solve merge conflict upstream/main
This commit is contained in:
commit
907d7af966
|
@ -70,10 +70,13 @@ void ApiWorkload::start() {
|
|||
schedule([this]() {
|
||||
// 1. Clear data
|
||||
clearData([this]() {
|
||||
// 2. Populate initial data
|
||||
populateData([this]() {
|
||||
// 3. Generate random workload
|
||||
runTests();
|
||||
// 2. Workload setup
|
||||
setup([this]() {
|
||||
// 3. Populate initial data
|
||||
populateData([this]() {
|
||||
// 4. Generate random workload
|
||||
runTests();
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
@ -249,6 +252,10 @@ void ApiWorkload::populateData(TTaskFct cont) {
|
|||
}
|
||||
}
|
||||
|
||||
void ApiWorkload::setup(TTaskFct cont) {
|
||||
schedule(cont);
|
||||
}
|
||||
|
||||
void ApiWorkload::randomInsertOp(TTaskFct cont, std::optional<int> tenantId) {
|
||||
int numKeys = Random::get().randomInt(1, maxKeysPerTransaction);
|
||||
auto kvPairs = std::make_shared<std::vector<fdb::KeyValue>>();
|
||||
|
@ -322,4 +329,85 @@ std::optional<fdb::BytesRef> ApiWorkload::getTenant(std::optional<int> tenantId)
|
|||
}
|
||||
}
|
||||
|
||||
std::string ApiWorkload::debugTenantStr(std::optional<int> tenantId) {
|
||||
return tenantId.has_value() ? fmt::format("(tenant {0})", tenantId.value()) : "()";
|
||||
}
|
||||
|
||||
// BlobGranule setup.
|
||||
// This blobbifies ['\x00', '\xff') per tenant or for the whole database if there are no tenants.
|
||||
void ApiWorkload::setupBlobGranules(TTaskFct cont) {
|
||||
// This count is used to synchronize the # of tenant blobbifyRange() calls to ensure
|
||||
// we only start the workload once blobbification has fully finished.
|
||||
auto blobbifiedCount = std::make_shared<std::atomic<int>>(1);
|
||||
|
||||
if (tenants.empty()) {
|
||||
blobbifiedCount->store(1);
|
||||
blobbifyTenant({}, blobbifiedCount, cont);
|
||||
} else {
|
||||
blobbifiedCount->store(tenants.size());
|
||||
for (int i = 0; i < tenants.size(); i++) {
|
||||
schedule([=]() { blobbifyTenant(i, blobbifiedCount, cont); });
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ApiWorkload::blobbifyTenant(std::optional<int> tenantId,
|
||||
std::shared_ptr<std::atomic<int>> blobbifiedCount,
|
||||
TTaskFct cont) {
|
||||
auto retBlobbifyRange = std::make_shared<bool>(false);
|
||||
execOperation(
|
||||
[=](auto ctx) {
|
||||
fdb::Key begin(1, '\x00');
|
||||
fdb::Key end(1, '\xff');
|
||||
|
||||
info(fmt::format("setup: blobbifying {}: [\\x00 - \\xff)\n", debugTenantStr(tenantId)));
|
||||
|
||||
fdb::Future f = ctx->dbOps()->blobbifyRange(begin, end).eraseType();
|
||||
ctx->continueAfter(f, [ctx, retBlobbifyRange, f]() {
|
||||
*retBlobbifyRange = f.get<fdb::future_var::Bool>();
|
||||
ctx->done();
|
||||
});
|
||||
},
|
||||
[=]() {
|
||||
if (!*retBlobbifyRange) {
|
||||
schedule([=]() { blobbifyTenant(tenantId, blobbifiedCount, cont); });
|
||||
} else {
|
||||
schedule([=]() { verifyTenant(tenantId, blobbifiedCount, cont); });
|
||||
}
|
||||
},
|
||||
/*tenant=*/getTenant(tenantId),
|
||||
/* failOnError = */ false);
|
||||
}
|
||||
|
||||
void ApiWorkload::verifyTenant(std::optional<int> tenantId,
|
||||
std::shared_ptr<std::atomic<int>> blobbifiedCount,
|
||||
TTaskFct cont) {
|
||||
auto retVerifyVersion = std::make_shared<int64_t>(-1);
|
||||
|
||||
execOperation(
|
||||
[=](auto ctx) {
|
||||
fdb::Key begin(1, '\x00');
|
||||
fdb::Key end(1, '\xff');
|
||||
|
||||
info(fmt::format("setup: verifying {}: [\\x00 - \\xff)\n", debugTenantStr(tenantId)));
|
||||
|
||||
fdb::Future f = ctx->dbOps()->verifyBlobRange(begin, end, /*latest_version*/ -2).eraseType();
|
||||
ctx->continueAfter(f, [ctx, retVerifyVersion, f]() {
|
||||
*retVerifyVersion = f.get<fdb::future_var::Int64>();
|
||||
ctx->done();
|
||||
});
|
||||
},
|
||||
[=]() {
|
||||
if (*retVerifyVersion == -1) {
|
||||
schedule([=]() { verifyTenant(tenantId, blobbifiedCount, cont); });
|
||||
} else {
|
||||
if (blobbifiedCount->fetch_sub(1) == 1) {
|
||||
schedule(cont);
|
||||
}
|
||||
}
|
||||
},
|
||||
/*tenant=*/getTenant(tenantId),
|
||||
/* failOnError = */ false);
|
||||
}
|
||||
|
||||
} // namespace FdbApiTester
|
||||
|
|
|
@ -41,6 +41,9 @@ public:
|
|||
|
||||
virtual void checkProgress() override;
|
||||
|
||||
// Workload specific setup phase.
|
||||
virtual void setup(TTaskFct cont);
|
||||
|
||||
// Running specific tests
|
||||
// The default implementation generates a workload consisting of
|
||||
// random operations generated by randomOperation
|
||||
|
@ -126,6 +129,12 @@ protected:
|
|||
void randomClearRangeOp(TTaskFct cont, std::optional<int> tenantId);
|
||||
|
||||
std::optional<fdb::BytesRef> getTenant(std::optional<int> tenantId);
|
||||
std::string debugTenantStr(std::optional<int> tenantId);
|
||||
|
||||
// Generic BlobGranules setup.
|
||||
void setupBlobGranules(TTaskFct cont);
|
||||
void blobbifyTenant(std::optional<int> tenantId, std::shared_ptr<std::atomic<int>> blobbifiedCount, TTaskFct cont);
|
||||
void verifyTenant(std::optional<int> tenantId, std::shared_ptr<std::atomic<int>> blobbifiedCount, TTaskFct cont);
|
||||
|
||||
private:
|
||||
void populateDataTx(TTaskFct cont, std::optional<int> tenantId);
|
||||
|
|
|
@ -52,26 +52,23 @@ private:
|
|||
};
|
||||
std::vector<OpType> excludedOpTypes;
|
||||
|
||||
void setup(TTaskFct cont) override { setupBlobGranules(cont); }
|
||||
|
||||
// Allow reads at the start to get blob_granule_transaction_too_old if BG data isn't initialized yet
|
||||
// FIXME: should still guarantee a read succeeds eventually somehow
|
||||
// FIXME: this needs to be per tenant if tenant ids are set
|
||||
std::unordered_set<std::optional<int>> tenantsWithReadSuccess;
|
||||
|
||||
inline void setReadSuccess(std::optional<int> tenantId) { tenantsWithReadSuccess.insert(tenantId); }
|
||||
|
||||
inline bool seenReadSuccess(std::optional<int> tenantId) { return tenantsWithReadSuccess.count(tenantId); }
|
||||
|
||||
std::string tenantDebugString(std::optional<int> tenantId) {
|
||||
return tenantId.has_value() ? fmt::format(" (tenant {0})", tenantId.value()) : "";
|
||||
}
|
||||
|
||||
void debugOp(std::string opName, fdb::Key begin, fdb::Key end, std::optional<int> tenantId, std::string message) {
|
||||
if (BG_API_DEBUG_VERBOSE) {
|
||||
info(fmt::format("{0}: [{1} - {2}){3}: {4}",
|
||||
info(fmt::format("{0}: [{1} - {2}) {3}: {4}",
|
||||
opName,
|
||||
fdb::toCharsRef(begin),
|
||||
fdb::toCharsRef(end),
|
||||
tenantDebugString(tenantId),
|
||||
debugTenantStr(tenantId),
|
||||
message));
|
||||
}
|
||||
}
|
||||
|
@ -117,7 +114,7 @@ private:
|
|||
results.get()->assign(resVector.begin(), resVector.end());
|
||||
bool previousSuccess = seenReadSuccess(tenantId);
|
||||
if (!previousSuccess) {
|
||||
info(fmt::format("Read{0}: first success\n", tenantDebugString(tenantId)));
|
||||
info(fmt::format("Read {0}: first success\n", debugTenantStr(tenantId)));
|
||||
setReadSuccess(tenantId);
|
||||
} else {
|
||||
debugOp("Read", begin, end, tenantId, "complete");
|
||||
|
@ -289,20 +286,19 @@ private:
|
|||
}
|
||||
|
||||
// TODO: tenant support
|
||||
void randomGetBlobRangesOp(TTaskFct cont) {
|
||||
void randomGetBlobRangesOp(TTaskFct cont, std::optional<int> tenantId) {
|
||||
fdb::Key begin = randomKeyName();
|
||||
fdb::Key end = randomKeyName();
|
||||
auto results = std::make_shared<std::vector<fdb::KeyRange>>();
|
||||
if (begin > end) {
|
||||
std::swap(begin, end);
|
||||
}
|
||||
std::optional<int> tenantId = {};
|
||||
|
||||
debugOp("GetBlobRanges", begin, end, tenantId, "starting");
|
||||
|
||||
execOperation(
|
||||
[begin, end, results](auto ctx) {
|
||||
fdb::Future f = ctx->db().listBlobbifiedRanges(begin, end, 1000).eraseType();
|
||||
fdb::Future f = ctx->dbOps()->listBlobbifiedRanges(begin, end, 1000).eraseType();
|
||||
ctx->continueAfter(f, [ctx, f, results]() {
|
||||
*results = copyKeyRangeArray(f.get<fdb::future_var::KeyRangeRefArray>());
|
||||
ctx->done();
|
||||
|
@ -314,25 +310,24 @@ private:
|
|||
this->validateRanges(results, begin, end, seenReadSuccess(tenantId));
|
||||
schedule(cont);
|
||||
},
|
||||
getTenant(tenantId),
|
||||
/* failOnError = */ false);
|
||||
}
|
||||
|
||||
// TODO: tenant support
|
||||
void randomVerifyOp(TTaskFct cont) {
|
||||
void randomVerifyOp(TTaskFct cont, std::optional<int> tenantId) {
|
||||
fdb::Key begin = randomKeyName();
|
||||
fdb::Key end = randomKeyName();
|
||||
std::optional<int> tenantId;
|
||||
if (begin > end) {
|
||||
std::swap(begin, end);
|
||||
}
|
||||
|
||||
auto verifyVersion = std::make_shared<int64_t>(false);
|
||||
|
||||
debugOp("Verify", begin, end, tenantId, "starting");
|
||||
|
||||
auto verifyVersion = std::make_shared<int64_t>(-1);
|
||||
execOperation(
|
||||
[begin, end, verifyVersion](auto ctx) {
|
||||
fdb::Future f = ctx->db().verifyBlobRange(begin, end, -2 /* latest version*/).eraseType();
|
||||
fdb::Future f = ctx->dbOps()->verifyBlobRange(begin, end, -2 /* latest version*/).eraseType();
|
||||
ctx->continueAfter(f, [ctx, verifyVersion, f]() {
|
||||
*verifyVersion = f.get<fdb::future_var::Int64>();
|
||||
ctx->done();
|
||||
|
@ -344,15 +339,16 @@ private:
|
|||
if (*verifyVersion == -1) {
|
||||
ASSERT(!previousSuccess);
|
||||
} else if (!previousSuccess) {
|
||||
info(fmt::format("Verify{0}: first success\n", tenantDebugString(tenantId)));
|
||||
info(fmt::format("Verify {0}: first success\n", debugTenantStr(tenantId)));
|
||||
setReadSuccess(tenantId);
|
||||
}
|
||||
schedule(cont);
|
||||
},
|
||||
getTenant(tenantId),
|
||||
/* failOnError = */ false);
|
||||
}
|
||||
|
||||
void randomOperation(TTaskFct cont) {
|
||||
void randomOperation(TTaskFct cont) override {
|
||||
std::optional<int> tenantId = randomTenant();
|
||||
|
||||
OpType txType = (stores[tenantId].size() == 0) ? OP_INSERT : (OpType)Random::get().randomInt(0, OP_LAST);
|
||||
|
@ -380,10 +376,10 @@ private:
|
|||
randomSummarizeOp(cont, tenantId);
|
||||
break;
|
||||
case OP_GET_BLOB_RANGES:
|
||||
randomGetBlobRangesOp(cont);
|
||||
randomGetBlobRangesOp(cont, tenantId);
|
||||
break;
|
||||
case OP_VERIFY:
|
||||
randomVerifyOp(cont);
|
||||
randomVerifyOp(cont, tenantId);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -47,6 +47,8 @@ private:
|
|||
OP_LAST = OP_CANCEL_PURGE
|
||||
};
|
||||
|
||||
void setup(TTaskFct cont) override { setupBlobGranules(cont); }
|
||||
|
||||
// could add summarize too old and verify too old as ops if desired but those are lower value
|
||||
|
||||
// Allow reads at the start to get blob_granule_transaction_too_old if BG data isn't initialized yet
|
||||
|
|
|
@ -91,13 +91,15 @@ public:
|
|||
fdbDb = executor->selectDatabase();
|
||||
}
|
||||
|
||||
if (tenantName) {
|
||||
fdbTenant = fdbDb.openTenant(*tenantName);
|
||||
fdbDbOps = std::make_shared<fdb::Tenant>(fdbTenant);
|
||||
} else {
|
||||
fdbDbOps = std::make_shared<fdb::Database>(fdbDb);
|
||||
}
|
||||
|
||||
if (transactional) {
|
||||
if (tenantName) {
|
||||
fdb::Tenant tenant = fdbDb.openTenant(*tenantName);
|
||||
fdbTx = tenant.createTransaction();
|
||||
} else {
|
||||
fdbTx = fdbDb.createTransaction();
|
||||
}
|
||||
fdbTx = fdbDbOps->createTransaction();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -109,6 +111,10 @@ public:
|
|||
|
||||
fdb::Database db() override { return fdbDb.atomic_load(); }
|
||||
|
||||
fdb::Tenant tenant() override { return fdbTenant.atomic_load(); }
|
||||
|
||||
std::shared_ptr<fdb::IDatabaseOps> dbOps() override { return std::atomic_load(&fdbDbOps); }
|
||||
|
||||
fdb::Transaction tx() override { return fdbTx.atomic_load(); }
|
||||
|
||||
// Set a continuation to be executed when a future gets ready
|
||||
|
@ -272,13 +278,17 @@ protected:
|
|||
scheduler->schedule([thisRef]() {
|
||||
fdb::Database db = thisRef->executor->selectDatabase();
|
||||
thisRef->fdbDb.atomic_store(db);
|
||||
if (thisRef->tenantName) {
|
||||
fdb::Tenant tenant = db.openTenant(*thisRef->tenantName);
|
||||
thisRef->fdbTenant.atomic_store(tenant);
|
||||
std::atomic_store(&thisRef->fdbDbOps,
|
||||
std::dynamic_pointer_cast<fdb::IDatabaseOps>(std::make_shared<fdb::Tenant>(tenant)));
|
||||
} else {
|
||||
std::atomic_store(&thisRef->fdbDbOps,
|
||||
std::dynamic_pointer_cast<fdb::IDatabaseOps>(std::make_shared<fdb::Database>(db)));
|
||||
}
|
||||
if (thisRef->transactional) {
|
||||
if (thisRef->tenantName) {
|
||||
fdb::Tenant tenant = db.openTenant(*thisRef->tenantName);
|
||||
thisRef->fdbTx.atomic_store(tenant.createTransaction());
|
||||
} else {
|
||||
thisRef->fdbTx.atomic_store(db.createTransaction());
|
||||
}
|
||||
thisRef->fdbTx.atomic_store(thisRef->fdbDbOps->createTransaction());
|
||||
}
|
||||
thisRef->restartTransaction();
|
||||
});
|
||||
|
@ -317,6 +327,14 @@ protected:
|
|||
// Provides a thread safe interface by itself (no need for mutex)
|
||||
fdb::Database fdbDb;
|
||||
|
||||
// FDB tenant
|
||||
// Provides a thread safe interface by itself (no need for mutex)
|
||||
fdb::Tenant fdbTenant;
|
||||
|
||||
// FDB IDatabaseOps to hide database/tenant accordingly.
