {
fdb::Future f = ctx->db().verifyBlobRange(begin, end, -2 /* latest version*/).eraseType();
fdb::Future f = ctx->dbOps()->verifyBlobRange(begin, end, -2 /* latest version*/).eraseType();
ctx->continueAfter(f, [ctx, verifyVersion, f]() {
*verifyVersion = f.get<fdb::future_var::Int64>();
ctx->done();
@ -344,15 +339,16 @@ private:
if (*verifyVersion == -1) {
ASSERT(!previousSuccess);
} else if (!previousSuccess) {
info(fmt::format("Verify{0}: first success\n", tenantDebugString(tenantId)));
info(fmt::format("Verify {0}: first success\n", debugTenantStr(tenantId)));
setReadSuccess(tenantId);
}
schedule(cont);
},
getTenant(tenantId),
/* failOnError = */ false);
}
void randomOperation(TTaskFct cont) {
void randomOperation(TTaskFct cont) override {
std::optional<int> tenantId = randomTenant();
OpType txType = (stores[tenantId].size() == 0) ? OP_INSERT : (OpType)Random::get().randomInt(0, OP_LAST);
@ -380,10 +376,10 @@ private:
randomSummarizeOp(cont, tenantId);
break;
case OP_GET_BLOB_RANGES:
randomGetBlobRangesOp(cont);
randomGetBlobRangesOp(cont, tenantId);
break;
case OP_VERIFY:
randomVerifyOp(cont);
randomVerifyOp(cont, tenantId);
break;
}
}

View File

@ -47,6 +47,8 @@ private:
OP_LAST = OP_CANCEL_PURGE
};
void setup(TTaskFct cont) override { setupBlobGranules(cont); }
// could add summarize too old and verify too old as ops if desired but those are lower value
// Allow reads at the start to get blob_granule_transaction_too_old if BG data isn't initialized yet

View File

@ -91,13 +91,15 @@ public:
fdbDb = executor->selectDatabase();
}
if (tenantName) {
fdbTenant = fdbDb.openTenant(*tenantName);
fdbDbOps = std::make_shared<fdb::Tenant>(fdbTenant);
} else {
fdbDbOps = std::make_shared<fdb::Database>(fdbDb);
}
if (transactional) {
if (tenantName) {
fdb::Tenant tenant = fdbDb.openTenant(*tenantName);
fdbTx = tenant.createTransaction();
} else {
fdbTx = fdbDb.createTransaction();
}
fdbTx = fdbDbOps->createTransaction();
}
}
@ -109,6 +111,10 @@ public:
fdb::Database db() override { return fdbDb.atomic_load(); }
fdb::Tenant tenant() override { return fdbTenant.atomic_load(); }
std::shared_ptr<fdb::IDatabaseOps> dbOps() override { return std::atomic_load(&fdbDbOps); }
fdb::Transaction tx() override { return fdbTx.atomic_load(); }
// Set a continuation to be executed when a future gets ready
@ -272,13 +278,17 @@ protected:
scheduler->schedule([thisRef]() {
fdb::Database db = thisRef->executor->selectDatabase();
thisRef->fdbDb.atomic_store(db);
if (thisRef->tenantName) {
fdb::Tenant tenant = db.openTenant(*thisRef->tenantName);
thisRef->fdbTenant.atomic_store(tenant);
std::atomic_store(&thisRef->fdbDbOps,
std::dynamic_pointer_cast<fdb::IDatabaseOps>(std::make_shared<fdb::Tenant>(tenant)));
} else {
std::atomic_store(&thisRef->fdbDbOps,
std::dynamic_pointer_cast<fdb::IDatabaseOps>(std::make_shared<fdb::Database>(db)));
}
if (thisRef->transactional) {
if (thisRef->tenantName) {
fdb::Tenant tenant = db.openTenant(*thisRef->tenantName);
thisRef->fdbTx.atomic_store(tenant.createTransaction());
} else {
thisRef->fdbTx.atomic_store(db.createTransaction());
}
thisRef->fdbTx.atomic_store(thisRef->fdbDbOps->createTransaction());
}
thisRef->restartTransaction();
});
@ -317,6 +327,14 @@ protected:
// Provides a thread safe interface by itself (no need for mutex)
fdb::Database fdbDb;
// FDB tenant
// Provides a thread safe interface by itself (no need for mutex)
fdb::Tenant fdbTenant;
// FDB IDatabaseOps to hide database/tenant accordingly.
// Provides a shared pointer to database functions based on if db or tenant.
std::shared_ptr<fdb::IDatabaseOps> fdbDbOps;
// FDB transaction
// Provides a thread safe interface by itself (no need for mutex)
fdb::Transaction fdbTx;

View File

@ -41,6 +41,12 @@ public:
// Current FDB database
virtual fdb::Database db() = 0;
// Current FDB tenant
virtual fdb::Tenant tenant() = 0;
// Current FDB IDatabaseOps
virtual std::shared_ptr<fdb::IDatabaseOps> dbOps() = 0;
// Current FDB transaction
virtual fdb::Transaction tx() = 0;

View File

@ -117,8 +117,11 @@ void WorkloadBase::execTransaction(TOpStartFct startFct,
}
// Execute a non-transactional database operation within the workload
void WorkloadBase::execOperation(TOpStartFct startFct, TTaskFct cont, bool failOnError) {
doExecute(startFct, cont, {}, failOnError, false);
void WorkloadBase::execOperation(TOpStartFct startFct,
TTaskFct cont,
std::optional<fdb::BytesRef> tenant,
bool failOnError) {
doExecute(startFct, cont, tenant, failOnError, false);
}
void WorkloadBase::doExecute(TOpStartFct startFct,

View File

@ -125,7 +125,10 @@ protected:
bool failOnError = true);
// Execute a non-transactional database operation within the workload
void execOperation(TOpStartFct startFct, TTaskFct cont, bool failOnError = true);
void execOperation(TOpStartFct startFct,
TTaskFct cont,
std::optional<fdb::BytesRef> tenant = std::optional<fdb::BytesRef>(),
bool failOnError = true);
// Log an error message, increase error counter
void error(const std::string& msg);

View File

@ -677,7 +677,28 @@ public:
}
};
class Tenant final {
// Handle this as an abstract class instead of interface to preserve lifetime of fdb objects owned by Tenant and
// Database.
class IDatabaseOps {
public:
virtual ~IDatabaseOps() = default;
virtual Transaction createTransaction() = 0;
virtual TypedFuture<future_var::Bool> blobbifyRange(KeyRef begin, KeyRef end) = 0;
virtual TypedFuture<future_var::Bool> unblobbifyRange(KeyRef begin, KeyRef end) = 0;
virtual TypedFuture<future_var::KeyRangeRefArray> listBlobbifiedRanges(KeyRef begin,
KeyRef end,
int rangeLimit) = 0;
virtual TypedFuture<future_var::Int64> verifyBlobRange(KeyRef begin, KeyRef end, int64_t version) = 0;
virtual TypedFuture<future_var::KeyRef> purgeBlobGranules(KeyRef begin,
KeyRef end,
int64_t version,
bool force) = 0;
virtual TypedFuture<future_var::None> waitPurgeGranulesComplete(KeyRef purgeKey) = 0;
};
class Tenant final : public IDatabaseOps {
friend class Database;
std::shared_ptr<native::FDBTenant> tenant;
@ -694,6 +715,14 @@ public:
Tenant& operator=(const Tenant&) noexcept = default;
Tenant() noexcept : tenant(nullptr) {}
void atomic_store(Tenant other) { std::atomic_store(&tenant, other.tenant); }
Tenant atomic_load() {
Tenant retVal;
retVal.tenant = std::atomic_load(&tenant);
return retVal;
}
static void createTenant(Transaction tr, BytesRef name) {
tr.setOption(FDBTransactionOption::FDB_TR_OPTION_SPECIAL_KEY_SPACE_ENABLE_WRITES, BytesRef());
tr.setOption(FDBTransactionOption::FDB_TR_OPTION_LOCK_AWARE, BytesRef());
@ -715,7 +744,7 @@ public:
return tr.get(toBytesRef(fmt::format("{}{}", tenantManagementMapPrefix, toCharsRef(name))), false);
}
Transaction createTransaction() {
Transaction createTransaction() override {
auto tx_native = static_cast<native::FDBTransaction*>(nullptr);
auto err = Error(native::fdb_tenant_create_transaction(tenant.get(), &tx_native));
if (err)
@ -723,14 +752,49 @@ public:
return Transaction(tx_native);
}
TypedFuture<future_var::Bool> blobbifyRange(KeyRef begin, KeyRef end) {
TypedFuture<future_var::Bool> blobbifyRange(KeyRef begin, KeyRef end) override {
if (!tenant)
throw std::runtime_error("blobbifyRange from null tenant");
throw std::runtime_error("blobbifyRange() from null tenant");
return native::fdb_tenant_blobbify_range(tenant.get(), begin.data(), intSize(begin), end.data(), intSize(end));
}
TypedFuture<future_var::Bool> unblobbifyRange(KeyRef begin, KeyRef end) override {
if (!tenant)
throw std::runtime_error("unblobbifyRange() from null tenant");
return native::fdb_tenant_unblobbify_range(
tenant.get(), begin.data(), intSize(begin), end.data(), intSize(end));
}
TypedFuture<future_var::KeyRangeRefArray> listBlobbifiedRanges(KeyRef begin, KeyRef end, int rangeLimit) override {
if (!tenant)
throw std::runtime_error("listBlobbifiedRanges() from null tenant");
return native::fdb_tenant_list_blobbified_ranges(
tenant.get(), begin.data(), intSize(begin), end.data(), intSize(end), rangeLimit);
}
TypedFuture<future_var::Int64> verifyBlobRange(KeyRef begin, KeyRef end, int64_t version) override {
if (!tenant)
throw std::runtime_error("verifyBlobRange() from null tenant");
return native::fdb_tenant_verify_blob_range(
tenant.get(), begin.data(), intSize(begin), end.data(), intSize(end), version);
}
TypedFuture<future_var::KeyRef> purgeBlobGranules(KeyRef begin, KeyRef end, int64_t version, bool force) override {
if (!tenant)
throw std::runtime_error("purgeBlobGranules() from null tenant");
native::fdb_bool_t forceBool = force;
return native::fdb_tenant_purge_blob_granules(
tenant.get(), begin.data(), intSize(begin), end.data(), intSize(end), version, forceBool);
}
TypedFuture<future_var::None> waitPurgeGranulesComplete(KeyRef purgeKey) override {
if (!tenant)
throw std::runtime_error("waitPurgeGranulesComplete() from null tenant");
return native::fdb_tenant_wait_purge_granules_complete(tenant.get(), purgeKey.data(), intSize(purgeKey));
}
};
class Database {
class Database : public IDatabaseOps {
friend class Tenant;
std::shared_ptr<native::FDBDatabase> db;
@ -789,7 +853,7 @@ public:
return Tenant(tenant_native);
}
Transaction createTransaction() {
Transaction createTransaction() override {
if (!db)
throw std::runtime_error("create_transaction from null database");
auto tx_native = static_cast<native::FDBTransaction*>(nullptr);
@ -799,33 +863,33 @@ public:
return Transaction(tx_native);
}
TypedFuture<future_var::KeyRangeRefArray> listBlobbifiedRanges(KeyRef begin, KeyRef end, int rangeLimit) {
TypedFuture<future_var::KeyRangeRefArray> listBlobbifiedRanges(KeyRef begin, KeyRef end, int rangeLimit) override {
if (!db)
throw std::runtime_error("listBlobbifiedRanges from null database");
return native::fdb_database_list_blobbified_ranges(
db.get(), begin.data(), intSize(begin), end.data(), intSize(end), rangeLimit);
}
TypedFuture<future_var::Int64> verifyBlobRange(KeyRef begin, KeyRef end, int64_t version) {
TypedFuture<future_var::Int64> verifyBlobRange(KeyRef begin, KeyRef end, int64_t version) override {
if (!db)
throw std::runtime_error("verifyBlobRange from null database");
return native::fdb_database_verify_blob_range(
db.get(), begin.data(), intSize(begin), end.data(), intSize(end), version);
}
TypedFuture<future_var::Bool> blobbifyRange(KeyRef begin, KeyRef end) {
TypedFuture<future_var::Bool> blobbifyRange(KeyRef begin, KeyRef end) override {
if (!db)
throw std::runtime_error("blobbifyRange from null database");
return native::fdb_database_blobbify_range(db.get(), begin.data(), intSize(begin), end.data(), intSize(end));
}
TypedFuture<future_var::Bool> unblobbifyRange(KeyRef begin, KeyRef end) {
TypedFuture<future_var::Bool> unblobbifyRange(KeyRef begin, KeyRef end) override {
if (!db)
throw std::runtime_error("unblobbifyRange from null database");
return native::fdb_database_unblobbify_range(db.get(), begin.data(), intSize(begin), end.data(), intSize(end));
}
TypedFuture<future_var::KeyRef> purgeBlobGranules(KeyRef begin, KeyRef end, int64_t version, bool force) {
TypedFuture<future_var::KeyRef> purgeBlobGranules(KeyRef begin, KeyRef end, int64_t version, bool force) override {
if (!db)
throw std::runtime_error("purgeBlobGranules from null database");
native::fdb_bool_t forceBool = force;
@ -833,7 +897,7 @@ public:
db.get(), begin.data(), intSize(begin), end.data(), intSize(end), version, forceBool);
}
TypedFuture<future_var::None> waitPurgeGranulesComplete(KeyRef purgeKey) {
TypedFuture<future_var::None> waitPurgeGranulesComplete(KeyRef purgeKey) override {
if (!db)
throw std::runtime_error("purgeBlobGranules from null database");
return native::fdb_database_wait_purge_granules_complete(db.get(), purgeKey.data(), intSize(purgeKey));

View File

@ -116,12 +116,12 @@ If an individual zone is unhealthy, it may cause the throttling ratio for storag
### Client Rate Calculation
The smoothed per-client rate for each tag is tracked within `GlobalTagThrottlerImpl::PerTagStatistics`. Once a target rate has been computed, this is passed to `GlobalTagThrotterImpl::PerTagStatistics::updateAndGetPerClientRate` which adjusts the per-client rate. The per-client rate is meant to limit the busiest clients, so that at equilibrium, the per-client rate will remain constant and the sum of throughput from all clients will match the target rate.
## Testing
The `GlobalTagThrottling.toml` test provides a simple end-to-end test using the global tag throttler. Quotas are set using the internal tag quota API in the `GlobalTagThrottling` workload. This is run in parallel with the `ReadWrite` workload, which tags transactions. The number of `transaction_tag_throttled` errors is reported, along with the throughput, which should be roughly predictable based on the quota parameters chosen.
## Simulation Testing
The `ThroughputQuota.toml` test provides a simple end-to-end test using the global tag throttler. Quotas are set using the internal tag quota API in the `ThroughputQuota` workload. This is run with the `Cycle` workload, which randomly tags transactions.
In addition to this end-to-end test, there is a suite of unit tests with the `/GlobalTagThrottler/` prefix. These tests run in a mock environment, with mock storage servers providing simulated storage queue statistics and tag busyness reports. Mock clients simulate workload on these mock storage servers, and get throttling feedback directly from a global tag throttler which is monitoring the mock storage servers.
In each test, the `GlobalTagThrottlerTesting::monitor` function is used to periodically check whether or not a desired equilibrium state has been reached. If the desired state is reached and maintained for a sufficient period of time, the test passes. If the unit test is unable to reach this desired equilibrium state before a timeout, the test will fail. Commonly, the desired state is for the global tag throttler to report a client rate sufficiently close to the desired rate specified as an input to the `GlobalTagThrottlerTesting::rateIsNear` function.
In each unit test, the `GlobalTagThrottlerTesting::monitor` function is used to periodically check whether or not a desired equilibrium state has been reached. If the desired state is reached and maintained for a sufficient period of time, the test passes. If the unit test is unable to reach this desired equilibrium state before a timeout, the test will fail. Commonly, the desired state is for the global tag throttler to report a client rate sufficiently close to the desired rate specified as an input to the `GlobalTagThrottlerTesting::rateIsNear` function.
## Visibility

View File

@ -19,11 +19,13 @@
*/
#include "fdbcli/fdbcli.actor.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbclient/SystemData.h"
#include "flow/actorcompiler.h" // This must be the last include
namespace {
enum class LimitType { RESERVED, TOTAL };
enum class QuotaType { RESERVED, TOTAL, STORAGE };
Optional<TransactionTag> parseTag(StringRef token) {
if (token.size() > CLIENT_KNOBS->MAX_TRANSACTION_TAG_LENGTH) {
@ -33,17 +35,19 @@ Optional<TransactionTag> parseTag(StringRef token) {
}
}
Optional<LimitType> parseLimitType(StringRef token) {
Optional<QuotaType> parseQuotaType(StringRef token) {
if (token == "reserved_throughput"_sr) {
return LimitType::RESERVED;
return QuotaType::RESERVED;
} else if (token == "total_throughput"_sr) {
return LimitType::TOTAL;
return QuotaType::TOTAL;
} else if (token == "storage"_sr) {
return QuotaType::STORAGE;
} else {
return {};
}
}
Optional<int64_t> parseLimitValue(StringRef token) {
Optional<int64_t> parseQuotaValue(StringRef token) {
try {
return std::stol(token.toString());
} catch (...) {
@ -51,20 +55,26 @@ Optional<int64_t> parseLimitValue(StringRef token) {
}
}
ACTOR Future<Void> getQuota(Reference<IDatabase> db, TransactionTag tag, LimitType limitType) {
ACTOR Future<Void> getQuota(Reference<IDatabase> db, TransactionTag tag, QuotaType quotaType) {
state Reference<ITransaction> tr = db->createTransaction();
loop {
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
try {
state ThreadFuture<Optional<Value>> resultFuture = tr->get(ThrottleApi::getTagQuotaKey(tag));
state ThreadFuture<Optional<Value>> resultFuture =
tr->get(quotaType == QuotaType::STORAGE ? storageQuotaKey(tag) : ThrottleApi::getTagQuotaKey(tag));
Optional<Value> v = wait(safeThreadFutureToFuture(resultFuture));
if (!v.present()) {
fmt::print("<empty>\n");
} else {
if (quotaType == QuotaType::STORAGE) {
int64_t storageQuota = BinaryReader::fromStringRef<int64_t>(v.get(), Unversioned());
fmt::print("{}\n", storageQuota);
return Void();
}
auto const quota = ThrottleApi::TagQuotaValue::fromValue(v.get());
if (limitType == LimitType::TOTAL) {
if (quotaType == QuotaType::TOTAL) {
fmt::print("{}\n", quota.totalQuota);
} else if (limitType == LimitType::RESERVED) {
} else if (quotaType == QuotaType::RESERVED) {
fmt::print("{}\n", quota.reservedQuota);
}
}
@ -75,32 +85,36 @@ ACTOR Future<Void> getQuota(Reference<IDatabase> db, TransactionTag tag, LimitTy
}
}
ACTOR Future<Void> setQuota(Reference<IDatabase> db, TransactionTag tag, LimitType limitType, int64_t value) {
ACTOR Future<Void> setQuota(Reference<IDatabase> db, TransactionTag tag, QuotaType quotaType, int64_t value) {
state Reference<ITransaction> tr = db->createTransaction();
loop {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
try {
state ThreadFuture<Optional<Value>> resultFuture = tr->get(ThrottleApi::getTagQuotaKey(tag));
Optional<Value> v = wait(safeThreadFutureToFuture(resultFuture));
ThrottleApi::TagQuotaValue quota;
if (v.present()) {
quota = ThrottleApi::TagQuotaValue::fromValue(v.get());
if (quotaType == QuotaType::STORAGE) {
tr->set(storageQuotaKey(tag), BinaryWriter::toValue<int64_t>(value, Unversioned()));
} else {
state ThreadFuture<Optional<Value>> resultFuture = tr->get(ThrottleApi::getTagQuotaKey(tag));
Optional<Value> v = wait(safeThreadFutureToFuture(resultFuture));
ThrottleApi::TagQuotaValue quota;
if (v.present()) {
quota = ThrottleApi::TagQuotaValue::fromValue(v.get());
}
// Internally, costs are stored in terms of pages, but in the API,
// costs are specified in terms of bytes
if (quotaType == QuotaType::TOTAL) {
// Round up to nearest page size
quota.totalQuota = ((value - 1) / CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE + 1) *
CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE;
} else if (quotaType == QuotaType::RESERVED) {
// Round up to nearest page size
quota.reservedQuota = ((value - 1) / CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE + 1) *
CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE;
}
if (!quota.isValid()) {
throw invalid_throttle_quota_value();
}
ThrottleApi::setTagQuota(tr, tag, quota.reservedQuota, quota.totalQuota);
}
// Internally, costs are stored in terms of pages, but in the API,
// costs are specified in terms of bytes
if (limitType == LimitType::TOTAL) {
// Round up to nearest page size
quota.totalQuota =
((value - 1) / CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE + 1) * CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE;
} else if (limitType == LimitType::RESERVED) {
// Round up to nearest page size
quota.reservedQuota =
((value - 1) / CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE + 1) * CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE;
}
if (!quota.isValid()) {
throw invalid_throttle_quota_value();
}
ThrottleApi::setTagQuota(tr, tag, quota.reservedQuota, quota.totalQuota);
wait(safeThreadFutureToFuture(tr->commit()));
fmt::print("Successfully updated quota.\n");
return Void();
@ -115,6 +129,7 @@ ACTOR Future<Void> clearQuota(Reference<IDatabase> db, TransactionTag tag) {
loop {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
try {
tr->clear(storageQuotaKey(tag));
tr->clear(ThrottleApi::getTagQuotaKey(tag));
wait(safeThreadFutureToFuture(tr->commit()));
fmt::print("Successfully cleared quota.\n");
@ -125,8 +140,8 @@ ACTOR Future<Void> clearQuota(Reference<IDatabase> db, TransactionTag tag) {
}
}
constexpr auto usage = "quota [get <tag> [reserved_throughput|total_throughput] | set <tag> "
"[reserved_throughput|total_throughput] <value> | clear <tag>]";
constexpr auto usage = "quota [get <tag> [reserved_throughput|total_throughput|storage] | set <tag> "
"[reserved_throughput|total_throughput|storage] <value> | clear <tag>]";
bool exitFailure() {
fmt::print(usage);
@ -150,22 +165,22 @@ ACTOR Future<bool> quotaCommandActor(Reference<IDatabase> db, std::vector<String
if (tokens.size() != 4) {
return exitFailure();
}
auto const limitType = parseLimitType(tokens[3]);
if (!limitType.present()) {
auto const quotaType = parseQuotaType(tokens[3]);
if (!quotaType.present()) {
return exitFailure();
}
wait(getQuota(db, tag.get(), limitType.get()));
wait(getQuota(db, tag.get(), quotaType.get()));
return true;
} else if (tokens[1] == "set"_sr) {
if (tokens.size() != 5) {
return exitFailure();
}
auto const limitType = parseLimitType(tokens[3]);
auto const limitValue = parseLimitValue(tokens[4]);
if (!limitType.present() || !limitValue.present()) {
auto const quotaType = parseQuotaType(tokens[3]);
auto const quotaValue = parseQuotaValue(tokens[4]);
if (!quotaType.present() || !quotaValue.present()) {
return exitFailure();
}
wait(setQuota(db, tag.get(), limitType.get(), limitValue.get()));
wait(setQuota(db, tag.get(), quotaType.get(), quotaValue.get()));
return true;
} else if (tokens[1] == "clear"_sr) {
if (tokens.size() != 3) {