|
||||
// Provides a shared pointer to database functions based on if db or tenant.
|
||||
std::shared_ptr<fdb::IDatabaseOps> fdbDbOps;
|
||||
|
||||
// FDB transaction
|
||||
// Provides a thread safe interface by itself (no need for mutex)
|
||||
fdb::Transaction fdbTx;
|
||||
|
|
|
@ -41,6 +41,12 @@ public:
|
|||
// Current FDB database
|
||||
virtual fdb::Database db() = 0;
|
||||
|
||||
// Current FDB tenant
|
||||
virtual fdb::Tenant tenant() = 0;
|
||||
|
||||
// Current FDB IDatabaseOps
|
||||
virtual std::shared_ptr<fdb::IDatabaseOps> dbOps() = 0;
|
||||
|
||||
// Current FDB transaction
|
||||
virtual fdb::Transaction tx() = 0;
|
||||
|
||||
|
|
|
@ -117,8 +117,11 @@ void WorkloadBase::execTransaction(TOpStartFct startFct,
|
|||
}
|
||||
|
||||
// Execute a non-transactional database operation within the workload
|
||||
void WorkloadBase::execOperation(TOpStartFct startFct, TTaskFct cont, bool failOnError) {
|
||||
doExecute(startFct, cont, {}, failOnError, false);
|
||||
void WorkloadBase::execOperation(TOpStartFct startFct,
|
||||
TTaskFct cont,
|
||||
std::optional<fdb::BytesRef> tenant,
|
||||
bool failOnError) {
|
||||
doExecute(startFct, cont, tenant, failOnError, false);
|
||||
}
|
||||
|
||||
void WorkloadBase::doExecute(TOpStartFct startFct,
|
||||
|
|
|
@ -125,7 +125,10 @@ protected:
|
|||
bool failOnError = true);
|
||||
|
||||
// Execute a non-transactional database operation within the workload
|
||||
void execOperation(TOpStartFct startFct, TTaskFct cont, bool failOnError = true);
|
||||
void execOperation(TOpStartFct startFct,
|
||||
TTaskFct cont,
|
||||
std::optional<fdb::BytesRef> tenant = std::optional<fdb::BytesRef>(),
|
||||
bool failOnError = true);
|
||||
|
||||
// Log an error message, increase error counter
|
||||
void error(const std::string& msg);
|
||||
|
|
|
@ -677,7 +677,28 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
class Tenant final {
|
||||
// Handle this as an abstract class instead of interface to preserve lifetime of fdb objects owned by Tenant and
|
||||
// Database.
|
||||
class IDatabaseOps {
|
||||
public:
|
||||
virtual ~IDatabaseOps() = default;
|
||||
|
||||
virtual Transaction createTransaction() = 0;
|
||||
|
||||
virtual TypedFuture<future_var::Bool> blobbifyRange(KeyRef begin, KeyRef end) = 0;
|
||||
virtual TypedFuture<future_var::Bool> unblobbifyRange(KeyRef begin, KeyRef end) = 0;
|
||||
virtual TypedFuture<future_var::KeyRangeRefArray> listBlobbifiedRanges(KeyRef begin,
|
||||
KeyRef end,
|
||||
int rangeLimit) = 0;
|
||||
virtual TypedFuture<future_var::Int64> verifyBlobRange(KeyRef begin, KeyRef end, int64_t version) = 0;
|
||||
virtual TypedFuture<future_var::KeyRef> purgeBlobGranules(KeyRef begin,
|
||||
KeyRef end,
|
||||
int64_t version,
|
||||
bool force) = 0;
|
||||
virtual TypedFuture<future_var::None> waitPurgeGranulesComplete(KeyRef purgeKey) = 0;
|
||||
};
|
||||
|
||||
class Tenant final : public IDatabaseOps {
|
||||
friend class Database;
|
||||
std::shared_ptr<native::FDBTenant> tenant;
|
||||
|
||||
|
@ -694,6 +715,14 @@ public:
|
|||
Tenant& operator=(const Tenant&) noexcept = default;
|
||||
Tenant() noexcept : tenant(nullptr) {}
|
||||
|
||||
void atomic_store(Tenant other) { std::atomic_store(&tenant, other.tenant); }
|
||||
|
||||
Tenant atomic_load() {
|
||||
Tenant retVal;
|
||||
retVal.tenant = std::atomic_load(&tenant);
|
||||
return retVal;
|
||||
}
|
||||
|
||||
static void createTenant(Transaction tr, BytesRef name) {
|
||||
tr.setOption(FDBTransactionOption::FDB_TR_OPTION_SPECIAL_KEY_SPACE_ENABLE_WRITES, BytesRef());
|
||||
tr.setOption(FDBTransactionOption::FDB_TR_OPTION_LOCK_AWARE, BytesRef());
|
||||
|
@ -715,7 +744,7 @@ public:
|
|||
return tr.get(toBytesRef(fmt::format("{}{}", tenantManagementMapPrefix, toCharsRef(name))), false);
|
||||
}
|
||||
|
||||
Transaction createTransaction() {
|
||||
Transaction createTransaction() override {
|
||||
auto tx_native = static_cast<native::FDBTransaction*>(nullptr);
|
||||
auto err = Error(native::fdb_tenant_create_transaction(tenant.get(), &tx_native));
|
||||
if (err)
|
||||
|
@ -723,14 +752,49 @@ public:
|
|||
return Transaction(tx_native);
|
||||
}
|
||||
|
||||
TypedFuture<future_var::Bool> blobbifyRange(KeyRef begin, KeyRef end) {
|
||||
TypedFuture<future_var::Bool> blobbifyRange(KeyRef begin, KeyRef end) override {
|
||||
if (!tenant)
|
||||
throw std::runtime_error("blobbifyRange from null tenant");
|
||||
throw std::runtime_error("blobbifyRange() from null tenant");
|
||||
return native::fdb_tenant_blobbify_range(tenant.get(), begin.data(), intSize(begin), end.data(), intSize(end));
|
||||
}
|
||||
|
||||
TypedFuture<future_var::Bool> unblobbifyRange(KeyRef begin, KeyRef end) override {
|
||||
if (!tenant)
|
||||
throw std::runtime_error("unblobbifyRange() from null tenant");
|
||||
return native::fdb_tenant_unblobbify_range(
|
||||
tenant.get(), begin.data(), intSize(begin), end.data(), intSize(end));
|
||||
}
|
||||
|
||||
TypedFuture<future_var::KeyRangeRefArray> listBlobbifiedRanges(KeyRef begin, KeyRef end, int rangeLimit) override {
|
||||
if (!tenant)
|
||||
throw std::runtime_error("listBlobbifiedRanges() from null tenant");
|
||||
return native::fdb_tenant_list_blobbified_ranges(
|
||||
tenant.get(), begin.data(), intSize(begin), end.data(), intSize(end), rangeLimit);
|
||||
}
|
||||
|
||||
TypedFuture<future_var::Int64> verifyBlobRange(KeyRef begin, KeyRef end, int64_t version) override {
|
||||
if (!tenant)
|
||||
throw std::runtime_error("verifyBlobRange() from null tenant");
|
||||
return native::fdb_tenant_verify_blob_range(
|
||||
tenant.get(), begin.data(), intSize(begin), end.data(), intSize(end), version);
|
||||
}
|
||||
|
||||
TypedFuture<future_var::KeyRef> purgeBlobGranules(KeyRef begin, KeyRef end, int64_t version, bool force) override {
|
||||
if (!tenant)
|
||||
throw std::runtime_error("purgeBlobGranules() from null tenant");
|
||||
native::fdb_bool_t forceBool = force;
|
||||
return native::fdb_tenant_purge_blob_granules(
|
||||
tenant.get(), begin.data(), intSize(begin), end.data(), intSize(end), version, forceBool);
|
||||
}
|
||||
|
||||
TypedFuture<future_var::None> waitPurgeGranulesComplete(KeyRef purgeKey) override {
|
||||
if (!tenant)
|
||||
throw std::runtime_error("waitPurgeGranulesComplete() from null tenant");
|
||||
return native::fdb_tenant_wait_purge_granules_complete(tenant.get(), purgeKey.data(), intSize(purgeKey));
|
||||
}
|
||||
};
|
||||
|
||||
class Database {
|
||||
class Database : public IDatabaseOps {
|
||||
friend class Tenant;
|
||||
std::shared_ptr<native::FDBDatabase> db;
|
||||
|
||||
|
@ -789,7 +853,7 @@ public:
|
|||
return Tenant(tenant_native);
|
||||
}
|
||||
|
||||
Transaction createTransaction() {
|
||||
Transaction createTransaction() override {
|
||||
if (!db)
|
||||
throw std::runtime_error("create_transaction from null database");
|
||||
auto tx_native = static_cast<native::FDBTransaction*>(nullptr);
|
||||
|
@ -799,33 +863,33 @@ public:
|
|||
return Transaction(tx_native);
|
||||
}
|
||||
|
||||
TypedFuture<future_var::KeyRangeRefArray> listBlobbifiedRanges(KeyRef begin, KeyRef end, int rangeLimit) {
|
||||
TypedFuture<future_var::KeyRangeRefArray> listBlobbifiedRanges(KeyRef begin, KeyRef end, int rangeLimit) override {
|
||||
if (!db)
|
||||
throw std::runtime_error("listBlobbifiedRanges from null database");
|
||||
return native::fdb_database_list_blobbified_ranges(
|
||||
db.get(), begin.data(), intSize(begin), end.data(), intSize(end), rangeLimit);
|
||||
}
|
||||
|
||||
TypedFuture<future_var::Int64> verifyBlobRange(KeyRef begin, KeyRef end, int64_t version) {
|
||||
TypedFuture<future_var::Int64> verifyBlobRange(KeyRef begin, KeyRef end, int64_t version) override {
|
||||
if (!db)
|
||||
throw std::runtime_error("verifyBlobRange from null database");
|
||||
return native::fdb_database_verify_blob_range(
|
||||
db.get(), begin.data(), intSize(begin), end.data(), intSize(end), version);
|
||||
}
|
||||
|
||||
TypedFuture<future_var::Bool> blobbifyRange(KeyRef begin, KeyRef end) {
|
||||
TypedFuture<future_var::Bool> blobbifyRange(KeyRef begin, KeyRef end) override {
|
||||
if (!db)
|
||||
throw std::runtime_error("blobbifyRange from null database");
|
||||
return native::fdb_database_blobbify_range(db.get(), begin.data(), intSize(begin), end.data(), intSize(end));
|
||||
}
|
||||
|
||||
TypedFuture<future_var::Bool> unblobbifyRange(KeyRef begin, KeyRef end) {
|
||||
TypedFuture<future_var::Bool> unblobbifyRange(KeyRef begin, KeyRef end) override {
|
||||
if (!db)
|
||||
throw std::runtime_error("unblobbifyRange from null database");
|
||||
return native::fdb_database_unblobbify_range(db.get(), begin.data(), intSize(begin), end.data(), intSize(end));
|
||||
}
|
||||
|
||||
TypedFuture<future_var::KeyRef> purgeBlobGranules(KeyRef begin, KeyRef end, int64_t version, bool force) {
|
||||
TypedFuture<future_var::KeyRef> purgeBlobGranules(KeyRef begin, KeyRef end, int64_t version, bool force) override {
|
||||
if (!db)
|
||||
throw std::runtime_error("purgeBlobGranules from null database");
|
||||
native::fdb_bool_t forceBool = force;
|
||||
|
@ -833,7 +897,7 @@ public:
|
|||
db.get(), begin.data(), intSize(begin), end.data(), intSize(end), version, forceBool);
|
||||
}
|
||||
|
||||
TypedFuture<future_var::None> waitPurgeGranulesComplete(KeyRef purgeKey) {
|
||||
TypedFuture<future_var::None> waitPurgeGranulesComplete(KeyRef purgeKey) override {
|
||||
if (!db)
|
||||
throw std::runtime_error("purgeBlobGranules from null database");
|
||||
return native::fdb_database_wait_purge_granules_complete(db.get(), purgeKey.data(), intSize(purgeKey));
|
||||
|
|
|
@ -54,7 +54,7 @@ def write_coverage_chunk(tr, path: Tuple[str, ...], metadata: Tuple[str, ...],
|
|||
initialized = v.present()
|
||||
for cov, covered in coverage:
|
||||
if not initialized or covered:
|
||||
tr.add(cov_dir.pack((cov.file, cov.line, cov.comment)), struct.pack('<I', 1 if covered else 0))
|
||||
tr.add(cov_dir.pack((cov.file, cov.line, cov.comment, cov.rare)), struct.pack('<I', 1 if covered else 0))
|
||||
return initialized
|
||||
|
||||
|
||||
|
@ -80,9 +80,9 @@ def _read_coverage(tr, cov_path: Tuple[str, ...]) -> OrderedDict[Coverage, int]:
|
|||
res = collections.OrderedDict()
|
||||
cov_dir = fdb.directory.create_or_open(tr, cov_path)
|
||||
for k, v in tr[cov_dir.range()]:
|
||||
file, line, comment = cov_dir.unpack(k)
|
||||
file, line, comment, rare = cov_dir.unpack(k)
|
||||
count = struct.unpack('<I', v)[0]
|
||||
res[Coverage(file, line, comment)] = count
|
||||
res[Coverage(file, line, comment, rare)] = count
|
||||
return res
|
||||
|
||||
|
||||
|
|
|
@ -19,6 +19,7 @@ class GlobalStatistics:
|
|||
self.total_cpu_time: int = 0
|
||||
self.total_test_runs: int = 0
|
||||
self.total_missed_probes: int = 0
|
||||
self.total_missed_nonrare_probes: int = 0
|
||||
|
||||
|
||||
class EnsembleResults:
|
||||
|
@ -40,6 +41,8 @@ class EnsembleResults:
|
|||
self.coverage.append((cov, count))
|
||||
if count <= self.ratio:
|
||||
self.global_statistics.total_missed_probes += 1
|
||||
if not cov.rare:
|
||||
self.global_statistics.total_missed_nonrare_probes += 1
|
||||
if self.min_coverage_hit is None or self.min_coverage_hit > count:
|
||||
self.min_coverage_hit = count
|
||||
self.coverage.sort(key=lambda x: (x[1], x[0].file, x[0].line))
|
||||
|
@ -63,9 +66,12 @@ class EnsembleResults:
|
|||
out.attributes['MinProbeHit'] = str(self.min_coverage_hit)
|
||||
out.attributes['TotalProbes'] = str(len(self.coverage))
|
||||
out.attributes['MissedProbes'] = str(self.global_statistics.total_missed_probes)
|
||||
out.attributes['MissedNonRareProbes'] = str(self.global_statistics.total_missed_nonrare_probes)
|
||||
|
||||
for cov, count in self.coverage:
|
||||
severity = 10 if count > self.ratio else 40
|
||||
severity = 10
|
||||
if count <= self.ratio:
|
||||
severity = 30 if cov.rare else 40
|
||||
if severity == 40:
|
||||
errors += 1
|
||||
if (severity == 40 and errors <= config.max_errors) or config.details:
|
||||
|
@ -75,6 +81,7 @@ class EnsembleResults:
|
|||
child.attributes['Line'] = str(cov.line)
|
||||
child.attributes['Comment'] = '' if cov.comment is None else cov.comment
|
||||
child.attributes['HitCount'] = str(count)
|
||||
child.attributes['Rare'] = str(cov.rare)
|
||||
out.append(child)
|
||||
|
||||
if config.details:
|
||||
|
|
|