View File

@ -137,6 +137,11 @@ def quota(logger):
logger.debug(command + ' : ' + output)
assert output == 'Successfully updated quota.'
command = 'quota set green storage 98765'
output = run_fdbcli_command(command)
logger.debug(command + ' : ' + output)
assert output == 'Successfully updated quota.'
command = 'quota get green total_throughput'
output = run_fdbcli_command(command)
logger.debug(command + ' : ' + output)
@ -147,6 +152,11 @@ def quota(logger):
logger.debug(command + ' : ' + output)
assert output == '16384'
command = 'quota get green storage'
output = run_fdbcli_command(command)
logger.debug(command + ' : ' + output)
assert output == '98765'
command = 'quota clear green'
output = run_fdbcli_command(command)
logger.debug(command + ' : ' + output)
@ -157,6 +167,11 @@ def quota(logger):
logger.debug(command + ' : ' + output)
assert output == '<empty>'
command = 'quota get green storage'
output = run_fdbcli_command(command)
logger.debug(command + ' : ' + output)
assert output == '<empty>'
# Too few arguments, should log help message
command = 'quota get green'
output = run_fdbcli_command(command)

View File

@ -971,6 +971,11 @@ void sortDeltasByKey(const Standalone<GranuleDeltas>& deltasByVersion,
// clearVersion as previous guy)
}
void sortDeltasByKey(const Standalone<GranuleDeltas>& deltasByVersion, const KeyRangeRef& fileRange) {
SortedDeltasT deltasByKey;
sortDeltasByKey(deltasByVersion, fileRange, deltasByKey);
}
// FIXME: Could maybe reduce duplicated code between this and chunkedSnapshot for chunking
Value serializeChunkedDeltaFile(const Standalone<StringRef>& fileNameRef,
const Standalone<GranuleDeltas>& deltas,

View File

@ -5924,7 +5924,6 @@ public:
printf("Restoring backup to version: %lld\n", (long long)targetVersion);
}
state int retryCount = 0;
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
loop {
try {
@ -5948,17 +5947,9 @@ public:
wait(tr->commit());
break;
} catch (Error& e) {
if (e.code() == error_code_transaction_too_old) {
retryCount++;
}
if (e.code() == error_code_restore_duplicate_tag) {
throw;
}
if (g_network->isSimulated() && retryCount > 50) {
CODE_PROBE(true, "submitRestore simulation speedup");
// try to make the read window back to normal size (5 * version_per_sec)
g_simulator->speedUpSimulation = true;
}
wait(tr->onError(e));
}
}

View File

@ -2565,6 +2565,12 @@ void setStorageQuota(Transaction& tr, StringRef tenantGroupName, int64_t quota)
tr.set(key, BinaryWriter::toValue<int64_t>(quota, Unversioned()));
}
void clearStorageQuota(Transaction& tr, StringRef tenantGroupName) {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
auto key = storageQuotaKey(tenantGroupName);
tr.clear(key);
}
ACTOR Future<Optional<int64_t>> getStorageQuota(Transaction* tr, StringRef tenantGroupName) {
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
state Optional<Value> v = wait(tr->get(storageQuotaKey(tenantGroupName)));

View File

@ -820,10 +820,14 @@ void ServerKnobs::initialize(Randomize randomize, ClientKnobs* clientKnobs, IsSi
init( QUICK_GET_KEY_VALUES_LIMIT, 2000 );
init( QUICK_GET_KEY_VALUES_LIMIT_BYTES, 1e7 );
init( STORAGE_FEED_QUERY_HARD_LIMIT, 100000 );
// Read priority definitions in the form of a list of their relative concurrency share weights
init( STORAGESERVER_READ_PRIORITIES, "120,10,20,40,60" );
// The total concurrency which will be shared by active priorities according to their relative weights
init( STORAGE_SERVER_READ_CONCURRENCY, 70 );
// Priorities which each ReadType maps to, in enumeration order
init( STORAGESERVER_READ_RANKS, "0,2,1,1,1" );
init( STORAGESERVER_READ_PRIORITIES, "48,32,8" );
// The priority number which each ReadType maps to in enumeration order
// This exists for flexibility but assigning each ReadType to its own unique priority number makes the most sense
// The enumeration is currently: eager, fetch, low, normal, high
init( STORAGESERVER_READTYPE_PRIORITY_MAP, "0,1,2,3,4" );
//Wait Failure
init( MAX_OUTSTANDING_WAIT_FAILURE_REQUESTS, 250 ); if( randomize && BUGGIFY ) MAX_OUTSTANDING_WAIT_FAILURE_REQUESTS = 2;
@ -947,7 +951,7 @@ void ServerKnobs::initialize(Randomize randomize, ClientKnobs* clientKnobs, IsSi
init( REDWOOD_HISTOGRAM_INTERVAL, 30.0 );
init( REDWOOD_EVICT_UPDATED_PAGES, true ); if( randomize && BUGGIFY ) { REDWOOD_EVICT_UPDATED_PAGES = false; }
init( REDWOOD_DECODECACHE_REUSE_MIN_HEIGHT, 2 ); if( randomize && BUGGIFY ) { REDWOOD_DECODECACHE_REUSE_MIN_HEIGHT = deterministicRandom()->randomInt(1, 7); }
init( REDWOOD_PRIORITY_LAUNCHS, "32,32,32,32" );
init( REDWOOD_IO_PRIORITIES, "32,32,32,32" );
init( REDWOOD_SPLIT_ENCRYPTED_PAGES_BY_TENANT, false );
// Server request latency measurement
@ -1021,6 +1025,7 @@ void ServerKnobs::initialize(Randomize randomize, ClientKnobs* clientKnobs, IsSi
init( BLOB_MANIFEST_BACKUP_INTERVAL, isSimulated ? 5.0 : 30.0 );
init( BLOB_FULL_RESTORE_MODE, false );
init( BLOB_MIGRATOR_CHECK_INTERVAL, isSimulated ? 1.0 : 5.0);
init( BLOB_MANIFEST_RW_ROWS, isSimulated ? 10 : 1000);
init( BGCC_TIMEOUT, isSimulated ? 10.0 : 120.0 );
init( BGCC_MIN_INTERVAL, isSimulated ? 1.0 : 10.0 );

View File

@ -56,4 +56,7 @@ RangeResult materializeBlobGranule(const BlobGranuleChunkRef& chunk,
std::string randomBGFilename(UID blobWorkerID, UID granuleID, Version version, std::string suffix);
#endif
// For benchmark testing only. It should never be called in prod.
void sortDeltasByKey(const Standalone<GranuleDeltas>& deltasByVersion, const KeyRangeRef& fileRange);
#endif

View File

@ -163,8 +163,9 @@ bool schemaMatch(json_spirit::mValue const& schema,
// storage nodes
ACTOR Future<Void> mgmtSnapCreate(Database cx, Standalone<StringRef> snapCmd, UID snapUID);
// Set and get the storage quota per tenant group
// Set/clear/get the storage quota for the given tenant group
void setStorageQuota(Transaction& tr, StringRef tenantGroupName, int64_t quota);
void clearStorageQuota(Transaction& tr, StringRef tenantGroupName);
ACTOR Future<Optional<int64_t>> getStorageQuota(Transaction* tr, StringRef tenantGroupName);
#include "flow/unactorcompiler.h"

View File

@ -770,9 +770,9 @@ public:
int QUICK_GET_KEY_VALUES_LIMIT;
int QUICK_GET_KEY_VALUES_LIMIT_BYTES;
int STORAGE_FEED_QUERY_HARD_LIMIT;
int STORAGE_SERVER_READ_CONCURRENCY;
std::string STORAGESERVER_READ_RANKS;
std::string STORAGESERVER_READ_PRIORITIES;
int STORAGE_SERVER_READ_CONCURRENCY;
std::string STORAGESERVER_READTYPE_PRIORITY_MAP;
// Wait Failure
int MAX_OUTSTANDING_WAIT_FAILURE_REQUESTS;
@ -921,7 +921,7 @@ public:
int REDWOOD_DECODECACHE_REUSE_MIN_HEIGHT; // Minimum height for which to keep and reuse page decode caches
bool REDWOOD_SPLIT_ENCRYPTED_PAGES_BY_TENANT; // Whether to split pages by tenant if encryption is enabled
std::string REDWOOD_PRIORITY_LAUNCHS;
std::string REDWOOD_IO_PRIORITIES;
// Server request latency measurement
double LATENCY_SKETCH_ACCURACY;
@ -996,6 +996,7 @@ public:
double BLOB_MANIFEST_BACKUP_INTERVAL;
bool BLOB_FULL_RESTORE_MODE;
double BLOB_MIGRATOR_CHECK_INTERVAL;
int BLOB_MANIFEST_RW_ROWS;
// Blob metadata
int64_t BLOB_METADATA_CACHE_TTL;

View File

@ -24,6 +24,7 @@
#include "fdbclient/BackupContainer.h"
#include "fdbclient/BlobGranuleCommon.h"
#include "fdbclient/ClientBooleanParams.h"
#include "fdbserver/Knobs.h"
#include "flow/FastRef.h"
#include "flow/Trace.h"
@ -137,10 +138,23 @@ private:
blobRangeKeys // Key ranges managed by blob
};
for (auto range : ranges) {
// todo use getRangeStream for better performance
RangeResult result = wait(tr.getRange(range, GetRangeLimits::BYTE_LIMIT_UNLIMITED));
for (auto& row : result) {
rows.push_back_deep(rows.arena(), KeyValueRef(row.key, row.value));
state GetRangeLimits limits(SERVER_KNOBS->BLOB_MANIFEST_RW_ROWS);
limits.minRows = 0;
state KeySelectorRef begin = firstGreaterOrEqual(range.begin);
state KeySelectorRef end = firstGreaterOrEqual(range.end);
loop {
RangeResult result = wait(tr.getRange(begin, end, limits, Snapshot::True));
for (auto& row : result) {
rows.push_back_deep(rows.arena(), KeyValueRef(row.key, row.value));
}
if (!result.more) {
break;
}
if (result.readThrough.present()) {
begin = firstGreaterOrEqual(result.readThrough.get());
} else {
begin = firstGreaterThan(result.end()[-1].key);
}
}
}
return rows;
@ -152,6 +166,13 @@ private:
// Write data to blob manifest file
ACTOR static Future<Void> writeToFile(Reference<BlobManifestDumper> self, Value data) {
static int32_t lastWrittenBytes = 0;
if (data.size() == lastWrittenBytes) {
dprint("Skip writting blob manifest with same size {}\n", lastWrittenBytes);
return Void();
}
lastWrittenBytes = data.size();
state Reference<BackupContainerFileSystem> writer;
state std::string fullPath;
@ -212,7 +233,7 @@ public:
ACTOR static Future<Void> execute(Reference<BlobManifestLoader> self) {
try {
Value data = wait(readFromFile(self));
Standalone<BlobManifest> manifest = decode(data);
state Standalone<BlobManifest> manifest = decode(data);
wait(writeSystemKeys(self, manifest.rows));
BlobGranuleRestoreVersionVector _ = wait(listGranules(self));
} catch (Error& e) {
@ -231,13 +252,32 @@ public:
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
try {
std::vector<KeyRangeRef> granules;
state Standalone<VectorRef<KeyRef>> blobRanges;
// Read all granules
state GetRangeLimits limits(SERVER_KNOBS->BLOB_MANIFEST_RW_ROWS);
limits.minRows = 0;
state KeySelectorRef begin = firstGreaterOrEqual(blobGranuleMappingKeys.begin);
state KeySelectorRef end = firstGreaterOrEqual(blobGranuleMappingKeys.end);
loop {
RangeResult rows = wait(tr.getRange(begin, end, limits, Snapshot::True));
for (auto& row : rows) {
blobRanges.push_back_deep(blobRanges.arena(), row.key);
}
if (!rows.more) {
break;
}
if (rows.readThrough.present()) {
begin = firstGreaterOrEqual(rows.readThrough.get());
} else {
begin = firstGreaterThan(rows.end()[-1].key);
}
}
// check each granule range
state int i = 0;
auto limit = GetRangeLimits::BYTE_LIMIT_UNLIMITED;
state RangeResult blobRanges = wait(tr.getRange(blobGranuleMappingKeys, limit));
for (i = 0; i < blobRanges.size() - 1; i++) {
Key startKey = blobRanges[i].key.removePrefix(blobGranuleMappingKeys.begin);
Key endKey = blobRanges[i + 1].key.removePrefix(blobGranuleMappingKeys.begin);
Key startKey = blobRanges[i].removePrefix(blobGranuleMappingKeys.begin);
Key endKey = blobRanges[i + 1].removePrefix(blobGranuleMappingKeys.begin);
state KeyRange granuleRange = KeyRangeRef(startKey, endKey);
try {
Standalone<BlobGranuleRestoreVersion> granule = wait(getGranule(&tr, granuleRange));
@ -300,17 +340,32 @@ private:
// Write system keys to database
ACTOR static Future<Void> writeSystemKeys(Reference<BlobManifestLoader> self, VectorRef<KeyValueRef> rows) {
state int start = 0;
state int end = 0;
for (start = 0; start < rows.size(); start = end) {
end = std::min(start + SERVER_KNOBS->BLOB_MANIFEST_RW_ROWS, rows.size());
wait(writeSystemKeys(self, rows, start, end));
}
return Void();
}
// Write system keys from start index to end(exclusive), so that we don't exceed the limit of transaction limit
ACTOR static Future<Void> writeSystemKeys(Reference<BlobManifestLoader> self,
VectorRef<KeyValueRef> rows,
int start,
int end) {
state Transaction tr(self->db_);
loop {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
try {
for (auto& row : rows) {
tr.set(row.key, row.value);
for (int i = start; i < end; ++i) {
tr.set(rows[i].key, rows[i].value);
}
wait(tr.commit());
dprint("Blob manifest loaded {} rows\n", rows.size());
dprint("Blob manifest loaded rows from {} to {}\n", start, end);
TraceEvent("BlobManifestLoader").detail("RowStart", start).detail("RowEnd", end);
return Void();
} catch (Error& e) {
wait(tr.onError(e));
@ -324,8 +379,7 @@ private:
KeyRange historyKeyRange = blobGranuleHistoryKeyRangeFor(range);
// reverse lookup so that the first row is the newest version
state RangeResult results =
wait(tr->getRange(historyKeyRange, GetRangeLimits::BYTE_LIMIT_UNLIMITED, Snapshot::False, Reverse::True));
wait(tr->getRange(historyKeyRange, GetRangeLimits::BYTE_LIMIT_UNLIMITED, Snapshot::True, Reverse::True));
for (KeyValueRef row : results) {
state KeyRange keyRange;
state Version version;
@ -367,24 +421,39 @@ private:
// List all files for given granule
ACTOR static Future<std::vector<GranuleFileVersion>> listGranuleFiles(Transaction* tr, UID granuleID) {
state std::vector<GranuleFileVersion> files;
state KeyRange fileKeyRange = blobGranuleFileKeyRangeFor(granuleID);
RangeResult results = wait(tr->getRange(fileKeyRange, GetRangeLimits::BYTE_LIMIT_UNLIMITED));
state GetRangeLimits limits(SERVER_KNOBS->BLOB_MANIFEST_RW_ROWS);
limits.minRows = 0;
state KeySelectorRef begin = firstGreaterOrEqual(fileKeyRange.begin);
state KeySelectorRef end = firstGreaterOrEqual(fileKeyRange.end);
loop {
RangeResult results = wait(tr->getRange(begin, end, limits, Snapshot::True));
for (auto& row : results) {
UID gid;
Version version;
uint8_t fileType;
Standalone<StringRef> filename;
int64_t offset;
int64_t length;
int64_t fullFileLength;
Optional<BlobGranuleCipherKeysMeta> cipherKeysMeta;
std::vector<GranuleFileVersion> files;
for (auto& row : results) {
UID gid;
Version version;
uint8_t fileType;
Standalone<StringRef> filename;
int64_t offset;
int64_t length;
int64_t fullFileLength;
Optional<BlobGranuleCipherKeysMeta> cipherKeysMeta;
std::tie(gid, version, fileType) = decodeBlobGranuleFileKey(row.key);
std::tie(filename, offset, length, fullFileLength, cipherKeysMeta) = decodeBlobGranuleFileValue(row.value);
GranuleFileVersion vs = { version, fileType, filename.toString(), length };
files.push_back(vs);
std::tie(gid, version, fileType) = decodeBlobGranuleFileKey(row.key);
std::tie(filename, offset, length, fullFileLength, cipherKeysMeta) =
decodeBlobGranuleFileValue(row.value);
GranuleFileVersion vs = { version, fileType, filename.toString(), length };
files.push_back(vs);
}
if (!results.more) {
break;
}
if (results.readThrough.present()) {
begin = firstGreaterOrEqual(results.readThrough.get());
} else {
begin = firstGreaterThan(results.end()[-1].key);
}
}
return files;
}
@ -466,12 +535,26 @@ ACTOR Future<bool> isFullRestoreMode(Database db, KeyRangeRef keys) {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
try {
RangeResult ranges = wait(tr.getRange(blobRestoreCommandKeys, CLIENT_KNOBS->TOO_MANY));
for (auto& r : ranges) {
KeyRange keyRange = decodeBlobRestoreCommandKeyFor(r.key);
if (keyRange.contains(keys)) {
Standalone<BlobRestoreStatus> status = decodeBlobRestoreStatus(r.value);
return status.progress < 100; // progress is less than 100
state GetRangeLimits limits(SERVER_KNOBS->BLOB_MANIFEST_RW_ROWS);
limits.minRows = 0;
state KeySelectorRef begin = firstGreaterOrEqual(blobRestoreCommandKeys.begin);
state KeySelectorRef end = firstGreaterOrEqual(blobRestoreCommandKeys.end);
loop {
RangeResult ranges = wait(tr.getRange(begin, end, limits, Snapshot::True));
for (auto& r : ranges) {
KeyRange keyRange = decodeBlobRestoreCommandKeyFor(r.key);
if (keyRange.contains(keys)) {
Standalone<BlobRestoreStatus> status = decodeBlobRestoreStatus(r.value);
return status.progress < 100; // progress is less than 100
}
}
if (!ranges.more) {
break;
}
if (ranges.readThrough.present()) {
begin = firstGreaterOrEqual(ranges.readThrough.get());
} else {
begin = firstGreaterThan(ranges.end()[-1].key);
}
}
return false;

View File

@ -697,6 +697,9 @@ struct DDQueue : public IDDRelocationQueue {
RemoteTeamIsFull,
RemoteTeamIsNotHealthy,
NoAvailablePhysicalShard,
UnknownForceNew,
NoAnyHealthy,
DstOverloaded,
NumberOfTypes,
};
std::vector<int> retryFindDstReasonCount;
@ -1626,6 +1629,13 @@ ACTOR Future<Void> dataDistributionRelocator(DDQueue* self,
ASSERT(foundTeams);
ShardsAffectedByTeamFailure::Team primaryTeam =
ShardsAffectedByTeamFailure::Team(bestTeams[0].first->getServerIDs(), true);
if (forceToUseNewPhysicalShard &&
retryFindDstReason == DDQueue::RetryFindDstReason::None) {
// This is an abnormally state where we try to create new physical shard, but we
// don't know why. This state is to track unknown reason for force creating new
// physical shard.
retryFindDstReason = DDQueue::RetryFindDstReason::UnknownForceNew;
}
physicalShardIDCandidate =
self->physicalShardCollection->determinePhysicalShardIDGivenPrimaryTeam(
primaryTeam, metrics, forceToUseNewPhysicalShard, debugID);
@ -1648,6 +1658,14 @@ ACTOR Future<Void> dataDistributionRelocator(DDQueue* self,
break;
}
if (retryFindDstReason == DDQueue::RetryFindDstReason::None && foundTeams) {
if (!anyHealthy) {
retryFindDstReason = DDQueue::RetryFindDstReason::NoAnyHealthy;
} else if (anyDestOverloaded) {
retryFindDstReason = DDQueue::RetryFindDstReason::DstOverloaded;
}
}
if (anyDestOverloaded) {
CODE_PROBE(true, "Destination overloaded throttled move");
destOverloadedCount++;
@ -2519,6 +2537,12 @@ ACTOR Future<Void> dataDistributionQueue(Reference<IDDTxnProcessor> db,
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::RemoteTeamIsFull])
.detail("RemoteTeamIsNotHealthy",
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::RemoteTeamIsNotHealthy])
.detail("UnknownForceNew",
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::UnknownForceNew])
.detail("NoAnyHealthy",
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::NoAnyHealthy])
.detail("DstOverloaded",
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::DstOverloaded])
.detail(
"NoAvailablePhysicalShard",
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::NoAvailablePhysicalShard]);

View File

@ -475,7 +475,7 @@ public:
if (targetTps.present()) {
auto const smoothedTargetTps = stats.updateAndGetTargetLimit(targetTps.get());
te.detail("SmoothedTargetTps", smoothedTargetTps).detail("NumProxies", numProxies);
result[tag] = smoothedTargetTps / numProxies;
result[tag] = std::max(1.0, smoothedTargetTps / numProxies);
} else {
te.disable();
}