@ -193,16 +193,17 @@ class JsonParser(Parser):
|
|||
|
||||
|
||||
class Coverage:
|
||||
def __init__(self, file: str, line: str | int, comment: str | None = None):
|
||||
def __init__(self, file: str, line: str | int, comment: str | None = None, rare: bool = False):
|
||||
self.file = file
|
||||
self.line = int(line)
|
||||
self.comment = comment
|
||||
self.rare = rare
|
||||
|
||||
def to_tuple(self) -> Tuple[str, int, str | None]:
|
||||
return self.file, self.line, self.comment
|
||||
return self.file, self.line, self.comment, self.rare
|
||||
|
||||
def __eq__(self, other) -> bool:
|
||||
if isinstance(other, tuple) and len(other) == 3:
|
||||
if isinstance(other, tuple) and len(other) == 4:
|
||||
return self.to_tuple() == other
|
||||
elif isinstance(other, Coverage):
|
||||
return self.to_tuple() == other.to_tuple()
|
||||
|
@ -210,7 +211,7 @@ class Coverage:
|
|||
return False
|
||||
|
||||
def __lt__(self, other) -> bool:
|
||||
if isinstance(other, tuple) and len(other) == 3:
|
||||
if isinstance(other, tuple) and len(other) == 4:
|
||||
return self.to_tuple() < other
|
||||
elif isinstance(other, Coverage):
|
||||
return self.to_tuple() < other.to_tuple()
|
||||
|
@ -218,7 +219,7 @@ class Coverage:
|
|||
return False
|
||||
|
||||
def __le__(self, other) -> bool:
|
||||
if isinstance(other, tuple) and len(other) == 3:
|
||||
if isinstance(other, tuple) and len(other) == 4:
|
||||
return self.to_tuple() <= other
|
||||
elif isinstance(other, Coverage):
|
||||
return self.to_tuple() <= other.to_tuple()
|
||||
|
@ -226,7 +227,7 @@ class Coverage:
|
|||
return False
|
||||
|
||||
def __gt__(self, other: Coverage) -> bool:
|
||||
if isinstance(other, tuple) and len(other) == 3:
|
||||
if isinstance(other, tuple) and len(other) == 4:
|
||||
return self.to_tuple() > other
|
||||
elif isinstance(other, Coverage):
|
||||
return self.to_tuple() > other.to_tuple()
|
||||
|
@ -234,7 +235,7 @@ class Coverage:
|
|||
return False
|
||||
|
||||
def __ge__(self, other):
|
||||
if isinstance(other, tuple) and len(other) == 3:
|
||||
if isinstance(other, tuple) and len(other) == 4:
|
||||
return self.to_tuple() >= other
|
||||
elif isinstance(other, Coverage):
|
||||
return self.to_tuple() >= other.to_tuple()
|
||||
|
@ -242,7 +243,7 @@ class Coverage:
|
|||
return False
|
||||
|
||||
def __hash__(self):
|
||||
return hash((self.file, self.line, self.comment))
|
||||
return hash((self.file, self.line, self.comment, self.rare))
|
||||
|
||||
|
||||
class TraceFiles:
|
||||
|
@ -378,6 +379,7 @@ class Summary:
|
|||
child = SummaryTree('CodeCoverage')
|
||||
child.attributes['File'] = k.file
|
||||
child.attributes['Line'] = str(k.line)
|
||||
child.attributes['Rare'] = k.rare
|
||||
if not v:
|
||||
child.attributes['Covered'] = '0'
|
||||
if k.comment is not None and len(k.comment):
|
||||
|
@ -595,7 +597,10 @@ class Summary:
|
|||
comment = ''
|
||||
if 'Comment' in attrs:
|
||||
comment = attrs['Comment']
|
||||
c = Coverage(attrs['File'], attrs['Line'], comment)
|
||||
rare = False
|
||||
if 'Rare' in attrs:
|
||||
rare = bool(int(attrs['Rare']))
|
||||
c = Coverage(attrs['File'], attrs['Line'], comment, rare)
|
||||
if covered or c not in self.coverage:
|
||||
self.coverage[c] = covered
|
||||
|
||||
|
|
|
@ -116,12 +116,12 @@ If an individual zone is unhealthy, it may cause the throttling ratio for storag
|
|||
### Client Rate Calculation
|
||||
The smoothed per-client rate for each tag is tracked within `GlobalTagThrottlerImpl::PerTagStatistics`. Once a target rate has been computed, this is passed to `GlobalTagThrotterImpl::PerTagStatistics::updateAndGetPerClientRate` which adjusts the per-client rate. The per-client rate is meant to limit the busiest clients, so that at equilibrium, the per-client rate will remain constant and the sum of throughput from all clients will match the target rate.
|
||||
|
||||
## Testing
|
||||
The `GlobalTagThrottling.toml` test provides a simple end-to-end test using the global tag throttler. Quotas are set using the internal tag quota API in the `GlobalTagThrottling` workload. This is run in parallel with the `ReadWrite` workload, which tags transactions. The number of `transaction_tag_throttled` errors is reported, along with the throughput, which should be roughly predictable based on the quota parameters chosen.
|
||||
## Simulation Testing
|
||||
The `ThroughputQuota.toml` test provides a simple end-to-end test using the global tag throttler. Quotas are set using the internal tag quota API in the `ThroughputQuota` workload. This is run with the `Cycle` workload, which randomly tags transactions.
|
||||
|
||||
In addition to this end-to-end test, there is a suite of unit tests with the `/GlobalTagThrottler/` prefix. These tests run in a mock environment, with mock storage servers providing simulated storage queue statistics and tag busyness reports. Mock clients simulate workload on these mock storage servers, and get throttling feedback directly from a global tag throttler which is monitoring the mock storage servers.
|
||||
|
||||
In each test, the `GlobalTagThrottlerTesting::monitor` function is used to periodically check whether or not a desired equilibrium state has been reached. If the desired state is reached and maintained for a sufficient period of time, the test passes. If the unit test is unable to reach this desired equilibrium state before a timeout, the test will fail. Commonly, the desired state is for the global tag throttler to report a client rate sufficiently close to the desired rate specified as an input to the `GlobalTagThrottlerTesting::rateIsNear` function.
|
||||
In each unit test, the `GlobalTagThrottlerTesting::monitor` function is used to periodically check whether or not a desired equilibrium state has been reached. If the desired state is reached and maintained for a sufficient period of time, the test passes. If the unit test is unable to reach this desired equilibrium state before a timeout, the test will fail. Commonly, the desired state is for the global tag throttler to report a client rate sufficiently close to the desired rate specified as an input to the `GlobalTagThrottlerTesting::rateIsNear` function.
|
||||
|
||||
## Visibility
|
||||
|
||||
|
|
|
@ -0,0 +1,47 @@
|
|||
/*
|
||||
* BlobRestoreCommand.actor.cpp
|
||||
*
|
||||
* This source file is part of the FoundationDB open source project
|
||||
*
|
||||
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "fdbcli/fdbcli.actor.h"
|
||||
#include "fdbclient/FDBOptions.h"
|
||||
#include "fdbclient/FDBTypes.h"
|
||||
#include "fdbclient/NativeAPI.actor.h"
|
||||
#include "fdbclient/SystemData.h"
|
||||
#include "flow/actorcompiler.h" // This must be the last #include.
|
||||
|
||||
namespace fdb_cli {
|
||||
|
||||
ACTOR Future<bool> blobRestoreCommandActor(Database localDb, std::vector<StringRef> tokens) {
|
||||
if (tokens.size() != 1 && tokens.size() != 2) {
|
||||
printUsage(tokens[0]);
|
||||
return false;
|
||||
}
|
||||
|
||||
state bool success = false;
|
||||
wait(store(success, localDb->blobRestore(normalKeys)));
|
||||
if (success) {
|
||||
fmt::print("Started blob restore for the full cluster. Please use 'status' command to check progress.\n");
|
||||
} else {
|
||||
fmt::print("Fail to start a new blob restore while there is a pending one.\n");
|
||||
}
|
||||
return success;
|
||||
}
|
||||
|
||||
CommandFactory blobRestoreFactory("blobrestore", CommandHelp("blobrestore", "", ""));
|
||||
} // namespace fdb_cli
|
|
@ -19,11 +19,13 @@
|
|||
*/
|
||||
|
||||
#include "fdbcli/fdbcli.actor.h"
|
||||
#include "fdbclient/ManagementAPI.actor.h"
|
||||
#include "fdbclient/SystemData.h"
|
||||
#include "flow/actorcompiler.h" // This must be the last include
|
||||
|
||||
namespace {
|
||||
|
||||
enum class LimitType { RESERVED, TOTAL };
|
||||
enum class QuotaType { RESERVED, TOTAL, STORAGE };
|
||||
|
||||
Optional<TransactionTag> parseTag(StringRef token) {
|
||||
if (token.size() > CLIENT_KNOBS->MAX_TRANSACTION_TAG_LENGTH) {
|
||||
|
@ -33,17 +35,19 @@ Optional<TransactionTag> parseTag(StringRef token) {
|
|||
}
|
||||
}
|
||||
|
||||
Optional<LimitType> parseLimitType(StringRef token) {
|
||||
Optional<QuotaType> parseQuotaType(StringRef token) {
|
||||
if (token == "reserved_throughput"_sr) {
|
||||
return LimitType::RESERVED;
|
||||
return QuotaType::RESERVED;
|
||||
} else if (token == "total_throughput"_sr) {
|
||||
return LimitType::TOTAL;
|
||||
return QuotaType::TOTAL;
|
||||
} else if (token == "storage"_sr) {
|
||||
return QuotaType::STORAGE;
|
||||
} else {
|
||||
return {};
|
||||
}
|
||||
}
|
||||
|
||||
Optional<int64_t> parseLimitValue(StringRef token) {
|
||||
Optional<int64_t> parseQuotaValue(StringRef token) {
|
||||
try {
|
||||
return std::stol(token.toString());
|
||||
} catch (...) {
|
||||
|
@ -51,20 +55,26 @@ Optional<int64_t> parseLimitValue(StringRef token) {
|
|||
}
|
||||
}
|
||||
|
||||
ACTOR Future<Void> getQuota(Reference<IDatabase> db, TransactionTag tag, LimitType limitType) {
|
||||
ACTOR Future<Void> getQuota(Reference<IDatabase> db, TransactionTag tag, QuotaType quotaType) {
|
||||
state Reference<ITransaction> tr = db->createTransaction();
|
||||
loop {
|
||||
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
|
||||
try {
|
||||
state ThreadFuture<Optional<Value>> resultFuture = tr->get(ThrottleApi::getTagQuotaKey(tag));
|
||||
state ThreadFuture<Optional<Value>> resultFuture =
|
||||
tr->get(quotaType == QuotaType::STORAGE ? storageQuotaKey(tag) : ThrottleApi::getTagQuotaKey(tag));
|
||||
Optional<Value> v = wait(safeThreadFutureToFuture(resultFuture));
|
||||
if (!v.present()) {
|
||||
fmt::print("<empty>\n");
|
||||
} else {
|
||||
if (quotaType == QuotaType::STORAGE) {
|
||||
int64_t storageQuota = BinaryReader::fromStringRef<int64_t>(v.get(), Unversioned());
|
||||
fmt::print("{}\n", storageQuota);
|
||||
return Void();
|
||||
}
|
||||
auto const quota = ThrottleApi::TagQuotaValue::fromValue(v.get());
|
||||
if (limitType == LimitType::TOTAL) {
|
||||
if (quotaType == QuotaType::TOTAL) {
|
||||
fmt::print("{}\n", quota.totalQuota);
|
||||
} else if (limitType == LimitType::RESERVED) {
|
||||
} else if (quotaType == QuotaType::RESERVED) {
|
||||
fmt::print("{}\n", quota.reservedQuota);
|
||||
}
|
||||
}
|
||||
|
@ -75,32 +85,36 @@ ACTOR Future<Void> getQuota(Reference<IDatabase> db, TransactionTag tag, LimitTy
|
|||
}
|
||||
}
|
||||
|
||||
ACTOR Future<Void> setQuota(Reference<IDatabase> db, TransactionTag tag, LimitType limitType, int64_t value) {
|
||||
ACTOR Future<Void> setQuota(Reference<IDatabase> db, TransactionTag tag, QuotaType quotaType, int64_t value) {
|
||||
state Reference<ITransaction> tr = db->createTransaction();
|
||||
loop {
|
||||
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
|
||||
try {
|
||||
state ThreadFuture<Optional<Value>> resultFuture = tr->get(ThrottleApi::getTagQuotaKey(tag));
|
||||
Optional<Value> v = wait(safeThreadFutureToFuture(resultFuture));
|
||||
ThrottleApi::TagQuotaValue quota;
|
||||
if (v.present()) {
|
||||
quota = ThrottleApi::TagQuotaValue::fromValue(v.get());
|
||||
if (quotaType == QuotaType::STORAGE) {
|
||||
tr->set(storageQuotaKey(tag), BinaryWriter::toValue<int64_t>(value, Unversioned()));
|
||||
} else {
|
||||
state ThreadFuture<Optional<Value>> resultFuture = tr->get(ThrottleApi::getTagQuotaKey(tag));
|
||||
Optional<Value> v = wait(safeThreadFutureToFuture(resultFuture));
|
||||
ThrottleApi::TagQuotaValue quota;
|
||||
if (v.present()) {
|
||||
quota = ThrottleApi::TagQuotaValue::fromValue(v.get());
|
||||
}
|
||||
// Internally, costs are stored in terms of pages, but in the API,
|
||||
// costs are specified in terms of bytes
|
||||
if (quotaType == QuotaType::TOTAL) {
|
||||
// Round up to nearest page size
|
||||
quota.totalQuota = ((value - 1) / CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE + 1) *
|
||||
CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE;
|
||||
} else if (quotaType == QuotaType::RESERVED) {
|
||||
// Round up to nearest page size
|
||||
quota.reservedQuota = ((value - 1) / CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE + 1) *
|
||||
CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE;
|
||||
}
|
||||
if (!quota.isValid()) {
|
||||
throw invalid_throttle_quota_value();
|
||||
}
|
||||
ThrottleApi::setTagQuota(tr, tag, quota.reservedQuota, quota.totalQuota);
|
||||
}
|
||||