View File

@ -58,6 +58,14 @@ void GrvProxyTagThrottler::TagQueue::rejectRequests(LatencyBandsMap& latencyBand
}
}
void GrvProxyTagThrottler::TagQueue::endReleaseWindow(int64_t numStarted, double elapsed) {
if (rateInfo.present()) {
CODE_PROBE(requests.empty(), "Tag queue ending release window with empty request queue");
CODE_PROBE(!requests.empty(), "Tag queue ending release window with requests still queued");
rateInfo.get().endReleaseWindow(numStarted, requests.empty(), elapsed);
}
}
GrvProxyTagThrottler::GrvProxyTagThrottler(double maxThrottleDuration)
: maxThrottleDuration(maxThrottleDuration),
latencyBandsMap("GrvProxyTagThrottler",
@ -202,16 +210,14 @@ void GrvProxyTagThrottler::releaseTransactions(double elapsed,
}
}
// End release windows for queues with valid rateInfo
// End release windows for all tag queues
{
TransactionTagMap<uint32_t> transactionsReleasedMap;
for (const auto& [tag, count] : transactionsReleased) {
transactionsReleasedMap[tag] = count;
}
for (auto& [tag, queue] : queues) {
if (queue.rateInfo.present()) {
queue.rateInfo.get().endReleaseWindow(transactionsReleasedMap[tag], false, elapsed);
}
queue.endReleaseWindow(transactionsReleasedMap[tag], elapsed);
}
}
// If the capacity is increased, that means the vector has been illegally resized, potentially
@ -438,3 +444,33 @@ TEST_CASE("/GrvProxyTagThrottler/Fifo") {
wait(mockFifoClient(&throttler));
return Void();
}
// Tests that while throughput is low, the tag throttler
// does not accumulate too much budget.
//
// A server is setup to server 10 transactions per second,
// then runs idly for 60 seconds. Then a client starts
// and attempts 20 transactions per second for 60 seconds.
// The server throttles the client to only achieve
// 10 transactions per second during this 60 second window.
// If the throttler is allowed to accumulate budget indefinitely
// during the idle 60 seconds, this test will fail.
TEST_CASE("/GrvProxyTagThrottler/LimitedIdleBudget") {
state GrvProxyTagThrottler throttler(5.0);
state TagSet tagSet;
state TransactionTagMap<uint32_t> counters;
{
TransactionTagMap<double> rates;
rates["sampleTag"_sr] = 10.0;
throttler.updateRates(rates);
}
tagSet.addTag("sampleTag"_sr);
state Future<Void> server = mockServer(&throttler);
wait(delay(60.0));
state Future<Void> client = mockClient(&throttler, TransactionPriority::DEFAULT, tagSet, 1, 20.0, &counters);
wait(timeout(client && server, 60.0, Void()));
TraceEvent("TagQuotaTest_LimitedIdleBudget").detail("Counter", counters["sampleTag"_sr]);
ASSERT(isNear(counters["sampleTag"_sr], 60.0 * 10.0));
return Void();
}

View File

@ -35,7 +35,7 @@ bool GrvTransactionRateInfo::canStart(int64_t numAlreadyStarted, int64_t count)
std::min(limit + budget, SERVER_KNOBS->START_TRANSACTION_MAX_TRANSACTIONS_TO_START);
}
void GrvTransactionRateInfo::endReleaseWindow(int64_t numStartedAtPriority, bool queueEmptyAtPriority, double elapsed) {
void GrvTransactionRateInfo::endReleaseWindow(int64_t numStarted, bool queueEmpty, double elapsed) {
// Update the budget to accumulate any extra capacity available or remove any excess that was used.
// The actual delta is the portion of the limit we didn't use multiplied by the fraction of the rate window that
// elapsed.
@ -52,16 +52,15 @@ void GrvTransactionRateInfo::endReleaseWindow(int64_t numStartedAtPriority, bool
//
// Note that "rate window" here indicates a period of SERVER_KNOBS->START_TRANSACTION_RATE_WINDOW seconds,
// whereas "release window" is the period between wait statements, with duration indicated by "elapsed."
budget =
std::max(0.0, budget + elapsed * (limit - numStartedAtPriority) / SERVER_KNOBS->START_TRANSACTION_RATE_WINDOW);
budget = std::max(0.0, budget + elapsed * (limit - numStarted) / SERVER_KNOBS->START_TRANSACTION_RATE_WINDOW);
// If we are emptying out the queue of requests, then we don't need to carry much budget forward
// If we did keep accumulating budget, then our responsiveness to changes in workflow could be compromised
if (queueEmptyAtPriority) {
if (queueEmpty) {
budget = std::min(budget, SERVER_KNOBS->START_TRANSACTION_MAX_EMPTY_QUEUE_BUDGET);
}
smoothReleased.addDelta(numStartedAtPriority);
smoothReleased.addDelta(numStarted);
}
void GrvTransactionRateInfo::disable() {

View File

@ -289,11 +289,7 @@ ACTOR Future<Void> resolveBatch(Reference<Resolver> self,
// Detect conflicts
double expire = now() + SERVER_KNOBS->SAMPLE_EXPIRATION_TIME;
ConflictBatch conflictBatch(self->conflictSet, &reply.conflictingKeyRangeMap, &reply.arena);
Version newOldestVersion = req.version - SERVER_KNOBS->MAX_WRITE_TRANSACTION_LIFE_VERSIONS;
if (g_network->isSimulated() && g_simulator->speedUpSimulation) {
newOldestVersion = req.version - std::max(5 * SERVER_KNOBS->VERSIONS_PER_SECOND,
SERVER_KNOBS->MAX_WRITE_TRANSACTION_LIFE_VERSIONS);
}
const Version newOldestVersion = req.version - SERVER_KNOBS->MAX_WRITE_TRANSACTION_LIFE_VERSIONS;
for (int t = 0; t < req.transactions.size(); t++) {
conflictBatch.addTransaction(req.transactions[t], newOldestVersion);
self->resolvedReadConflictRanges += req.transactions[t].read_conflict_ranges.size();

View File

@ -177,6 +177,11 @@ public:
loop {
try {
state RangeResult currentQuotas = wait(tr.getRange(storageQuotaKeys, CLIENT_KNOBS->TOO_MANY));
// Reset the quota for all groups; this essentially sets the quota to `max` for groups where the
// quota might have been cleared (i.e., groups that will not be returned in `getRange` request above).
for (auto& [group, storage] : tenantCache->tenantStorageMap) {
storage.quota = std::numeric_limits<int64_t>::max();
}
for (const auto kv : currentQuotas) {
const TenantGroupName group = kv.key.removePrefix(storageQuotaPrefix);
const int64_t quota = BinaryReader::fromStringRef<int64_t>(kv.value, Unversioned());

View File

@ -2025,7 +2025,8 @@ public:
bool memoryOnly,
Reference<IPageEncryptionKeyProvider> keyProvider,
Promise<Void> errorPromise = {})
: keyProvider(keyProvider), ioLock(FLOW_KNOBS->MAX_OUTSTANDING, SERVER_KNOBS->REDWOOD_PRIORITY_LAUNCHS),
: keyProvider(keyProvider),
ioLock(makeReference<PriorityMultiLock>(FLOW_KNOBS->MAX_OUTSTANDING, SERVER_KNOBS->REDWOOD_IO_PRIORITIES)),
pageCacheBytes(pageCacheSizeBytes), desiredPageSize(desiredPageSize), desiredExtentSize(desiredExtentSize),
filename(filename), memoryOnly(memoryOnly), errorPromise(errorPromise),
remapCleanupWindowBytes(remapCleanupWindowBytes), concurrentExtentReads(new FlowLock(concurrentExtentReads)) {
@ -2037,7 +2038,7 @@ public:
// This sets the page cache size for all PageCacheT instances using the same evictor
pageCache.evictor().sizeLimit = pageCacheBytes;
g_redwoodMetrics.ioLock = &ioLock;
g_redwoodMetrics.ioLock = ioLock.getPtr();
if (!g_redwoodMetricsActor.isValid()) {
g_redwoodMetricsActor = redwoodMetricsLogger();
}
@ -2499,7 +2500,7 @@ public:
unsigned int level,
bool header) {
state PriorityMultiLock::Lock lock = wait(self->ioLock.lock(header ? ioMaxPriority : ioMinPriority));
state PriorityMultiLock::Lock lock = wait(self->ioLock->lock(header ? ioMaxPriority : ioMinPriority));
++g_redwoodMetrics.metric.pagerDiskWrite;
g_redwoodMetrics.level(level).metrics.events.addEventReason(PagerEvents::PageWrite, reason);
if (self->memoryOnly) {
@ -2779,7 +2780,7 @@ public:
int blockSize,
int64_t offset,
int priority) {
state PriorityMultiLock::Lock lock = wait(self->ioLock.lock(std::min(priority, ioMaxPriority)));
state PriorityMultiLock::Lock lock = wait(self->ioLock->lock(std::min(priority, ioMaxPriority)));
++g_redwoodMetrics.metric.pagerDiskRead;
int bytes = wait(self->pageFile->read(pageBuffer->rawData() + pageOffset, blockSize, offset));
return bytes;
@ -3593,7 +3594,7 @@ public:
// The next section explicitly cancels all pending operations held in the pager
debug_printf("DWALPager(%s) shutdown kill ioLock\n", self->filename.c_str());
self->ioLock.kill();
self->ioLock->kill();
debug_printf("DWALPager(%s) shutdown cancel recovery\n", self->filename.c_str());
self->recoverFuture.cancel();
@ -3802,7 +3803,7 @@ private:
Reference<IPageEncryptionKeyProvider> keyProvider;
PriorityMultiLock ioLock;
Reference<PriorityMultiLock> ioLock;
int64_t pageCacheBytes;
@ -8894,32 +8895,25 @@ void RedwoodMetrics::getIOLockFields(TraceEvent* e, std::string* s) {
int maxPriority = ioLock->maxPriority();
if (e != nullptr) {
e->detail("ActiveReads", ioLock->totalRunners());
e->detail("AwaitReads", ioLock->totalWaiters());
e->detail("IOActiveTotal", ioLock->getRunnersCount());
e->detail("IOWaitingTotal", ioLock->getWaitersCount());
for (int priority = 0; priority <= maxPriority; ++priority) {
e->detail(format("ActiveP%d", priority), ioLock->numRunners(priority));
e->detail(format("AwaitP%d", priority), ioLock->numWaiters(priority));
e->detail(format("IOActiveP%d", priority), ioLock->getRunnersCount(priority));
e->detail(format("IOWaitingP%d", priority), ioLock->getWaitersCount(priority));
}
}
if (s != nullptr) {
std::string active = "Active";
std::string await = "Await";
*s += "\n";
*s += format("%-15s %-8u ", "ActiveReads", ioLock->totalRunners());
*s += format("%-15s %-8u ", "AwaitReads", ioLock->totalWaiters());
*s += "\n";
*s += format("%-15s %-8u ", "IOActiveTotal", ioLock->getRunnersCount());
for (int priority = 0; priority <= maxPriority; ++priority) {
*s +=
format("%-15s %-8u ", (active + 'P' + std::to_string(priority)).c_str(), ioLock->numRunners(priority));
*s += format("IOActiveP%-6d %-8u ", priority, ioLock->getRunnersCount(priority));
}
*s += "\n";
*s += format("%-15s %-8u ", "IOWaitingTotal", ioLock->getWaitersCount());
for (int priority = 0; priority <= maxPriority; ++priority) {
*s +=
format("%-15s %-8u ", (await + 'P' + std::to_string(priority)).c_str(), ioLock->numWaiters(priority));
*s += format("IOWaitingP%-5d %-8u ", priority, ioLock->getWaitersCount(priority));
}
}
}
@ -11407,57 +11401,3 @@ TEST_CASE(":/redwood/performance/histograms") {
return Void();
}
ACTOR Future<Void> waitLockIncrement(PriorityMultiLock* pml, int priority, int* pout) {
state PriorityMultiLock::Lock lock = wait(pml->lock(priority));
wait(delay(deterministicRandom()->random01() * .1));
++*pout;
return Void();
}
TEST_CASE("/redwood/PriorityMultiLock") {
state std::vector<int> priorities = { 10, 20, 40 };
state int concurrency = 25;
state PriorityMultiLock* pml = new PriorityMultiLock(concurrency, priorities);
state std::vector<int> counts;
counts.resize(priorities.size(), 0);
// Clog the lock buy taking concurrency locks at each level
state std::vector<Future<PriorityMultiLock::Lock>> lockFutures;
for (int i = 0; i < priorities.size(); ++i) {
for (int j = 0; j < concurrency; ++j) {
lockFutures.push_back(pml->lock(i));
}
}
// Wait for n = concurrency locks to be acquired
wait(quorum(lockFutures, concurrency));
state std::vector<Future<Void>> futures;
for (int i = 0; i < 10e3; ++i) {
int p = i % priorities.size();
futures.push_back(waitLockIncrement(pml, p, &counts[p]));
}
state Future<Void> f = waitForAll(futures);
// Release the locks
lockFutures.clear();
// Print stats and wait for all futures to be ready
loop {
choose {
when(wait(delay(1))) {
printf("counts: ");
for (auto c : counts) {
printf("%d ", c);
}
printf(" pml: %s\n", pml->toString().c_str());
}
when(wait(f)) { break; }
}
}
delete pml;
return Void();
}