// Internally, costs are stored in terms of pages, but in the API,
|
||||
// costs are specified in terms of bytes
|
||||
if (limitType == LimitType::TOTAL) {
|
||||
// Round up to nearest page size
|
||||
quota.totalQuota =
|
||||
((value - 1) / CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE + 1) * CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE;
|
||||
} else if (limitType == LimitType::RESERVED) {
|
||||
// Round up to nearest page size
|
||||
quota.reservedQuota =
|
||||
((value - 1) / CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE + 1) * CLIENT_KNOBS->TAG_THROTTLING_PAGE_SIZE;
|
||||
}
|
||||
if (!quota.isValid()) {
|
||||
throw invalid_throttle_quota_value();
|
||||
}
|
||||
ThrottleApi::setTagQuota(tr, tag, quota.reservedQuota, quota.totalQuota);
|
||||
wait(safeThreadFutureToFuture(tr->commit()));
|
||||
fmt::print("Successfully updated quota.\n");
|
||||
return Void();
|
||||
|
@ -115,6 +129,7 @@ ACTOR Future<Void> clearQuota(Reference<IDatabase> db, TransactionTag tag) {
|
|||
loop {
|
||||
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
|
||||
try {
|
||||
tr->clear(storageQuotaKey(tag));
|
||||
tr->clear(ThrottleApi::getTagQuotaKey(tag));
|
||||
wait(safeThreadFutureToFuture(tr->commit()));
|
||||
fmt::print("Successfully cleared quota.\n");
|
||||
|
@ -125,8 +140,8 @@ ACTOR Future<Void> clearQuota(Reference<IDatabase> db, TransactionTag tag) {
|
|||
}
|
||||
}
|
||||
|
||||
constexpr auto usage = "quota [get <tag> [reserved_throughput|total_throughput] | set <tag> "
|
||||
"[reserved_throughput|total_throughput] <value> | clear <tag>]";
|
||||
constexpr auto usage = "quota [get <tag> [reserved_throughput|total_throughput|storage] | set <tag> "
|
||||
"[reserved_throughput|total_throughput|storage] <value> | clear <tag>]";
|
||||
|
||||
bool exitFailure() {
|
||||
fmt::print(usage);
|
||||
|
@ -150,22 +165,22 @@ ACTOR Future<bool> quotaCommandActor(Reference<IDatabase> db, std::vector<String
|
|||
if (tokens.size() != 4) {
|
||||
return exitFailure();
|
||||
}
|
||||
auto const limitType = parseLimitType(tokens[3]);
|
||||
if (!limitType.present()) {
|
||||
auto const quotaType = parseQuotaType(tokens[3]);
|
||||
if (!quotaType.present()) {
|
||||
return exitFailure();
|
||||
}
|
||||
wait(getQuota(db, tag.get(), limitType.get()));
|
||||
wait(getQuota(db, tag.get(), quotaType.get()));
|
||||
return true;
|
||||
} else if (tokens[1] == "set"_sr) {
|
||||
if (tokens.size() != 5) {
|
||||
return exitFailure();
|
||||
}
|
||||
auto const limitType = parseLimitType(tokens[3]);
|
||||
auto const limitValue = parseLimitValue(tokens[4]);
|
||||
if (!limitType.present() || !limitValue.present()) {
|
||||
auto const quotaType = parseQuotaType(tokens[3]);
|
||||
auto const quotaValue = parseQuotaValue(tokens[4]);
|
||||
if (!quotaType.present() || !quotaValue.present()) {
|
||||
return exitFailure();
|
||||
}
|
||||
wait(setQuota(db, tag.get(), limitType.get(), limitValue.get()));
|
||||
wait(setQuota(db, tag.get(), quotaType.get(), quotaValue.get()));
|
||||
return true;
|
||||
} else if (tokens[1] == "clear"_sr) {
|
||||
if (tokens.size() != 3) {
|
||||
|
|
|
@ -1416,6 +1416,13 @@ ACTOR Future<int> cli(CLIOptions opt, LineNoise* plinenoise, Reference<ClusterCo
|
|||
continue;
|
||||
}
|
||||
|
||||
if (tokencmp(tokens[0], "blobrestore")) {
|
||||
bool _result = wait(makeInterruptable(blobRestoreCommandActor(localDb, tokens)));
|
||||
if (!_result)
|
||||
is_error = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tokencmp(tokens[0], "unlock")) {
|
||||
if ((tokens.size() != 2) || (tokens[1].size() != 32) ||
|
||||
!std::all_of(tokens[1].begin(), tokens[1].end(), &isxdigit)) {
|
||||
|
|
|
@ -213,6 +213,9 @@ ACTOR Future<bool> blobRangeCommandActor(Database localDb,
|
|||
ACTOR Future<bool> blobKeyCommandActor(Database localDb,
|
||||
Optional<TenantMapEntry> tenantEntry,
|
||||
std::vector<StringRef> tokens);
|
||||
// blobrestore command
|
||||
ACTOR Future<bool> blobRestoreCommandActor(Database localDb, std::vector<StringRef> tokens);
|
||||
|
||||
// maintenance command
|
||||
ACTOR Future<bool> setHealthyZone(Reference<IDatabase> db, StringRef zoneId, double seconds, bool printWarning = false);
|
||||
ACTOR Future<bool> clearHealthyZone(Reference<IDatabase> db,
|
||||
|
|
|
@ -137,6 +137,11 @@ def quota(logger):
|
|||
logger.debug(command + ' : ' + output)
|
||||
assert output == 'Successfully updated quota.'
|
||||
|
||||
command = 'quota set green storage 98765'
|
||||
output = run_fdbcli_command(command)
|
||||
logger.debug(command + ' : ' + output)
|
||||
assert output == 'Successfully updated quota.'
|
||||
|
||||
command = 'quota get green total_throughput'
|
||||
output = run_fdbcli_command(command)
|
||||
logger.debug(command + ' : ' + output)
|
||||
|
@ -147,6 +152,11 @@ def quota(logger):
|
|||
logger.debug(command + ' : ' + output)
|
||||
assert output == '16384'
|
||||
|
||||
command = 'quota get green storage'
|
||||
output = run_fdbcli_command(command)
|
||||
logger.debug(command + ' : ' + output)
|
||||
assert output == '98765'
|
||||
|
||||
command = 'quota clear green'
|
||||
output = run_fdbcli_command(command)
|
||||
logger.debug(command + ' : ' + output)
|
||||
|
@ -157,6 +167,11 @@ def quota(logger):
|
|||
logger.debug(command + ' : ' + output)
|
||||
assert output == '<empty>'
|
||||
|
||||
command = 'quota get green storage'
|
||||
output = run_fdbcli_command(command)
|
||||
logger.debug(command + ' : ' + output)
|
||||
assert output == '<empty>'
|
||||
|
||||
# Too few arguments, should log help message
|
||||
command = 'quota get green'
|
||||
output = run_fdbcli_command(command)
|
||||
|
|
|
@ -971,6 +971,11 @@ void sortDeltasByKey(const Standalone<GranuleDeltas>& deltasByVersion,
|
|||
// clearVersion as previous guy)
|
||||
}
|
||||
|
||||
void sortDeltasByKey(const Standalone<GranuleDeltas>& deltasByVersion, const KeyRangeRef& fileRange) {
|
||||
SortedDeltasT deltasByKey;
|
||||
sortDeltasByKey(deltasByVersion, fileRange, deltasByKey);
|
||||
}
|
||||
|
||||
// FIXME: Could maybe reduce duplicated code between this and chunkedSnapshot for chunking
|
||||
Value serializeChunkedDeltaFile(const Standalone<StringRef>& fileNameRef,
|
||||
const Standalone<GranuleDeltas>& deltas,
|
||||
|
|
|
@ -5924,7 +5924,6 @@ public:
|
|||
printf("Restoring backup to version: %lld\n", (long long)targetVersion);
|
||||
}
|
||||
|
||||
state int retryCount = 0;
|
||||
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
|
||||
loop {
|
||||
try {
|
||||
|
@ -5948,17 +5947,9 @@ public:
|
|||
wait(tr->commit());
|
||||
break;
|
||||
} catch (Error& e) {
|
||||
if (e.code() == error_code_transaction_too_old) {
|
||||
retryCount++;
|
||||
}
|
||||
if (e.code() == error_code_restore_duplicate_tag) {
|
||||
throw;
|
||||
}
|
||||
if (g_network->isSimulated() && retryCount > 50) {
|
||||
CODE_PROBE(true, "submitRestore simulation speedup");
|
||||
// try to make the read window back to normal size (5 * version_per_sec)
|
||||
g_simulator->speedUpSimulation = true;
|
||||
}
|
||||
wait(tr->onError(e));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2559,15 +2559,21 @@ bool schemaMatch(json_spirit::mValue const& schemaValue,
|
|||
}
|
||||
}
|
||||
|
||||
void setStorageQuota(Transaction& tr, StringRef tenantName, int64_t quota) {
|
||||
void setStorageQuota(Transaction& tr, StringRef tenantGroupName, int64_t quota) {
|
||||
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
|
||||
auto key = storageQuotaKey(tenantName);
|
||||
auto key = storageQuotaKey(tenantGroupName);
|
||||
tr.set(key, BinaryWriter::toValue<int64_t>(quota, Unversioned()));
|
||||
}
|
||||
|
||||
ACTOR Future<Optional<int64_t>> getStorageQuota(Transaction* tr, StringRef tenantName) {
|
||||
void clearStorageQuota(Transaction& tr, StringRef tenantGroupName) {
|
||||
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
|
||||
auto key = storageQuotaKey(tenantGroupName);
|
||||
tr.clear(key);
|
||||
}
|
||||
|
||||
ACTOR Future<Optional<int64_t>> getStorageQuota(Transaction* tr, StringRef tenantGroupName) {
|
||||
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
|
||||
state Optional<Value> v = wait(tr->get(storageQuotaKey(tenantName)));
|
||||
state Optional<Value> v = wait(tr->get(storageQuotaKey(tenantGroupName)));
|
||||
if (!v.present()) {
|
||||
return Optional<int64_t>();
|
||||
}
|
||||
|
|
|
@ -965,7 +965,8 @@ ACTOR Future<MonitorLeaderInfo> monitorProxiesOneGeneration(
|
|||
allConnectionsFailed = false;
|
||||
} else {
|
||||
CODE_PROBE(rep.getError().code() == error_code_failed_to_progress,
|
||||
"Coordinator cant talk to cluster controller");
|
||||
"Coordinator cant talk to cluster controller",
|
||||
probe::decoration::rare);
|
||||
TraceEvent("MonitorProxiesConnectFailed")
|
||||
.detail("Error", rep.getError().name())
|
||||
.detail("Coordinator", clientLeaderServer.getAddressString());
|
||||
|
|
|
@ -4524,9 +4524,11 @@ Future<RangeResultFamily> getRange(Reference<TransactionState> trState,
|
|||
output.readToBegin = readToBegin;
|
||||
output.readThroughEnd = readThroughEnd;
|
||||
|
||||
if (BUGGIFY && limits.hasByteLimit() && output.size() > std::max(1, originalLimits.minRows)) {
|
||||
if (BUGGIFY && limits.hasByteLimit() && output.size() > std::max(1, originalLimits.minRows) &&
|
||||
(!std::is_same<GetKeyValuesFamilyRequest, GetMappedKeyValuesRequest>::value)) {
|
||||
// Copy instead of resizing because TSS maybe be using output's arena for comparison. This only
|
||||
// happens in simulation so it's fine
|
||||
// disable it on prefetch, because boundary entries serve as continuations
|
||||
RangeResultFamily copy;
|
||||
int newSize =
|
||||
deterministicRandom()->randomInt(std::max(1, originalLimits.minRows), output.size());
|
||||
|
@ -4769,7 +4771,8 @@ static Future<Void> tssStreamComparison(Request request,
|
|||
TSS_traceMismatch(mismatchEvent, request, ssReply.get(), tssReply.get());
|
||||
|
||||
CODE_PROBE(FLOW_KNOBS->LOAD_BALANCE_TSS_MISMATCH_TRACE_FULL,
|
||||
"Tracing Full TSS Mismatch in stream comparison");
|
||||
"Tracing Full TSS Mismatch in stream comparison",
|
||||
probe::decoration::rare);
|
||||
CODE_PROBE(!FLOW_KNOBS->LOAD_BALANCE_TSS_MISMATCH_TRACE_FULL,
|
||||
"Tracing Partial TSS Mismatch in stream comparison and storing the rest in FDB");
|
||||
|
||||
|
@ -4811,7 +4814,7 @@ maybeDuplicateTSSStreamFragment(Request& req, QueueModel* model, RequestStream<R
|
|||
Optional<TSSEndpointData> tssData = model->getTssData(ssStream->getEndpoint().token.first());
|
||||
|
||||
if (tssData.present()) {
|
||||
CODE_PROBE(true, "duplicating stream to TSS");
|
||||
CODE_PROBE(true, "duplicating stream to TSS", probe::decoration::rare);
|
||||
resetReply(req);
|
||||
// FIXME: optimize to avoid creating new netNotifiedQueueWithAcknowledgements for each stream duplication
|
||||
RequestStream<Request> tssRequestStream(tssData.get().endpoint);
|
||||
|
@ -9404,7 +9407,8 @@ void handleTSSChangeFeedMismatch(const ChangeFeedStreamRequest& request,
|
|||
mismatchEvent.detail("TSSVersion", tssVersion);
|
||||
|
||||
CODE_PROBE(FLOW_KNOBS->LOAD_BALANCE_TSS_MISMATCH_TRACE_FULL,
|
||||
"Tracing Full TSS Feed Mismatch in stream comparison");
|
||||
"Tracing Full TSS Feed Mismatch in stream comparison",
|
||||
probe::decoration::rare);
|
||||
CODE_PROBE(!FLOW_KNOBS->LOAD_BALANCE_TSS_MISMATCH_TRACE_FULL,
|
||||
"Tracing Partial TSS Feed Mismatch in stream comparison and storing the rest in FDB");
|
||||
|
||||
|
@ -10915,6 +10919,37 @@ Future<Standalone<VectorRef<KeyRangeRef>>> DatabaseContext::listBlobbifiedRanges
|
|||
return listBlobbifiedRangesActor(Reference<DatabaseContext>::addRef(this), range, rangeLimit, tenantName);
|
||||
}
|
||||
|
||||
ACTOR Future<bool> blobRestoreActor(Reference<DatabaseContext> cx, KeyRange range) {
|
||||
state Database db(cx);
|
||||
state Reference<ReadYourWritesTransaction> tr = makeReference<ReadYourWritesTransaction>(db);
|
||||
loop {
|
||||
try {
|
||||
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
|
||||
tr->setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
|
||||
state Key key = blobRestoreCommandKeyFor(range);
|
||||
Optional<Value> value = wait(tr->get(key));
|
||||
if (value.present()) {
|
||||
Standalone<BlobRestoreStatus> status = decodeBlobRestoreStatus(value.get());
|
||||
if (status.progress < 100) {
|
||||
return false; // stop if there is in-progress restore.
|
||||
}
|
||||
}
|
||||
Standalone<BlobRestoreStatus> status;
|
||||
status.progress = 0;
|
||||
Value newValue = blobRestoreCommandValueFor(status);
|
||||
tr->set(key, newValue);
|
||||
wait(tr->commit());
|
||||
return true;
|
||||
} catch (Error& e) {
|
||||
wait(tr->onError(e));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Future<bool> DatabaseContext::blobRestore(KeyRange range) {
|
||||
return blobRestoreActor(Reference<DatabaseContext>::addRef(this), range);
|
||||
}
|
||||
|
||||
int64_t getMaxKeySize(KeyRef const& key) {
|
||||
return getMaxWriteKeySize(key, true);
|
||||
}
|
||||
|
|
|
@ -1654,7 +1654,7 @@ Future<RangeResult> ReadYourWritesTransaction::getRange(KeySelector begin,
|
|||
|
||||
// This optimization prevents nullptr operations from being added to the conflict range
|
||||
if (limits.isReached()) {
|
||||
CODE_PROBE(true, "RYW range read limit 0", probe::decoration::rare);
|
||||
CODE_PROBE(true, "RYW range read limit 0");
|
||||
return RangeResult();
|
||||
}
|
||||
|
||||
|
@ -1668,7 +1668,7 @@ Future<RangeResult> ReadYourWritesTransaction::getRange(KeySelector begin,
|
|||
end.removeOrEqual(end.arena());
|
||||
|
||||
if (begin.offset >= end.offset && begin.getKey() >= end.getKey()) {
|
||||
CODE_PROBE(true, "RYW range inverted", probe::decoration::rare);
|
||||
CODE_PROBE(true, "RYW range inverted");
|
||||
return RangeResult();
|
||||
}
|
||||
|
||||
|
@ -1698,7 +1698,7 @@ Future<MappedRangeResult> ReadYourWritesTransaction::getMappedRange(KeySelector
|
|||
if (getDatabase()->apiVersionAtLeast(630)) {
|
||||
if (specialKeys.contains(begin.getKey()) && specialKeys.begin <= end.getKey() &&
|
||||
end.getKey() <= specialKeys.end) {
|
||||
CODE_PROBE(true, "Special key space get range (getMappedRange)");
|
||||
CODE_PROBE(true, "Special key space get range (getMappedRange)", probe::decoration::rare);
|
||||
throw client_invalid_operation(); // Not support special keys.
|
||||
}
|
||||
} else {
|
||||
|
@ -1720,7 +1720,7 @@ Future<MappedRangeResult> ReadYourWritesTransaction::getMappedRange(KeySelector
|
|||
|
||||
// This optimization prevents nullptr operations from being added to the conflict range
|
||||
if (limits.isReached()) {
|
||||
CODE_PROBE(true, "RYW range read limit 0 (getMappedRange)");
|
||||
CODE_PROBE(true, "RYW range read limit 0 (getMappedRange)", probe::decoration::rare);
|
||||
return MappedRangeResult();
|
||||
}
|
||||
|
||||
|
@ -1734,7 +1734,7 @@ Future<MappedRangeResult> ReadYourWritesTransaction::getMappedRange(KeySelector
|
|||
end.removeOrEqual(end.arena());
|
||||
|
||||
if (begin.offset >= end.offset && begin.getKey() >= end.getKey()) {
|
||||
CODE_PROBE(true, "RYW range inverted (getMappedRange)");
|
||||
CODE_PROBE(true, "RYW range inverted (getMappedRange)", probe::decoration::rare);
|
||||
return MappedRangeResult();
|
||||
}
|
||||
|
||||
|
|
|
@ -296,7 +296,8 @@ void ServerKnobs::initialize(Randomize randomize, ClientKnobs* clientKnobs, IsSi
|
|||
init( DD_STORAGE_WIGGLE_PAUSE_THRESHOLD, 10 ); if( randomize && BUGGIFY ) DD_STORAGE_WIGGLE_PAUSE_THRESHOLD = 1000;
|
||||
init( DD_STORAGE_WIGGLE_STUCK_THRESHOLD, 20 );
|
||||
init( DD_STORAGE_WIGGLE_MIN_SS_AGE_SEC, isSimulated ? 2 : 21 * 60 * 60 * 24 ); if(randomize && BUGGIFY) DD_STORAGE_WIGGLE_MIN_SS_AGE_SEC = isSimulated ? 0: 120;
|
||||
init( DD_TENANT_AWARENESS_ENABLED, false ); if(isSimulated) DD_TENANT_AWARENESS_ENABLED = deterministicRandom()->coinflip();
|
||||
init( DD_TENANT_AWARENESS_ENABLED, false );
|
||||
init( STORAGE_QUOTA_ENABLED, false ); if(isSimulated) STORAGE_QUOTA_ENABLED = deterministicRandom()->coinflip();
|
||||
init( TENANT_CACHE_LIST_REFRESH_INTERVAL, 2 ); if( randomize && BUGGIFY ) TENANT_CACHE_LIST_REFRESH_INTERVAL = deterministicRandom()->randomInt(1, 10);
|
||||
init( TENANT_CACHE_STORAGE_USAGE_REFRESH_INTERVAL, 2 ); if( randomize && BUGGIFY ) TENANT_CACHE_STORAGE_USAGE_REFRESH_INTERVAL = deterministicRandom()->randomInt(1, 10);
|
||||
init( TENANT_CACHE_STORAGE_QUOTA_REFRESH_INTERVAL, 10 ); if( randomize && BUGGIFY ) TENANT_CACHE_STORAGE_QUOTA_REFRESH_INTERVAL = deterministicRandom()->randomInt(1, 10);
|
||||
|
@ -809,18 +810,24 @@ void ServerKnobs::initialize(Randomize randomize, ClientKnobs* clientKnobs, IsSi
|
|||
init( RANGESTREAM_LIMIT_BYTES, 2e6 ); if( randomize && BUGGIFY ) RANGESTREAM_LIMIT_BYTES = 1;
|
||||
init( CHANGEFEEDSTREAM_LIMIT_BYTES, 1e6 ); if( randomize && BUGGIFY ) CHANGEFEEDSTREAM_LIMIT_BYTES = 1;
|
||||
init( BLOBWORKERSTATUSSTREAM_LIMIT_BYTES, 1e4 ); if( randomize && BUGGIFY ) BLOBWORKERSTATUSSTREAM_LIMIT_BYTES = 1;
|
||||
init( ENABLE_CLEAR_RANGE_EAGER_READS, true ); if( randomize && BUGGIFY ) ENABLE_CLEAR_RANGE_EAGER_READS = deterministicRandom()->coinflip() ? false : true;
|
||||
init( ENABLE_CLEAR_RANGE_EAGER_READS, true ); if( randomize && BUGGIFY ) ENABLE_CLEAR_RANGE_EAGER_READS = deterministicRandom()->coinflip();
|
||||
init( CHECKPOINT_TRANSFER_BLOCK_BYTES, 40e6 );
|
||||
init( QUICK_GET_VALUE_FALLBACK, true );
|
||||
init( QUICK_GET_KEY_VALUES_FALLBACK, true );
|
||||
init( MAX_PARALLEL_QUICK_GET_VALUE, 50 ); if ( randomize && BUGGIFY ) MAX_PARALLEL_QUICK_GET_VALUE = deterministicRandom()->randomInt(1, 100);
|
||||
init( STRICTLY_ENFORCE_BYTE_LIMIT, false); if( randomize && BUGGIFY ) STRICTLY_ENFORCE_BYTE_LIMIT = deterministicRandom()->coinflip();
|
||||
init( FRACTION_INDEX_BYTELIMIT_PREFETCH, 0.2); if( randomize && BUGGIFY ) FRACTION_INDEX_BYTELIMIT_PREFETCH = 0.01 + deterministicRandom()->random01();
|
||||
init( MAX_PARALLEL_QUICK_GET_VALUE, 10 ); if ( randomize && BUGGIFY ) MAX_PARALLEL_QUICK_GET_VALUE = deterministicRandom()->randomInt(1, 100);
|
||||
init( QUICK_GET_KEY_VALUES_LIMIT, 2000 );
|
||||
init( QUICK_GET_KEY_VALUES_LIMIT_BYTES, 1e7 );
|
||||
init( STORAGE_FEED_QUERY_HARD_LIMIT, 100000 );
|
||||
// Read priority definitions in the form of a list of their relative concurrency share weights
|
||||
init( STORAGESERVER_READ_PRIORITIES, "120,10,20,40,60" );
|
||||
// The total concurrency which will be shared by active priorities according to their relative weights
|
||||
init( STORAGE_SERVER_READ_CONCURRENCY, 70 );
|
||||
// Priorities which each ReadType maps to, in enumeration order
|
||||
init( STORAGESERVER_READ_RANKS, "0,2,1,1,1" );
|
||||
init( STORAGESERVER_READ_PRIORITIES, "48,32,8" );
|
||||
// The priority number which each ReadType maps to in enumeration order
|
||||
// This exists for flexibility but assigning each ReadType to its own unique priority number makes the most sense
|
||||
// The enumeration is currently: eager, fetch, low, normal, high
|
||||
init( STORAGESERVER_READTYPE_PRIORITY_MAP, "0,1,2,3,4" );
|
||||
|
||||
//Wait Failure
|
||||
init( MAX_OUTSTANDING_WAIT_FAILURE_REQUESTS, 250 ); if( randomize && BUGGIFY ) MAX_OUTSTANDING_WAIT_FAILURE_REQUESTS = 2;
|
||||
|
@ -944,7 +951,7 @@ void ServerKnobs::initialize(Randomize randomize, ClientKnobs* clientKnobs, IsSi
|
|||
init( REDWOOD_HISTOGRAM_INTERVAL, 30.0 );
|
||||
init( REDWOOD_EVICT_UPDATED_PAGES, true ); if( randomize && BUGGIFY ) { REDWOOD_EVICT_UPDATED_PAGES = false; }
|
||||
init( REDWOOD_DECODECACHE_REUSE_MIN_HEIGHT, 2 ); if( randomize && BUGGIFY ) { REDWOOD_DECODECACHE_REUSE_MIN_HEIGHT = deterministicRandom()->randomInt(1, 7); }
|
||||
init( REDWOOD_PRIORITY_LAUNCHS, "32,32,32,32" );
|
||||
init( REDWOOD_IO_PRIORITIES, "32,32,32,32" );
|
||||
init( REDWOOD_SPLIT_ENCRYPTED_PAGES_BY_TENANT, false );
|
||||
|
||||
// Server request latency measurement
|
||||
|
@ -1018,6 +1025,7 @@ void ServerKnobs::initialize(Randomize randomize, ClientKnobs* clientKnobs, IsSi
|
|||
init( BLOB_MANIFEST_BACKUP_INTERVAL, isSimulated ? 5.0 : 30.0 );
|
||||
init( BLOB_FULL_RESTORE_MODE, false );
|
||||
init( BLOB_MIGRATOR_CHECK_INTERVAL, isSimulated ? 1.0 : 5.0);
|
||||
init( BLOB_MANIFEST_RW_ROWS, isSimulated ? 10 : 1000);
|
||||
|
||||
init( BGCC_TIMEOUT, isSimulated ? 10.0 : 120.0 );
|
||||
init( BGCC_MIN_INTERVAL, isSimulated ? 1.0 : 10.0 );
|
||||
|
|
|
@ -1660,11 +1660,41 @@ BlobWorkerInterface decodeBlobWorkerListValue(ValueRef const& value) {
|
|||
return interf;
|
||||
}
|
||||
|
||||
const KeyRangeRef blobRestoreCommandKeys("\xff\x02/blobRestoreCommand/"_sr, "\xff\x02/blobRestoreCommand0"_sr);
|
||||
|
||||
const Value blobRestoreCommandKeyFor(const KeyRangeRef range) {
|
||||
BinaryWriter wr(AssumeVersion(ProtocolVersion::withBlobGranule()));
|
||||
wr.serializeBytes(blobRestoreCommandKeys.begin);
|
||||
wr << range;
|
||||
return wr.toValue();
|
||||
}
|
||||
|
||||
const KeyRange decodeBlobRestoreCommandKeyFor(const KeyRef key) {
|
||||
KeyRange range;
|
||||
BinaryReader reader(key.removePrefix(blobRestoreCommandKeys.begin),
|
||||
AssumeVersion(ProtocolVersion::withBlobGranule()));
|
||||
reader >> range;
|
||||
return range;
|
||||
}
|
||||
|
||||
const Value blobRestoreCommandValueFor(BlobRestoreStatus status) {
|
||||
BinaryWriter wr(IncludeVersion(ProtocolVersion::withBlobGranule()));
|
||||
wr << status;
|
||||
return wr.toValue();
|
||||
}
|
||||
|
||||
Standalone<BlobRestoreStatus> decodeBlobRestoreStatus(ValueRef const& value) {
|
||||
Standalone<BlobRestoreStatus> status;
|
||||
BinaryReader reader(value, IncludeVersion());
|
||||
reader >> status;
|
||||
return status;
|
||||
}
|
||||
|
||||
const KeyRangeRef storageQuotaKeys("\xff/storageQuota/"_sr, "\xff/storageQuota0"_sr);
|
||||
const KeyRef storageQuotaPrefix = storageQuotaKeys.begin;
|
||||
|
||||
Key storageQuotaKey(StringRef tenantName) {
|
||||
return tenantName.withPrefix(storageQuotaPrefix);
|
||||
Key storageQuotaKey(StringRef tenantGroupName) {
|
||||
return tenantGroupName.withPrefix(storageQuotaPrefix);
|
||||
}
|
||||
|
||||
const KeyRangeRef idempotencyIdKeys("\xff\x02/idmp/"_sr, "\xff\x02/idmp0"_sr);
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "fdbrpc/Msgpack.h"
|
||||
#include "fdbclient/Tracing.h"
|
||||
#include "flow/IRandom.h"
|
||||
#include "flow/UnitTest.h"
|
||||
|
@ -79,41 +80,6 @@ struct LogfileTracer : ITracer {
|
|||
}
|
||||
};
|
||||
|
||||
struct TraceRequest {
|
||||
std::unique_ptr<uint8_t[]> buffer;
|
||||
// Amount of data in buffer (bytes).