View File

@ -60,6 +60,7 @@ class GrvProxyTagThrottler {
void setRate(double rate);
bool isMaxThrottled(double maxThrottleDuration) const;
void rejectRequests(LatencyBandsMap&);
void endReleaseWindow(int64_t numStarted, double elapsed);
};
// Track the budgets for each tag

View File

@ -55,7 +55,7 @@ public:
// Updates the budget to accumulate any extra capacity available or remove any excess that was used.
// Call at the end of a release window.
void endReleaseWindow(int64_t numStartedAtPriority, bool queueEmptyAtPriority, double elapsed);
void endReleaseWindow(int64_t numStarted, bool queueEmpty, double elapsed);
// Smoothly sets rate. If currently disabled, reenable
void setRate(double rate);

View File

@ -208,7 +208,7 @@ class Ratekeeper {
Deque<std::pair<double, Version>> blobWorkerVersionHistory;
Optional<Key> remoteDC;
double getRecoveryDuration(Version ver) {
double getRecoveryDuration(Version ver) const {
auto it = version_recovery.lower_bound(ver);
double recoveryDuration = 0;
while (it != version_recovery.end()) {

View File

@ -1110,15 +1110,13 @@ public:
FlowLock serveFetchCheckpointParallelismLock;
PriorityMultiLock ssLock;
Reference<PriorityMultiLock> ssLock;
std::vector<int> readPriorityRanks;
Future<PriorityMultiLock::Lock> getReadLock(const Optional<ReadOptions>& options) {
// TODO: Fix perf regression in 100% cache read case where taking this lock adds too much overhead
return PriorityMultiLock::Lock();
// int readType = (int)(options.present() ? options.get().type : ReadType::NORMAL);
// readType = std::clamp<int>(readType, 0, readPriorityRanks.size() - 1);
// return ssLock.lock(readPriorityRanks[readType]);
int readType = (int)(options.present() ? options.get().type : ReadType::NORMAL);
readType = std::clamp<int>(readType, 0, readPriorityRanks.size() - 1);
return ssLock->lock(readPriorityRanks[readType]);
}
FlowLock serveAuditStorageParallelismLock;
@ -1407,7 +1405,8 @@ public:
fetchKeysParallelismFullLock(SERVER_KNOBS->FETCH_KEYS_PARALLELISM_FULL),
fetchKeysBytesBudget(SERVER_KNOBS->STORAGE_FETCH_BYTES), fetchKeysBudgetUsed(false),
serveFetchCheckpointParallelismLock(SERVER_KNOBS->SERVE_FETCH_CHECKPOINT_PARALLELISM),
ssLock(SERVER_KNOBS->STORAGE_SERVER_READ_CONCURRENCY, SERVER_KNOBS->STORAGESERVER_READ_PRIORITIES),
ssLock(makeReference<PriorityMultiLock>(SERVER_KNOBS->STORAGE_SERVER_READ_CONCURRENCY,
SERVER_KNOBS->STORAGESERVER_READ_PRIORITIES)),
serveAuditStorageParallelismLock(SERVER_KNOBS->SERVE_AUDIT_STORAGE_PARALLELISM),
instanceID(deterministicRandom()->randomUniqueID().first()), shuttingDown(false), behind(false),
versionBehind(false), debug_inApplyUpdate(false), debug_lastValidateTime(0), lastBytesInputEBrake(0),
@ -1415,7 +1414,7 @@ public:
busiestWriteTagContext(ssi.id()), counters(this),
storageServerSourceTLogIDEventHolder(
makeReference<EventCacheHolder>(ssi.id().toString() + "/StorageServerSourceTLogID")) {
readPriorityRanks = parseStringToVector<int>(SERVER_KNOBS->STORAGESERVER_READ_RANKS, ',');
readPriorityRanks = parseStringToVector<int>(SERVER_KNOBS->STORAGESERVER_READTYPE_PRIORITY_MAP, ',');
ASSERT(readPriorityRanks.size() > (int)ReadType::MAX);
version.initMetric("StorageServer.Version"_sr, counters.cc.getId());
oldestVersion.initMetric("StorageServer.OldestVersion"_sr, counters.cc.getId());
@ -10431,20 +10430,20 @@ ACTOR Future<Void> metricsCore(StorageServer* self, StorageServerInterface ssi)
te.detail("StorageEngine", self->storage.getKeyValueStoreType().toString());
te.detail("Tag", self->tag.toString());
std::vector<int> rpr = self->readPriorityRanks;
te.detail("ReadsActive", self->ssLock.totalRunners());
te.detail("ReadsWaiting", self->ssLock.totalWaiters());
te.detail("ReadsTotalActive", self->ssLock->getRunnersCount());
te.detail("ReadsTotalWaiting", self->ssLock->getWaitersCount());
int type = (int)ReadType::FETCH;
te.detail("ReadFetchActive", self->ssLock.numRunners(rpr[type]));
te.detail("ReadFetchWaiting", self->ssLock.numWaiters(rpr[type]));
te.detail("ReadFetchActive", self->ssLock->getRunnersCount(rpr[type]));
te.detail("ReadFetchWaiting", self->ssLock->getWaitersCount(rpr[type]));
type = (int)ReadType::LOW;
te.detail("ReadLowActive", self->ssLock.numRunners(rpr[type]));
te.detail("ReadLowWaiting", self->ssLock.numWaiters(rpr[type]));
te.detail("ReadLowActive", self->ssLock->getRunnersCount(rpr[type]));
te.detail("ReadLowWaiting", self->ssLock->getWaitersCount(rpr[type]));
type = (int)ReadType::NORMAL;
te.detail("ReadNormalActive", self->ssLock.numRunners(rpr[type]));
te.detail("ReadNormalWaiting", self->ssLock.numWaiters(rpr[type]));
te.detail("ReadNormalActive", self->ssLock->getRunnersCount(rpr[type]));
te.detail("ReadNormalWaiting", self->ssLock->getWaitersCount(rpr[type]));
type = (int)ReadType::HIGH;
te.detail("ReadHighActive", self->ssLock.numRunners(rpr[type]));
te.detail("ReadHighWaiting", self->ssLock.numWaiters(rpr[type]));
te.detail("ReadHighActive", self->ssLock->getRunnersCount(rpr[type]));
te.detail("ReadHighWaiting", self->ssLock->getWaitersCount(rpr[type]));
StorageBytes sb = self->storage.getStorageBytes();
te.detail("KvstoreBytesUsed", sb.used);
te.detail("KvstoreBytesFree", sb.free);
@ -11260,7 +11259,7 @@ ACTOR Future<Void> storageServer(IKeyValueStore* persistentData,
// If the storage server dies while something that uses self is still on the stack,
// we want that actor to complete before we terminate and that memory goes out of scope
self.ssLock.kill();
self.ssLock->kill();
state Error err = e;
if (storageServerTerminated(self, persistentData, err)) {
@ -11358,7 +11357,7 @@ ACTOR Future<Void> storageServer(IKeyValueStore* persistentData,
throw internal_error();
} catch (Error& e) {
self.ssLock.kill();
self.ssLock->kill();
if (self.byteSampleRecovery.isValid()) {
self.byteSampleRecovery.cancel();

View File

@ -97,9 +97,13 @@ struct StorageQuotaWorkload : TestWorkload {
state bool rejected2 = wait(tryWrite(self, cx, self->emptyTenant, /*expectOk=*/false));
ASSERT(rejected2);
// Increase the quota. Check that writes to both the tenants are now able to commit.
quota = size * 2;
wait(setStorageQuotaHelper(cx, self->group, quota));
// Increase the quota or clear the quota. Check that writes to both the tenants are now able to commit.
if (deterministicRandom()->coinflip()) {
quota = size * 2;
wait(setStorageQuotaHelper(cx, self->group, quota));
} else {
wait(clearStorageQuotaHelper(cx, self->group));
}
state bool committed1 = wait(tryWrite(self, cx, self->tenant, /*expectOk=*/true));
ASSERT(committed1);
state bool committed2 = wait(tryWrite(self, cx, self->emptyTenant, /*expectOk=*/true));
@ -144,12 +148,24 @@ struct StorageQuotaWorkload : TestWorkload {
}
}
ACTOR static Future<Void> clearStorageQuotaHelper(Database cx, TenantGroupName tenantGroupName) {
state Transaction tr(cx);
loop {
try {
clearStorageQuota(tr, tenantGroupName);
wait(tr.commit());
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Optional<int64_t>> getStorageQuotaHelper(Database cx, TenantGroupName tenantGroupName) {
state Transaction tr(cx);
loop {
try {
state Optional<int64_t> quota = wait(getStorageQuota(&tr, tenantGroupName));
wait(tr.commit());
return quota;
} catch (Error& e) {
wait(tr.onError(e));

View File

@ -26,8 +26,8 @@
// This workload sets the throughput quota of a tag during the setup phase
class ThroughputQuotaWorkload : public TestWorkload {
TransactionTag transactionTag;
double reservedQuota{ 0.0 };
double totalQuota{ 0.0 };
int64_t reservedQuota{ 0 };
int64_t totalQuota{ 0 };
ACTOR static Future<Void> setup(ThroughputQuotaWorkload* self, Database cx) {
state Reference<ReadYourWritesTransaction> tr = makeReference<ReadYourWritesTransaction>(cx);