|
||||
std::size_t data_size;
|
||||
// Size of buffer (bytes).
|
||||
std::size_t buffer_size;
|
||||
|
||||
void write_byte(uint8_t byte) { write_bytes(&byte, 1); }
|
||||
|
||||
void write_bytes(const uint8_t* buf, std::size_t n) {
|
||||
resize(n);
|
||||
std::copy(buf, buf + n, buffer.get() + data_size);
|
||||
data_size += n;
|
||||
}
|
||||
|
||||
void resize(std::size_t n) {
|
||||
if (data_size + n <= buffer_size) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::size_t size = buffer_size;
|
||||
while (size < data_size + n) {
|
||||
size *= 2;
|
||||
}
|
||||
|
||||
TraceEvent(SevInfo, "TracingSpanResizedBuffer").detail("OldSize", buffer_size).detail("NewSize", size);
|
||||
auto new_buffer = std::make_unique<uint8_t[]>(size);
|
||||
std::copy(buffer.get(), buffer.get() + data_size, new_buffer.get());
|
||||
buffer = std::move(new_buffer);
|
||||
buffer_size = size;
|
||||
}
|
||||
|
||||
void reset() { data_size = 0; }
|
||||
};
|
||||
|
||||
// A server listening for UDP trace messages, run only in simulation.
|
||||
ACTOR Future<Void> simulationStartServer() {
|
||||
// We're going to force the address to be loopback regardless of FLOW_KNOBS->TRACING_UDP_LISTENER_ADDR
|
||||
|
@ -167,146 +133,89 @@ ACTOR Future<Void> traceLog(int* pendingMessages, bool* sendError) {
|
|||
struct UDPTracer : public ITracer {
|
||||
// Serializes span fields as an array into the supplied TraceRequest
|
||||
// buffer.
|
||||
void serialize_span(const Span& span, TraceRequest& request) {
|
||||
void serialize_span(const Span& span, MsgpackBuffer& buf) {
|
||||
uint16_t size = 12;
|
||||
request.write_byte(size | 0b10010000); // write as array
|
||||
serialize_value(span.context.traceID.first(), request, 0xcf); // trace id
|
||||
serialize_value(span.context.traceID.second(), request, 0xcf); // trace id
|
||||
serialize_value(span.context.spanID, request, 0xcf); // spanid
|
||||
buf.write_byte(size | 0b10010000); // write as array
|
||||
serialize_value(span.context.traceID.first(), buf, 0xcf); // trace id
|
||||
serialize_value(span.context.traceID.second(), buf, 0xcf); // trace id
|
||||
serialize_value(span.context.spanID, buf, 0xcf); // spanid
|
||||
// parent span id
|
||||
serialize_value(span.parentContext.spanID, request, 0xcf); // spanId
|
||||
serialize_value(span.parentContext.spanID, buf, 0xcf); // spanId
|
||||
// Payload
|
||||
serialize_string(span.location.name.toString(), request);
|
||||
serialize_value(span.begin, request, 0xcb); // start time
|
||||
serialize_value(span.end, request, 0xcb); // end
|
||||
serialize_string(span.location.name.toString(), buf);
|
||||
serialize_value(span.begin, buf, 0xcb); // start time
|
||||
serialize_value(span.end, buf, 0xcb); // end
|
||||
// Kind
|
||||
serialize_value(span.kind, request, 0xcc);
|
||||
serialize_value(span.kind, buf, 0xcc);
|
||||
// Status
|
||||
serialize_value(span.status, request, 0xcc);
|
||||
serialize_value(span.status, buf, 0xcc);
|
||||
// Links
|
||||
serialize_vector(span.links, request);
|
||||
serialize_vector(span.links, buf);
|
||||
// Events
|
||||
serialize_vector(span.events, request);
|
||||
serialize_vector(span.events, buf);
|
||||
// Attributes
|
||||
serialize_map(span.attributes, request);
|
||||
serialize_map(span.attributes, buf);
|
||||
}
|
||||
|
||||
private:
|
||||
// Writes the given value in big-endian format to the request. Sets the
|
||||
// first byte to msgpack_type.
|
||||
template <typename T>
|
||||
inline void serialize_value(const T& val, TraceRequest& request, uint8_t msgpack_type) {
|
||||
request.write_byte(msgpack_type);
|
||||
|
||||
const uint8_t* p = reinterpret_cast<const uint8_t*>(std::addressof(val));
|
||||
for (size_t i = 0; i < sizeof(T); ++i) {
|
||||
request.write_byte(p[sizeof(T) - i - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Writes the given string to the request as a sequence of bytes. Inserts a
|
||||
// format byte at the beginning of the string according to the its length,
|
||||
// as specified by the msgpack specification.
|
||||
inline void serialize_string(const uint8_t* c, int length, TraceRequest& request) {
|
||||
if (length <= 31) {
|
||||
// A size 0 string is ok. We still need to write a byte
|
||||
// identifiying the item as a string, but can set the size to 0.
|
||||
request.write_byte(static_cast<uint8_t>(length) | 0b10100000);
|
||||
} else if (length <= 255) {
|
||||
request.write_byte(0xd9);
|
||||
request.write_byte(static_cast<uint8_t>(length));
|
||||
} else if (length <= 65535) {
|
||||
request.write_byte(0xda);
|
||||
request.write_byte(reinterpret_cast<const uint8_t*>(&length)[1]);
|
||||
request.write_byte(reinterpret_cast<const uint8_t*>(&length)[0]);
|
||||
} else {
|
||||
TraceEvent(SevWarn, "TracingSpanSerializeString")
|
||||
.detail("Failed to MessagePack encode very large string", length);
|
||||
ASSERT_WE_THINK(false);
|
||||
}
|
||||
|
||||
request.write_bytes(c, length);
|
||||
}
|
||||
|
||||
inline void serialize_string(const std::string& str, TraceRequest& request) {
|
||||
serialize_string(reinterpret_cast<const uint8_t*>(str.data()), str.size(), request);
|
||||
}
|
||||
|
||||
// Writes the given vector of linked SpanContext's to the request. If the vector is
|
||||
// empty, the request is not modified.
|
||||
inline void serialize_vector(const SmallVectorRef<SpanContext>& vec, TraceRequest& request) {
|
||||
inline void serialize_vector(const SmallVectorRef<SpanContext>& vec, MsgpackBuffer& buf) {
|
||||
int size = vec.size();
|
||||
if (size <= 15) {
|
||||
request.write_byte(static_cast<uint8_t>(size) | 0b10010000);
|
||||
buf.write_byte(static_cast<uint8_t>(size) | 0b10010000);
|
||||
} else if (size <= 65535) {
|
||||
request.write_byte(0xdc);
|
||||
request.write_byte(reinterpret_cast<const uint8_t*>(&size)[1]);
|
||||
request.write_byte(reinterpret_cast<const uint8_t*>(&size)[0]);
|
||||
buf.write_byte(0xdc);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&size)[1]);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&size)[0]);
|
||||
} else {
|
||||
TraceEvent(SevWarn, "TracingSpanSerializeVector").detail("Failed to MessagePack encode large vector", size);
|
||||
ASSERT_WE_THINK(false);
|
||||
}
|
||||
|
||||
for (const auto& link : vec) {
|
||||
serialize_value(link.traceID.first(), request, 0xcf); // trace id
|
||||
serialize_value(link.traceID.second(), request, 0xcf); // trace id
|
||||
serialize_value(link.spanID, request, 0xcf); // spanid
|
||||
serialize_value(link.traceID.first(), buf, 0xcf); // trace id
|
||||
serialize_value(link.traceID.second(), buf, 0xcf); // trace id
|
||||
serialize_value(link.spanID, buf, 0xcf); // spanid
|
||||
}
|
||||
}
|
||||
|
||||
// Writes the given vector of linked SpanContext's to the request. If the vector is
|
||||
// Writes the given vector of linked SpanEventRef's to the request. If the vector is
|
||||
// empty, the request is not modified.
|
||||
inline void serialize_vector(const SmallVectorRef<SpanEventRef>& vec, TraceRequest& request) {
|
||||
inline void serialize_vector(const SmallVectorRef<SpanEventRef>& vec, MsgpackBuffer& buf) {
|
||||
int size = vec.size();
|
||||
if (size <= 15) {
|
||||
request.write_byte(static_cast<uint8_t>(size) | 0b10010000);
|
||||
buf.write_byte(static_cast<uint8_t>(size) | 0b10010000);
|
||||
} else if (size <= 65535) {
|
||||
request.write_byte(0xdc);
|
||||
request.write_byte(reinterpret_cast<const uint8_t*>(&size)[1]);
|
||||
request.write_byte(reinterpret_cast<const uint8_t*>(&size)[0]);
|
||||
buf.write_byte(0xdc);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&size)[1]);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&size)[0]);
|
||||
} else {
|
||||
TraceEvent(SevWarn, "TracingSpanSerializeVector").detail("Failed to MessagePack encode large vector", size);
|
||||
ASSERT_WE_THINK(false);
|
||||
}
|
||||
|
||||
for (const auto& event : vec) {
|
||||
serialize_string(event.name.toString(), request); // event name
|
||||
serialize_value(event.time, request, 0xcb); // event time
|
||||
serialize_vector(event.attributes, request);
|
||||
serialize_string(event.name.toString(), buf); // event name
|
||||
serialize_value(event.time, buf, 0xcb); // event time
|
||||
serialize_vector(event.attributes, buf);
|
||||
}
|
||||
}
|
||||
|
||||
inline void serialize_vector(const SmallVectorRef<KeyValueRef>& vals, TraceRequest& request) {
|
||||
inline void serialize_vector(const SmallVectorRef<KeyValueRef>& vals, MsgpackBuffer& buf) {
|
||||
int size = vals.size();
|
||||
if (size <= 15) {
|
||||
// N.B. We're actually writing this out as a fixmap here in messagepack format!
|
||||
// fixmap 1000xxxx 0x80 - 0x8f
|
||||
request.write_byte(static_cast<uint8_t>(size) | 0b10000000);
|
||||
buf.write_byte(static_cast<uint8_t>(size) | 0b10000000);
|
||||
} else {
|
||||
TraceEvent(SevWarn, "TracingSpanSerializeVector").detail("Failed to MessagePack encode large vector", size);
|
||||
ASSERT_WE_THINK(false);
|
||||
}
|
||||
|
||||
for (const auto& kv : vals) {
|
||||
serialize_string(kv.key.toString(), request);
|
||||
serialize_string(kv.value.toString(), request);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Map>
|
||||
inline void serialize_map(const Map& map, TraceRequest& request) {
|
||||
int size = map.size();
|
||||
|
||||
if (size <= 15) {
|
||||
request.write_byte(static_cast<uint8_t>(size) | 0b10000000);
|
||||
} else {
|
||||
TraceEvent(SevWarn, "TracingSpanSerializeMap").detail("Failed to MessagePack encode large map", size);
|
||||
ASSERT_WE_THINK(false);
|
||||
}
|
||||
|
||||
for (const auto& [key, value] : map) {
|
||||
serialize_string(key.begin(), key.size(), request);
|
||||
serialize_string(value.begin(), value.size(), request);
|
||||
serialize_string(kv.key.toString(), buf);
|
||||
serialize_string(kv.value.toString(), buf);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@ -336,9 +245,9 @@ ACTOR Future<Void> fastTraceLogger(int* unreadyMessages, int* failedMessages, in
|
|||
struct FastUDPTracer : public UDPTracer {
|
||||
FastUDPTracer()
|
||||
: unready_socket_messages_(0), failed_messages_(0), total_messages_(0), socket_fd_(-1), send_error_(false) {
|
||||
request_ = TraceRequest{ .buffer = std::make_unique<uint8_t[]>(kTraceBufferSize),
|
||||
.data_size = 0,
|
||||
.buffer_size = kTraceBufferSize };
|
||||
request_ = MsgpackBuffer{ .buffer = std::make_unique<uint8_t[]>(kTraceBufferSize),
|
||||
.data_size = 0,
|
||||
.buffer_size = kTraceBufferSize };
|
||||
}
|
||||
|
||||
TracerType type() const override { return TracerType::NETWORK_LOSSY; }
|
||||
|
@ -394,7 +303,7 @@ struct FastUDPTracer : public UDPTracer {
|
|||
}
|
||||
|
||||
private:
|
||||
TraceRequest request_;
|
||||
MsgpackBuffer request_;
|
||||
|
||||
int unready_socket_messages_;
|
||||
int failed_messages_;
|
||||
|
@ -657,9 +566,9 @@ TEST_CASE("/flow/Tracing/FastUDPMessagePackEncoding") {
|
|||
IKnobCollection::getMutableGlobalKnobCollection().setKnob("tracing_span_attributes_enabled",
|
||||
KnobValueRef::create(bool{ true }));
|
||||
Span span1("encoded_span"_loc);
|
||||
auto request = TraceRequest{ .buffer = std::make_unique<uint8_t[]>(kTraceBufferSize),
|
||||
.data_size = 0,
|
||||
.buffer_size = kTraceBufferSize };
|
||||
auto request = MsgpackBuffer{ .buffer = std::make_unique<uint8_t[]>(kTraceBufferSize),
|
||||
.data_size = 0,
|
||||
.buffer_size = kTraceBufferSize };
|
||||
auto tracer = FastUDPTracer();
|
||||
tracer.serialize_span(span1, request);
|
||||
auto data = request.buffer.get();
|
||||
|
|
|
@ -313,4 +313,15 @@ struct BlobManifest {
|
|||
}
|
||||
};
|
||||
|
||||
// Defines blob restore status
|
||||
struct BlobRestoreStatus {
|
||||
constexpr static FileIdentifier file_identifier = 378657;
|
||||
int progress;
|
||||
|
||||
template <class Ar>
|
||||
void serialize(Ar& ar) {
|
||||
serializer(ar, progress);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -56,4 +56,7 @@ RangeResult materializeBlobGranule(const BlobGranuleChunkRef& chunk,
|
|||
|
||||
std::string randomBGFilename(UID blobWorkerID, UID granuleID, Version version, std::string suffix);
|
||||
|
||||
#endif
|
||||
// For benchmark testing only. It should never be called in prod.