View File

@ -29,21 +29,25 @@
#define PRIORITYMULTILOCK_ACTOR_H
#include "flow/flow.h"
#include <boost/intrusive/list.hpp>
#include "flow/actorcompiler.h" // This must be the last #include.
#define PRIORITYMULTILOCK_DEBUG 0
#if PRIORITYMULTILOCK_DEBUG || !defined(NO_INTELLISENSE)
#define pml_debug_printf(...) \
if (now() > 0) \
printf(__VA_ARGS__)
if (now() > 0) { \
printf("pml line=%04d ", __LINE__); \
printf(__VA_ARGS__); \
}
#else
#define pml_debug_printf(...)
#endif
// A multi user lock with a concurrent holder limit where waiters request a lock with a priority
// id and are granted locks based on a total concurrency and relative weights of the current active
// priorities. Priority id's must start at 0 and are sequential integers.
// priorities. Priority id's must start at 0 and are sequential integers. Priority id numbers
// are not related to the importance of the priority in execution.
//
// Scheduling logic
// Let
@ -64,17 +68,17 @@
// The interface is similar to FlowMutex except that lock holders can just drop the lock to release it.
//
// Usage:
// Lock lock = wait(prioritylock.lock(priorityLevel));
// Lock lock = wait(prioritylock.lock(priority_id));
// lock.release(); // Explicit release, or
// // let lock and all copies of lock go out of scope to release
class PriorityMultiLock {
class PriorityMultiLock : public ReferenceCounted<PriorityMultiLock> {
public:
// Waiting on the lock returns a Lock, which is really just a Promise<Void>
// Calling release() is not necessary, it exists in case the Lock holder wants to explicitly release
// the Lock before it goes out of scope.
struct Lock {
void release() { promise.send(Void()); }
bool isLocked() const { return promise.canBeSet(); }
// This is exposed in case the caller wants to use/copy it directly
Promise<Void> promise;
@ -84,10 +88,11 @@ public:
: PriorityMultiLock(concurrency, parseStringToVector<int>(weights, ',')) {}
PriorityMultiLock(int concurrency, std::vector<int> weightsByPriority)
: concurrency(concurrency), available(concurrency), waiting(0), totalPendingWeights(0), releaseDebugID(0) {
: concurrency(concurrency), available(concurrency), waiting(0), totalPendingWeights(0) {
priorities.resize(weightsByPriority.size());
for (int i = 0; i < priorities.size(); ++i) {
priorities[i].priority = i;
priorities[i].weight = weightsByPriority[i];
}
@ -102,7 +107,8 @@ public:
// If this priority currently has no waiters
if (q.empty()) {
// Add this priority's weight to the total for priorities with pending work
// Add this priority's weight to the total for priorities with pending work. This must be done
// so that currenctCapacity() below will assign capacaity to this priority.
totalPendingWeights += p.weight;
// If there are slots available and the priority has capacity then don't make the caller wait
@ -114,80 +120,71 @@ public:
Lock lock;
addRunner(lock, &p);
pml_debug_printf("lock nowait line %d priority %d %s\n", __LINE__, priority, toString().c_str());
pml_debug_printf("lock nowait priority %d %s\n", priority, toString().c_str());
return lock;
}
// If we didn't return above then add the priority to the waitingPriorities list
waitingPriorities.push_back(p);
}
Waiter w;
q.push_back(w);
Waiter& w = q.emplace_back();
++waiting;
pml_debug_printf("lock wait line %d priority %d %s\n", __LINE__, priority, toString().c_str());
pml_debug_printf("lock wait priority %d %s\n", priority, toString().c_str());
return w.lockPromise.getFuture();
}
void kill() {
pml_debug_printf("kill %s\n", toString().c_str());
brokenOnDestruct.reset();
// handleRelease will not free up any execution slots when it ends via cancel
fRunner.cancel();
available = 0;
runners.clear();
priorities.clear();
waitingPriorities.clear();
for (auto& p : priorities) {
p.queue.clear();
}
}
std::string toString() const {
int runnersDone = 0;
for (int i = 0; i < runners.size(); ++i) {
if (runners[i].isReady()) {
++runnersDone;
}
}
std::string s = format("{ ptr=%p concurrency=%d available=%d running=%d waiting=%d runnersQueue=%d "
"runnersDone=%d pendingWeights=%d ",
std::string s = format("{ ptr=%p concurrency=%d available=%d running=%d waiting=%d "
"pendingWeights=%d ",
this,
concurrency,
available,
concurrency - available,
waiting,
runners.size(),
runnersDone,
totalPendingWeights);
for (int i = 0; i < priorities.size(); ++i) {
s += format("p%d:{%s} ", i, priorities[i].toString(this).c_str());
for (auto& p : priorities) {
s += format("{%s} ", p.toString(this).c_str());
}
s += "}";
if (concurrency - available != runners.size() - runnersDone) {
pml_debug_printf("%s\n", s.c_str());
ASSERT_EQ(concurrency - available, runners.size() - runnersDone);
}
return s;
}
int maxPriority() const { return priorities.size() - 1; }
int totalWaiters() const { return waiting; }
int getRunnersCount() const { return concurrency - available; }
int getWaitersCount() const { return waiting; }
int numWaiters(const unsigned int priority) const {
int getWaitersCount(const unsigned int priority) const {
ASSERT(priority < priorities.size());
return priorities[priority].queue.size();
}
int totalRunners() const { return concurrency - available; }
int numRunners(const unsigned int priority) const {
int getRunnersCount(const unsigned int priority) const {
ASSERT(priority < priorities.size());
return priorities[priority].runners;
}
private:
struct Waiter {
Waiter() {}
Promise<Lock> lockPromise;
};
@ -202,8 +199,8 @@ private:
typedef Deque<Waiter> Queue;
struct Priority {
Priority() : runners(0), weight(0) {}
struct Priority : boost::intrusive::list_base_hook<> {
Priority() : runners(0), weight(0), priority(-1) {}
// Queue of waiters at this priority
Queue queue;
@ -211,9 +208,12 @@ private:
int runners;
// Configured weight for this priority
int weight;
// Priority number for convenience, matches *this's index in PML priorities vector
int priority;
std::string toString(const PriorityMultiLock* pml) const {
return format("weight=%d run=%d wait=%d cap=%d",
return format("priority=%d weight=%d run=%d wait=%d cap=%d",
priority,
weight,
runners,
queue.size(),
@ -222,51 +222,41 @@ private:
};
std::vector<Priority> priorities;
typedef boost::intrusive::list<Priority, boost::intrusive::constant_time_size<false>> WaitingPrioritiesList;
// Current or recent (ended) runners
Deque<Future<Void>> runners;
// List of all priorities with 1 or more waiters. This list exists so that the scheduling loop
// does not have to iterage over the priorities vector checking priorities without waiters.
WaitingPrioritiesList waitingPriorities;
Future<Void> fRunner;
AsyncTrigger wakeRunner;
Promise<Void> brokenOnDestruct;
// Used for debugging, can roll over without issue
unsigned int releaseDebugID;
ACTOR static Future<Void> handleRelease(PriorityMultiLock* self, Future<Void> f, Priority* priority) {
state [[maybe_unused]] unsigned int id = self->releaseDebugID++;
pml_debug_printf("%f handleRelease self=%p id=%u start \n", now(), self, id);
ACTOR static void handleRelease(Reference<PriorityMultiLock> self, Priority* priority, Future<Void> holder) {
pml_debug_printf("%f handleRelease self=%p start\n", now(), self.getPtr());
try {
wait(f);
pml_debug_printf("%f handleRelease self=%p id=%u success\n", now(), self, id);
wait(holder);
pml_debug_printf("%f handleRelease self=%p success\n", now(), self.getPtr());
} catch (Error& e) {
pml_debug_printf("%f handleRelease self=%p id=%u error %s\n", now(), self, id, e.what());
if (e.code() == error_code_actor_cancelled) {
throw;
}
pml_debug_printf("%f handleRelease self=%p error %s\n", now(), self.getPtr(), e.what());
}
pml_debug_printf("lock release line %d priority %d %s\n",
__LINE__,
(int)(priority - &self->priorities.front()),
self->toString().c_str());
pml_debug_printf("lock release priority %d %s\n", (int)(priority->priority), self->toString().c_str());
pml_debug_printf("%f handleRelease self=%p id=%u releasing\n", now(), self, id);
pml_debug_printf("%f handleRelease self=%p releasing\n", now(), self.getPtr());
++self->available;
priority->runners -= 1;
// If there are any waiters or if the runners array is getting large, trigger the runner loop
if (self->waiting > 0 || self->runners.size() > 1000) {
if (self->waiting > 0) {
self->wakeRunner.trigger();
}
return Void();
}
void addRunner(Lock& lock, Priority* p) {
p->runners += 1;
void addRunner(Lock& lock, Priority* priority) {
priority->runners += 1;
--available;
runners.push_back(handleRelease(this, lock.promise.getFuture(), p));
handleRelease(Reference<PriorityMultiLock>::addRef(this), priority, lock.promise.getFuture());
}
// Current maximum running tasks for the specified priority, which must have waiters
@ -278,76 +268,50 @@ private:
}
ACTOR static Future<Void> runner(PriorityMultiLock* self) {
state int sinceYield = 0;
state Future<Void> error = self->brokenOnDestruct.getFuture();
// Priority to try to run tasks from next
state int priority = 0;
state WaitingPrioritiesList::iterator p = self->waitingPriorities.end();
loop {
pml_debug_printf(
"runner loop start line %d priority=%d %s\n", __LINE__, priority, self->toString().c_str());
// Cleanup finished runner futures at the front of the runner queue.
while (!self->runners.empty() && self->runners.front().isReady()) {
self->runners.pop_front();
}
pml_debug_printf("runner loop start priority=%d %s\n", p->priority, self->toString().c_str());
// Wait for a runner to release its lock
pml_debug_printf(
"runner loop waitTrigger line %d priority=%d %s\n", __LINE__, priority, self->toString().c_str());
pml_debug_printf("runner loop waitTrigger priority=%d %s\n", p->priority, self->toString().c_str());
wait(self->wakeRunner.onTrigger());
pml_debug_printf(
"%f runner loop wake line %d priority=%d %s\n", now(), __LINE__, priority, self->toString().c_str());
if (++sinceYield == 100) {
sinceYield = 0;
pml_debug_printf(
" runner waitDelay line %d priority=%d %s\n", __LINE__, priority, self->toString().c_str());
wait(delay(0));
pml_debug_printf(
" runner afterDelay line %d priority=%d %s\n", __LINE__, priority, self->toString().c_str());
}
pml_debug_printf("%f runner loop wake priority=%d %s\n", now(), p->priority, self->toString().c_str());
// While there are available slots and there are waiters, launch tasks
while (self->available > 0 && self->waiting > 0) {
pml_debug_printf(
" launch loop start line %d priority=%d %s\n", __LINE__, priority, self->toString().c_str());
Priority* pPriority;
pml_debug_printf(" launch loop start priority=%d %s\n", p->priority, self->toString().c_str());
// Find the next priority with waiters and capacity. There must be at least one.
loop {
// Rotate to next priority
if (++priority == self->priorities.size()) {
priority = 0;
if (p == self->waitingPriorities.end()) {
p = self->waitingPriorities.begin();
}
pPriority = &self->priorities[priority];
pml_debug_printf(" launch loop scan priority=%d %s\n", p->priority, self->toString().c_str());
pml_debug_printf(" launch loop scan line %d priority=%d %s\n",
__LINE__,
priority,
self->toString().c_str());
if (!pPriority->queue.empty() && pPriority->runners < self->currentCapacity(pPriority->weight)) {
if (!p->queue.empty() && p->runners < self->currentCapacity(p->weight)) {
break;
}
++p;
}
Queue& queue = pPriority->queue;
Queue& queue = p->queue;
Waiter w = queue.front();
queue.pop_front();
// If this priority is now empty, subtract its weight from the total pending weights
// If this priority is now empty, subtract its weight from the total pending weights an remove it
// from the waitingPriorities list
Priority* pPriority = &*p;
if (queue.empty()) {
p = self->waitingPriorities.erase(p);
self->totalPendingWeights -= pPriority->weight;
pml_debug_printf(" emptied priority line %d priority=%d %s\n",
__LINE__,
priority,
self->toString().c_str());
pml_debug_printf(
" emptied priority priority=%d %s\n", pPriority->priority, self->toString().c_str());
}
--self->waiting;
@ -365,10 +329,9 @@ private:
self->addRunner(lock, pPriority);
}
pml_debug_printf(" launched line %d alreadyDone=%d priority=%d %s\n",
__LINE__,
pml_debug_printf(" launched alreadyDone=%d priority=%d %s\n",
!lock.promise.canBeSet(),
priority,
pPriority->priority,
self->toString().c_str());
}
}