|
||||
void sortDeltasByKey(const Standalone<GranuleDeltas>& deltasByVersion, const KeyRangeRef& fileRange);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -403,6 +403,7 @@ public:
|
|||
Future<Version> verifyBlobRange(const KeyRange& range,
|
||||
Optional<Version> version,
|
||||
Optional<TenantName> tenantName = {});
|
||||
Future<bool> blobRestore(const KeyRange range);
|
||||
|
||||
// private:
|
||||
explicit DatabaseContext(Reference<AsyncVar<Reference<IClusterConnectionRecord>>> connectionRecord,
|
||||
|
|
|
@ -163,9 +163,10 @@ bool schemaMatch(json_spirit::mValue const& schema,
|
|||
// storage nodes
|
||||
ACTOR Future<Void> mgmtSnapCreate(Database cx, Standalone<StringRef> snapCmd, UID snapUID);
|
||||
|
||||
// Set and get the storage quota per tenant
|
||||
void setStorageQuota(Transaction& tr, StringRef tenantName, int64_t quota);
|
||||
ACTOR Future<Optional<int64_t>> getStorageQuota(Transaction* tr, StringRef tenantName);
|
||||
// Set/clear/get the storage quota for the given tenant group
|
||||
void setStorageQuota(Transaction& tr, StringRef tenantGroupName, int64_t quota);
|
||||
void clearStorageQuota(Transaction& tr, StringRef tenantGroupName);
|
||||
ACTOR Future<Optional<int64_t>> getStorageQuota(Transaction* tr, StringRef tenantGroupName);
|
||||
|
||||
#include "flow/unactorcompiler.h"
|
||||
#endif
|
||||
|
|
|
@ -237,6 +237,8 @@ public:
|
|||
int64_t
|
||||
DD_STORAGE_WIGGLE_MIN_SS_AGE_SEC; // Minimal age of a correct-configured server before it's chosen to be wiggled
|
||||
bool DD_TENANT_AWARENESS_ENABLED;
|
||||
bool STORAGE_QUOTA_ENABLED; // Whether storage quota enforcement for tenant groups and all the relevant storage
|
||||
// usage / quota monitors are enabled.
|
||||
int TENANT_CACHE_LIST_REFRESH_INTERVAL; // How often the TenantCache is refreshed
|
||||
int TENANT_CACHE_STORAGE_USAGE_REFRESH_INTERVAL; // How often the storage bytes used by each tenant is refreshed
|
||||
// in the TenantCache
|
||||
|
@ -761,14 +763,16 @@ public:
|
|||
bool ENABLE_CLEAR_RANGE_EAGER_READS;
|
||||
bool QUICK_GET_VALUE_FALLBACK;
|
||||
bool QUICK_GET_KEY_VALUES_FALLBACK;
|
||||
bool STRICTLY_ENFORCE_BYTE_LIMIT;
|
||||
double FRACTION_INDEX_BYTELIMIT_PREFETCH;
|
||||
int MAX_PARALLEL_QUICK_GET_VALUE;
|
||||
int CHECKPOINT_TRANSFER_BLOCK_BYTES;
|
||||
int QUICK_GET_KEY_VALUES_LIMIT;
|
||||
int QUICK_GET_KEY_VALUES_LIMIT_BYTES;
|
||||
int STORAGE_FEED_QUERY_HARD_LIMIT;
|
||||
int STORAGE_SERVER_READ_CONCURRENCY;
|
||||
std::string STORAGESERVER_READ_RANKS;
|
||||
std::string STORAGESERVER_READ_PRIORITIES;
|
||||
int STORAGE_SERVER_READ_CONCURRENCY;
|
||||
std::string STORAGESERVER_READTYPE_PRIORITY_MAP;
|
||||
|
||||
// Wait Failure
|
||||
int MAX_OUTSTANDING_WAIT_FAILURE_REQUESTS;
|
||||
|
@ -917,7 +921,7 @@ public:
|
|||
int REDWOOD_DECODECACHE_REUSE_MIN_HEIGHT; // Minimum height for which to keep and reuse page decode caches
|
||||
bool REDWOOD_SPLIT_ENCRYPTED_PAGES_BY_TENANT; // Whether to split pages by tenant if encryption is enabled
|
||||
|
||||
std::string REDWOOD_PRIORITY_LAUNCHS;
|
||||
std::string REDWOOD_IO_PRIORITIES;
|
||||
|
||||
// Server request latency measurement
|
||||
int LATENCY_SAMPLE_SIZE;
|
||||
|
@ -992,6 +996,7 @@ public:
|
|||
double BLOB_MANIFEST_BACKUP_INTERVAL;
|
||||
bool BLOB_FULL_RESTORE_MODE;
|
||||
double BLOB_MIGRATOR_CHECK_INTERVAL;
|
||||
int BLOB_MANIFEST_RW_ROWS;
|
||||
|
||||
// Blob metadata
|
||||
int64_t BLOB_METADATA_CACHE_TTL;
|
||||
|
|
|
@ -710,11 +710,18 @@ UID decodeBlobWorkerListKey(KeyRef const& key);
|
|||
const Value blobWorkerListValue(BlobWorkerInterface const& interface);
|
||||
BlobWorkerInterface decodeBlobWorkerListValue(ValueRef const& value);
|
||||
|
||||
// Blob restore command
|
||||
extern const KeyRangeRef blobRestoreCommandKeys;
|
||||
const Value blobRestoreCommandKeyFor(const KeyRangeRef range);
|
||||
const KeyRange decodeBlobRestoreCommandKeyFor(const KeyRef key);
|
||||
const Value blobRestoreCommandValueFor(BlobRestoreStatus status);
|
||||
Standalone<BlobRestoreStatus> decodeBlobRestoreStatus(ValueRef const& value);
|
||||
|
||||
// Storage quota per tenant
|
||||
// "\xff/storageQuota/[[tenantName]]" := "[[quota]]"
|
||||
// "\xff/storageQuota/[[tenantGroupName]]" := "[[quota]]"
|
||||
extern const KeyRangeRef storageQuotaKeys;
|
||||
extern const KeyRef storageQuotaPrefix;
|
||||
Key storageQuotaKey(StringRef tenantName);
|
||||
Key storageQuotaKey(StringRef tenantGroupName);
|
||||
|
||||
extern const KeyRangeRef idempotencyIdKeys;
|
||||
extern const KeyRef idempotencyIdsExpiredVersion;
|
||||
|
|
|
@ -69,7 +69,7 @@ TEST_CASE("/flow/buggifiedDelay") {
|
|||
});
|
||||
wait(f1 && f2);
|
||||
if (last == 1) {
|
||||
CODE_PROBE(true, "Delays can become ready out of order");
|
||||
CODE_PROBE(true, "Delays can become ready out of order", probe::decoration::rare);
|
||||
return Void();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -216,7 +216,7 @@ bool TokenCacheImpl::validateAndAdd(double currentTime, StringRef token, Network
|
|||
Arena arena;
|
||||
authz::jwt::TokenRef t;
|
||||
if (!authz::jwt::parseToken(arena, t, token)) {
|
||||
CODE_PROBE(true, "Token can't be parsed");
|
||||
CODE_PROBE(true, "Token can't be parsed", probe::decoration::rare);
|
||||
TraceEvent(SevWarn, "InvalidToken")
|
||||
.detail("From", peer)
|
||||
.detail("Reason", "ParseError")
|
||||
|
@ -225,35 +225,35 @@ bool TokenCacheImpl::validateAndAdd(double currentTime, StringRef token, Network
|
|||
}
|
||||
auto key = FlowTransport::transport().getPublicKeyByName(t.keyId);
|
||||
if (!key.present()) {
|
||||
CODE_PROBE(true, "Token referencing non-existing key");
|
||||
CODE_PROBE(true, "Token referencing non-existing key", probe::decoration::rare);
|
||||
TRACE_INVALID_PARSED_TOKEN("UnknownKey", t);
|
||||
return false;
|
||||
} else if (!t.issuedAtUnixTime.present()) {
|
||||
CODE_PROBE(true, "Token has no issued-at field");
|
||||
CODE_PROBE(true, "Token has no issued-at field", probe::decoration::rare);
|
||||
TRACE_INVALID_PARSED_TOKEN("NoIssuedAt", t);
|
||||
return false;
|
||||
} else if (!t.expiresAtUnixTime.present()) {
|
||||
CODE_PROBE(true, "Token has no expiration time");
|
||||
CODE_PROBE(true, "Token has no expiration time", probe::decoration::rare);
|
||||
TRACE_INVALID_PARSED_TOKEN("NoExpirationTime", t);
|
||||
return false;
|
||||
} else if (double(t.expiresAtUnixTime.get()) <= currentTime) {
|
||||
CODE_PROBE(true, "Expired token");
|
||||
CODE_PROBE(true, "Expired token", probe::decoration::rare);
|
||||
TRACE_INVALID_PARSED_TOKEN("Expired", t);
|
||||
return false;
|
||||
} else if (!t.notBeforeUnixTime.present()) {
|
||||
CODE_PROBE(true, "Token has no not-before field");
|
||||
CODE_PROBE(true, "Token has no not-before field", probe::decoration::rare);
|
||||
TRACE_INVALID_PARSED_TOKEN("NoNotBefore", t);
|
||||
return false;
|
||||
} else if (double(t.notBeforeUnixTime.get()) > currentTime) {
|
||||
CODE_PROBE(true, "Tokens not-before is in the future");
|
||||
CODE_PROBE(true, "Tokens not-before is in the future", probe::decoration::rare);
|
||||
TRACE_INVALID_PARSED_TOKEN("TokenNotYetValid", t);
|
||||
return false;
|
||||
} else if (!t.tenants.present()) {
|
||||
CODE_PROBE(true, "Token with no tenants");
|
||||
CODE_PROBE(true, "Token with no tenants", probe::decoration::rare);
|
||||
TRACE_INVALID_PARSED_TOKEN("NoTenants", t);
|
||||
return false;
|
||||
} else if (!authz::jwt::verifyToken(token, key.get())) {
|
||||
CODE_PROBE(true, "Token with invalid signature");
|
||||
CODE_PROBE(true, "Token with invalid signature", probe::decoration::rare);
|
||||
TRACE_INVALID_PARSED_TOKEN("InvalidSignature", t);
|
||||
return false;
|
||||
} else {
|
||||
|
@ -300,7 +300,7 @@ bool TokenCacheImpl::validate(TenantNameRef name, StringRef token) {
|
|||
}
|
||||
}
|
||||
if (!tenantFound) {
|
||||
CODE_PROBE(true, "Valid token doesn't reference tenant");
|
||||
CODE_PROBE(true, "Valid token doesn't reference tenant", probe::decoration::rare);
|
||||
TraceEvent(SevWarn, "TenantTokenMismatch").detail("From", peer).detail("Tenant", name.toString());
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,157 @@
|
|||
/*
|
||||
* Msgpack.h
|
||||
*
|
||||
* This source file is part of the FoundationDB open source project
|
||||
*
|
||||
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef FDBRPC_MSGPACK_H
|
||||
#define FDBRPC_MSGPACK_H
|
||||
#include <limits>
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <algorithm>
|
||||
#include "flow/Trace.h"
|
||||
#include "flow/Error.h"
|
||||
#include "flow/network.h"
|
||||
|
||||
struct MsgpackBuffer {
|
||||
std::unique_ptr<uint8_t[]> buffer;
|
||||
// Amount of data in buffer (bytes).
|
||||
std::size_t data_size;
|
||||
// Size of buffer (bytes).
|
||||
std::size_t buffer_size;
|
||||
|
||||
void write_byte(uint8_t byte) { write_bytes(&byte, 1); }
|
||||
|
||||
// This assumes that pos <= data_size
|
||||
void edit_byte(uint8_t byte, size_t pos) { buffer[pos] = byte; }
|
||||
|
||||
void write_bytes(const uint8_t* buf, std::size_t n) {
|
||||
resize(n);
|
||||
std::copy(buf, buf + n, buffer.get() + data_size);
|
||||
data_size += n;
|
||||
}
|
||||
|
||||
void resize(std::size_t n) {
|
||||
if (data_size + n <= buffer_size) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::size_t size = buffer_size;
|
||||
while (size < data_size + n) {
|
||||
size *= 2;
|
||||
}
|
||||
|
||||
TraceEvent(SevInfo, "MsgpackResizedBuffer").detail("OldSize", buffer_size).detail("NewSize", size);
|
||||
auto new_buffer = std::make_unique<uint8_t[]>(size);
|
||||
std::copy(buffer.get(), buffer.get() + data_size, new_buffer.get());
|
||||
buffer = std::move(new_buffer);
|
||||
buffer_size = size;
|
||||
}
|
||||
|
||||
void reset() { data_size = 0; }
|
||||
};
|
||||
|
||||
inline void serialize_bool(bool val, MsgpackBuffer& buf) {
|
||||
if (val) {
|
||||
buf.write_byte(0xc3);
|
||||
} else {
|
||||
buf.write_byte(0xc2);
|
||||
}
|
||||
}
|
||||
|
||||
// Writes the given value in big-endian format to the request. Sets the
|
||||
// first byte to msgpack_type.
|
||||
template <typename T>
|
||||
inline void serialize_value(const T& val, MsgpackBuffer& buf, uint8_t msgpack_type) {
|
||||
buf.write_byte(msgpack_type);
|
||||
|
||||
const uint8_t* p = reinterpret_cast<const uint8_t*>(std::addressof(val));
|
||||
for (size_t i = 0; i < sizeof(T); ++i) {
|
||||
buf.write_byte(p[sizeof(T) - i - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Writes the given string to the request as a sequence of bytes. Inserts a
|
||||
// format byte at the beginning of the string according to the its length,
|
||||
// as specified by the msgpack specification.