View File

@ -0,0 +1,180 @@
/*
* BenchBlobDeltaFiles.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "benchmark/benchmark.h"
#include "fdbclient/FDBTypes.h"
#include "fdbclient/SystemData.h"
#include "flow/IRandom.h"
#include "flow/DeterministicRandom.h"
#include "fdbclient/BlobGranuleFiles.h"
#include "flow/flow.h"
#include <cstdlib>
#include <stdexcept>
// Pre-generated GranuleDelta size in bytes for benchmark.
const static int PRE_GEN_TARGET_BYTES[] = { 128 * 1024, 512 * 1024, 1024 * 1024 };
// Generate GranuleDelta using a deterministic way. Change the seed if you would test a new data set
class DeltaGenerator {
public:
DeltaGenerator(uint32_t seed = 12345678) {
randGen = Reference<IRandom>(new DeterministicRandom(seed));
// Generate key range
prefix = StringRef(ar, randGen->randomUniqueID().toString() + "_");
range = KeyRangeRef(prefix, StringRef(ar, strinc(prefix)));
// Generate version jump size
minVersionJump = randGen->randomExp(0, 25);
maxVersionJump = minVersionJump + randGen->randomExp(0, 25);
// Generate value size range
maxValueSize = randGen->randomExp(7, 9);
// Generate start version
version = randGen->randomUInt32();
// Generate probabilty of update existing keys
updateExistingKeysProb = randGen->random01();
// Generate deltas
for (auto i : PRE_GEN_TARGET_BYTES) {
genDeltas(i);
}
fmt::print("key range: {} - {}\n", range.begin.printable(), range.end.printable());
fmt::print("start version: {}\n", version);
fmt::print("max value bytes: {}\n", maxValueSize);
fmt::print("version jump range: {} - {}\n", minVersionJump, maxVersionJump);
fmt::print("probability for update: {}\n", updateExistingKeysProb);
fmt::print("unseed: {}\n", randGen->randomUInt32());
}
KeyRange getRange() { return range; }
Standalone<GranuleDeltas> getDelta(int targetBytes) {
if (deltas.find(targetBytes) != deltas.end()) {
return deltas[targetBytes];
}
throw std::invalid_argument("Test delta file size is not pre-generated!");
}
private:
void genDeltas(int targetBytes) {
Standalone<GranuleDeltas> data;
int totalDataBytes = 0;
while (totalDataBytes < targetBytes) {
data.push_back(ar, newDelta());
totalDataBytes += data.back().expectedSize();
}
deltas[targetBytes] = data;
}
MutationRef newMutation() { return MutationRef(ar, MutationRef::SetValue, key(), value()); }
MutationsAndVersionRef newDelta() {
version += randGen->randomInt(minVersionJump, maxVersionJump);
MutationsAndVersionRef ret(version, version);
for (int i = 0; i < 10; i++) {
ret.mutations.push_back_deep(ar, newMutation());
}
return ret;
}
StringRef key() {
// Pick an existing key
if (randGen->random01() < updateExistingKeysProb && !usedKeys.empty()) {
int r = randGen->randomUInt32() % usedKeys.size();
auto it = usedKeys.begin();
for (; r != 0; r--)
it++;
return StringRef(ar, *it);
}
// Create a new key
std::string key = prefix.toString() + randGen->randomUniqueID().toString();
usedKeys.insert(key);
return StringRef(ar, key);
}
StringRef value() {
int valueSize = randGen->randomInt(maxValueSize / 2, maxValueSize * 3 / 2);
std::string value = randGen->randomUniqueID().toString();
if (value.size() > valueSize) {
value = value.substr(0, valueSize);
}
if (value.size() < valueSize) {
// repeated string so it's compressible
value += std::string(valueSize - value.size(), 'x');
}
return StringRef(ar, value);
}
Reference<IRandom> randGen;
Arena ar;
KeyRangeRef range;
Key prefix;
int maxValueSize;
Version version;
int minVersionJump;
int maxVersionJump;
std::set<std::string> usedKeys;
double updateExistingKeysProb;
std::map<int, Standalone<GranuleDeltas>> deltas;
};
static DeltaGenerator deltaGen; // Pre-generate deltas
// Benchmark serialization without compression/encryption. The main CPU cost should be sortDeltasByKey
static void bench_serialize_deltas(benchmark::State& state) {
int targetBytes = state.range(0);
int chunkSize = state.range(1);
Standalone<GranuleDeltas> delta = deltaGen.getDelta(targetBytes);
KeyRange range = deltaGen.getRange();
Standalone<StringRef> fileName = "testdelta"_sr; // unused
Optional<CompressionFilter> compressFilter; // unused. no compression
Optional<BlobGranuleCipherKeysCtx> cipherKeysCtx; // unused. no encryption
uint32_t serializedBytes = 0;
for (auto _ : state) {
Value serialized = serializeChunkedDeltaFile(fileName, delta, range, chunkSize, compressFilter, cipherKeysCtx);
serializedBytes += serialized.size();
}
state.SetBytesProcessed(static_cast<long>(state.iterations()) * targetBytes);
state.counters["serialized_bytes"] = serializedBytes;
}
// Benchmark sorting deltas
static void bench_sort_deltas(benchmark::State& state) {
int targetBytes = state.range(0);
Standalone<GranuleDeltas> delta = deltaGen.getDelta(targetBytes);
KeyRange range = deltaGen.getRange();
for (auto _ : state) {
sortDeltasByKey(delta, range);
}
state.SetBytesProcessed(static_cast<long>(state.iterations()) * targetBytes);
}
// Benchmark serialization for granule deltas 128KB, 512KB and 1024KB. Chunk size 32KB
BENCHMARK(bench_serialize_deltas)
->Args({ 128 * 1024, 32 * 1024 })
->Args({ 512 * 1024, 32 * 1024 })
->Args({ 1024 * 1024, 32 * 1024 });
// Benchmark sorting for granule deltas 128KB, 512KB and 1024KB. Chunk size 32KB
BENCHMARK(bench_sort_deltas)->Args({ 128 * 1024 })->Args({ 512 * 1024 })->Args({ 1024 * 1024 });

View File

@ -25,26 +25,28 @@
#include "flow/PriorityMultiLock.actor.h"
#include <deque>
#include "flow/actorcompiler.h" // This must be the last #include.
#include "fmt/printf.h"
ACTOR static Future<Void> benchPriorityMultiLock(benchmark::State* benchState) {
state std::vector<int> priorities;
// Arg1 is the number of active priorities to use
// Arg2 is the number of inactive priorities to use
state int active = benchState->range(0);
state int inactive = benchState->range(1);
// Set up priority list with limits 10, 20, 30, ...
while (priorities.size() < benchState->range(0)) {
state std::vector<int> priorities;
while (priorities.size() < active + inactive) {
priorities.push_back(10 * (priorities.size() + 1));
}
state int concurrency = priorities.size() * 10;
state PriorityMultiLock* pml = new PriorityMultiLock(concurrency, priorities);
state std::vector<int> counts;
counts.resize(priorities.size(), 0);
state Reference<PriorityMultiLock> pml = makeReference<PriorityMultiLock>(concurrency, priorities);
// Clog the lock buy taking concurrency locks
// Clog the lock buy taking n=concurrency locks
state std::deque<Future<PriorityMultiLock::Lock>> lockFutures;
for (int j = 0; j < concurrency; ++j) {
lockFutures.push_back(pml->lock(j % priorities.size()));
lockFutures.push_back(pml->lock(j % active));
}
// Wait for all of the initial locks to be taken
// This will work regardless of their priorities as there are only n = concurrency of them
wait(waitForAll(std::vector<Future<PriorityMultiLock::Lock>>(lockFutures.begin(), lockFutures.end())));
@ -64,7 +66,7 @@ ACTOR static Future<Void> benchPriorityMultiLock(benchmark::State* benchState) {
PriorityMultiLock::Lock lock = wait(f);
// Rotate to another priority
if (++p == priorities.size()) {
if (++p == active) {
p = 0;
}
@ -76,7 +78,6 @@ ACTOR static Future<Void> benchPriorityMultiLock(benchmark::State* benchState) {
benchState->SetItemsProcessed(static_cast<long>(benchState->iterations()));
delete pml;
return Void();
}
@ -84,4 +85,4 @@ static void bench_priorityMultiLock(benchmark::State& benchState) {
onMainThread([&benchState]() { return benchPriorityMultiLock(&benchState); }).blockUntilReady();
}
BENCHMARK(bench_priorityMultiLock)->DenseRange(1, 8)->ReportAggregatesOnly(true);
BENCHMARK(bench_priorityMultiLock)->Args({ 5, 0 })->Ranges({ { 1, 64 }, { 0, 128 } })->ReportAggregatesOnly(true);

View File

@ -240,7 +240,7 @@ if(WITH_PYTHON)
add_fdb_test(TEST_FILES rare/RedwoodCorrectnessBTree.toml)
add_fdb_test(TEST_FILES rare/RedwoodDeltaTree.toml)
add_fdb_test(TEST_FILES rare/Throttling.toml)
add_fdb_test(TEST_FILES rare/ThroughputQuota.toml IGNORE)
add_fdb_test(TEST_FILES rare/ThroughputQuota.toml)
add_fdb_test(TEST_FILES rare/TransactionCost.toml)
add_fdb_test(TEST_FILES rare/TransactionTagApiCorrectness.toml)
add_fdb_test(TEST_FILES rare/TransactionTagSwizzledApiCorrectness.toml)

View File

@ -334,9 +334,6 @@ logdir = {logdir}
db_config += " blob_granules_enabled:=1"
self.fdbcli_exec(db_config)
if self.blob_granules_enabled:
self.fdbcli_exec("blobrange start \\x00 \\xff")
# Generate and install test certificate chains and keys
def create_tls_cert(self):
assert self.tls_config is not None, "TLS not enabled"

View File

@ -6,6 +6,7 @@ enable_encryption = true
enable_tlog_encryption = true
enable_storage_server_encryption = false
enable_blob_granule_encryption = true
max_write_transaction_life_versions = 5000000
[[test]]
testTitle = 'EncryptedBackupAndRestore'

View File

@ -4,15 +4,10 @@ testTitle='ThroughputQuotaTest'
[[test.workload]]
testName='ThroughputQuota'
transactionTag='a'
totalQuota=1.0
[[test.workload]]
testName='Status'
enableLatencyBands = true
testDuration = 60.0
totalQuota=16384
[[test.workload]]
testName = 'Cycle'
transactionsPerSecond = 2500.0
testDuration = 60.0
transactionsPerSecond = 250.0
testDuration = 30.0
expectedRate = 0