|
||||
inline void serialize_string(const uint8_t* c, int length, MsgpackBuffer& buf) {
|
||||
if (length <= 31) {
|
||||
// A size 0 string is ok. We still need to write a byte
|
||||
// identifiying the item as a string, but can set the size to 0.
|
||||
buf.write_byte(static_cast<uint8_t>(length) | 0b10100000);
|
||||
} else if (length <= 255) {
|
||||
buf.write_byte(0xd9);
|
||||
buf.write_byte(static_cast<uint8_t>(length));
|
||||
} else if (length <= 65535) {
|
||||
buf.write_byte(0xda);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&length)[1]);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&length)[0]);
|
||||
} else {
|
||||
TraceEvent(SevWarn, "MsgpackSerializeString").detail("Failed to MessagePack encode very large string", length);
|
||||
ASSERT_WE_THINK(false);
|
||||
}
|
||||
|
||||
buf.write_bytes(c, length);
|
||||
}
|
||||
|
||||
inline void serialize_string(const std::string& str, MsgpackBuffer& buf) {
|
||||
serialize_string(reinterpret_cast<const uint8_t*>(str.data()), str.size(), buf);
|
||||
}
|
||||
|
||||
template <typename T, typename F>
|
||||
inline void serialize_vector(const std::vector<T>& vec, MsgpackBuffer& buf, F f) {
|
||||
size_t size = vec.size();
|
||||
if (size <= 15) {
|
||||
buf.write_byte(static_cast<uint8_t>(size) | 0b10010000);
|
||||
} else if (size <= 65535) {
|
||||
buf.write_byte(0xdc);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&size)[1]);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&size)[0]);
|
||||
} else if (size <= std::numeric_limits<uint32_t>::max()) {
|
||||
buf.write_byte(0xdd);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&size)[3]);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&size)[2]);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&size)[1]);
|
||||
buf.write_byte(reinterpret_cast<const uint8_t*>(&size)[0]);
|
||||
} else {
|
||||
TraceEvent(SevWarn, "MsgPackSerializeVector").detail("Failed to MessagePack encode large vector", size);
|
||||
ASSERT_WE_THINK(false);
|
||||
}
|
||||
// Use the provided serializer function to serialize the individual types of the vector
|
||||
for (const auto& val : vec) {
|
||||
f(val, buf);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Map>
|
||||
inline void serialize_map(const Map& map, MsgpackBuffer& buf) {
|
||||
int size = map.size();
|
||||
|
||||
if (size <= 15) {
|
||||
buf.write_byte(static_cast<uint8_t>(size) | 0b10000000);
|
||||
} else {
|
||||
TraceEvent(SevWarn, "MsgPackSerializeMap").detail("Failed to MessagePack encode large map", size);
|
||||
ASSERT_WE_THINK(false);
|
||||
}
|
||||
|
||||
for (const auto& [key, value] : map) {
|
||||
serialize_string(key.begin(), key.size(), buf);
|
||||
serialize_string(value.begin(), value.size(), buf);
|
||||
}
|
||||
}
|
||||
#endif
|
|
@ -20,6 +20,7 @@
|
|||
|
||||
#ifndef FDBRPC_TIMED_REQUEST_H
|
||||
#define FDBRPC_TIMED_REQUEST_H
|
||||
#include "flow/network.h"
|
||||
#pragma once
|
||||
|
||||
#include <fdbrpc/fdbrpc.h>
|
||||
|
@ -35,7 +36,7 @@ public:
|
|||
|
||||
TimedRequest() {
|
||||
if (!FlowTransport::isClient()) {
|
||||
_requestTime = timer();
|
||||
_requestTime = g_network->timer();
|
||||
} else {
|
||||
_requestTime = 0.0;
|
||||
}
|
||||
|
|
|
@ -2361,7 +2361,7 @@ class UDPSimSocket : public IUDPSocket, ReferenceCounted<UDPSimSocket> {
|
|||
NetworkAddress _localAddress;
|
||||
bool randomDropPacket() {
|
||||
auto res = deterministicRandom()->random01() < .000001;
|
||||
CODE_PROBE(res, "UDP packet drop", probe::context::sim2, probe::assert::simOnly);
|
||||
CODE_PROBE(res, "UDP packet drop", probe::context::sim2, probe::assert::simOnly, probe::decoration::rare);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
|
|
@ -654,7 +654,7 @@ private:
|
|||
TraceEvent("WriteRecoveryKeySet", dbgid).log();
|
||||
if (!initialCommit)
|
||||
txnStateStore->set(KeyValueRef(m.param1, m.param2));
|
||||
CODE_PROBE(true, "Snapshot created, setting writeRecoveryKey in txnStateStore");
|
||||
CODE_PROBE(true, "Snapshot created, setting writeRecoveryKey in txnStateStore", probe::decoration::rare);
|
||||
}
|
||||
|
||||
void checkSetTenantMapPrefix(MutationRef m) {
|
||||
|
|
|
@ -388,6 +388,8 @@ struct BlobManagerData : NonCopyable, ReferenceCounted<BlobManagerData> {
|
|||
|
||||
Promise<Void> iAmReplaced;
|
||||
|
||||
bool isFullRestoreMode = false;
|
||||
|
||||
BlobManagerData(UID id,
|
||||
Reference<AsyncVar<ServerDBInfo> const> dbInfo,
|
||||
Database db,
|
||||
|
@ -439,7 +441,7 @@ struct BlobManagerData : NonCopyable, ReferenceCounted<BlobManagerData> {
|
|||
// if this granule is not an active granule, it can't be merged
|
||||
auto gIt = workerAssignments.rangeContaining(range.begin);
|
||||
if (gIt->begin() != range.begin || gIt->end() != range.end) {
|
||||
CODE_PROBE(true, "non-active granule reported merge eligible, ignoring");
|
||||
CODE_PROBE(true, "non-active granule reported merge eligible, ignoring", probe::decoration::rare);
|
||||
if (BM_DEBUG) {
|
||||
fmt::print(
|
||||
"BM {0} Ignoring Merge Candidate [{1} - {2}): range mismatch with active granule [{3} - {4})\n",
|
||||
|
@ -1034,7 +1036,7 @@ static bool handleRangeIsAssign(Reference<BlobManagerData> bmData, RangeAssignme
|
|||
if (assignment.assign.get().type == AssignRequestType::Continue) {
|
||||
ASSERT(assignment.worker.present());
|
||||
if (i.range() != assignment.keyRange || i.cvalue() != assignment.worker.get()) {
|
||||
CODE_PROBE(true, "BM assignment out of date");
|
||||
CODE_PROBE(true, "BM assignment out of date", probe::decoration::rare);
|
||||
if (BM_DEBUG) {
|
||||
fmt::print("Out of date re-assign for ({0}, {1}). Assignment must have changed while "
|
||||
"checking split.\n Reassign: [{2} - {3}): {4}\n Existing: [{5} - {6}): {7}\n",
|
||||
|
@ -1601,10 +1603,10 @@ ACTOR Future<Void> reevaluateInitialSplit(Reference<BlobManagerData> bmData,
|
|||
if (retried && prevOwnerEpoch == bmData->epoch && prevGranuleID == granuleID &&
|
||||
prevOwnerSeqno == std::numeric_limits<int64_t>::max()) {
|
||||
// owner didn't change, last iteration of this transaction just succeeded but threw an error.
|
||||
CODE_PROBE(true, "split too big adjustment succeeded after retry");
|
||||
CODE_PROBE(true, "split too big adjustment succeeded after retry", probe::decoration::rare);
|
||||
break;
|
||||
}
|
||||
CODE_PROBE(true, "split too big was since moved to another worker");
|
||||
CODE_PROBE(true, "split too big was since moved to another worker", probe::decoration::rare);
|
||||
if (BM_DEBUG) {
|
||||
fmt::print("BM {0} re-evaluating initial split [{1} - {2}) too big: moved to another worker\n",
|
||||
bmData->epoch,
|
||||
|
@ -1838,7 +1840,7 @@ ACTOR Future<Void> maybeSplitRange(Reference<BlobManagerData> bmData,
|
|||
wait(checkManagerLock(tr, bmData));
|
||||
ForcedPurgeState purgeState = wait(getForcePurgedState(&tr->getTransaction(), granuleRange));
|
||||
if (purgeState != ForcedPurgeState::NonePurged) {
|
||||
CODE_PROBE(true, "Split stopped because of force purge");
|
||||
CODE_PROBE(true, "Split stopped because of force purge", probe::decoration::rare);
|
||||
TraceEvent("GranuleSplitCancelledForcePurge", bmData->id)
|
||||
.detail("Epoch", bmData->epoch)
|
||||
.detail("GranuleRange", granuleRange);
|
||||
|
@ -2634,7 +2636,9 @@ ACTOR Future<Void> attemptMerges(Reference<BlobManagerData> bmData,
|
|||
currentBytes + metrics.bytes > SERVER_KNOBS->BG_SNAPSHOT_FILE_TARGET_BYTES ||
|
||||
currentKeySumBytes >= CLIENT_KNOBS->VALUE_SIZE_LIMIT / 2) {
|
||||
ASSERT(currentBytes <= SERVER_KNOBS->BG_SNAPSHOT_FILE_TARGET_BYTES);
|
||||
CODE_PROBE(currentKeySumBytes >= CLIENT_KNOBS->VALUE_SIZE_LIMIT / 2, "merge early because of key size");
|
||||
CODE_PROBE(currentKeySumBytes >= CLIENT_KNOBS->VALUE_SIZE_LIMIT / 2,
|
||||
"merge early because of key size",
|
||||
probe::decoration::rare);
|
||||
attemptStartMerge(bmData, currentCandidates);
|
||||
currentCandidates.clear();
|
||||
currentBytes = 0;
|
||||
|
@ -3253,7 +3257,7 @@ static void addAssignment(KeyRangeMap<std::tuple<UID, int64_t, int64_t>>& map,
|
|||
if (oldEpoch > newEpoch || (oldEpoch == newEpoch && oldSeqno > newSeqno)) {
|
||||
newer.push_back(std::pair(old.range(), std::tuple(oldWorker, oldEpoch, oldSeqno)));
|
||||
if (old.range() != newRange) {
|
||||
CODE_PROBE(true, "BM Recovery: BWs disagree on range boundaries");
|
||||
CODE_PROBE(true, "BM Recovery: BWs disagree on range boundaries", probe::decoration::rare);
|
||||
anyConflicts = true;
|
||||
}
|
||||
} else {
|
||||
|
@ -3287,7 +3291,8 @@ static void addAssignment(KeyRangeMap<std::tuple<UID, int64_t, int64_t>>& map,
|
|||
std::get<0>(old.value()) = UID();
|
||||
}
|
||||
if (outOfDate.empty() || outOfDate.back() != std::pair(oldWorker, KeyRange(old.range()))) {
|
||||
CODE_PROBE(true, "BM Recovery: Two workers claim ownership of same granule");
|
||||
CODE_PROBE(
|
||||
true, "BM Recovery: Two workers claim ownership of same granule", probe::decoration::rare);
|
||||
outOfDate.push_back(std::pair(oldWorker, old.range()));
|
||||
}
|
||||
}
|
||||
|
@ -3538,7 +3543,10 @@ ACTOR Future<Void> recoverBlobManager(Reference<BlobManagerData> bmData) {
|
|||
bmData->startRecruiting.trigger();
|
||||
|
||||
bmData->initBStore();
|
||||
if (isFullRestoreMode()) {
|
||||
|
||||
bool isFullRestore = wait(isFullRestoreMode(bmData->db, normalKeys));
|
||||
bmData->isFullRestoreMode = isFullRestore;
|
||||
if (bmData->isFullRestoreMode) {
|
||||
wait(loadManifest(bmData->db, bmData->bstore));
|
||||
|
||||
int64_t epoc = wait(lastBlobEpoc(bmData->db, bmData->bstore));
|
||||
|
@ -5298,11 +5306,8 @@ ACTOR Future<Void> backupManifest(Reference<BlobManagerData> bmData) {
|
|||
|
||||
bmData->initBStore();
|
||||
loop {
|
||||
bool pendingSplit = wait(hasPendingSplit(bmData));
|
||||
if (!pendingSplit) {
|
||||
wait(dumpManifest(bmData->db, bmData->bstore, bmData->epoch, bmData->manifestDumperSeqNo));
|
||||
bmData->manifestDumperSeqNo++;
|
||||
}
|
||||
wait(dumpManifest(bmData->db, bmData->bstore, bmData->epoch, bmData->manifestDumperSeqNo));
|
||||
bmData->manifestDumperSeqNo++;
|
||||
wait(delay(SERVER_KNOBS->BLOB_MANIFEST_BACKUP_INTERVAL));
|
||||
}
|
||||
}
|
||||
|
@ -5371,7 +5376,7 @@ ACTOR Future<Void> blobManager(BlobManagerInterface bmInterf,
|
|||
if (SERVER_KNOBS->BG_ENABLE_MERGING) {
|
||||
self->addActor.send(granuleMergeChecker(self));
|
||||
}
|
||||
if (SERVER_KNOBS->BLOB_MANIFEST_BACKUP && !isFullRestoreMode()) {
|
||||
if (SERVER_KNOBS->BLOB_MANIFEST_BACKUP && !self->isFullRestoreMode) {
|
||||
self->addActor.send(backupManifest(self));
|
||||
}
|
||||
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
|
||||
#include "fdbclient/BackupContainer.h"
|
||||
#include "fdbclient/BlobGranuleCommon.h"
|
||||
#include "fdbclient/ClientBooleanParams.h"
|
||||
#include "fdbserver/Knobs.h"
|
||||
#include "flow/FastRef.h"
|
||||
#include "flow/Trace.h"
|
||||
|
@ -60,7 +61,7 @@ struct BlobManifestFile {
|
|||
int64_t seqNo{ 0 };
|
||||
|
||||
BlobManifestFile(const std::string& path) {
|
||||
if (sscanf(path.c_str(), MANIFEST_FOLDER "/manifest.%" SCNd64 ".%" SCNd64, &epoch, &seqNo) == 2) {
|
||||
if (sscanf(path.c_str(), MANIFEST_FOLDER "/" MANIFEST_FOLDER ".%" SCNd64 ".%" SCNd64, &epoch, &seqNo) == 2) {
|
||||
fileName = path;
|
||||
}
|
||||
}
|
||||
|
@ -76,7 +77,7 @@ struct BlobManifestFile {
|
|||
BlobManifestFile file(path);
|
||||
return file.epoch > 0 && file.seqNo > 0;
|
||||
};
|
||||
BackupContainerFileSystem::FilesAndSizesT filesAndSizes = wait(reader->listFiles(MANIFEST_FOLDER, filter));
|
||||
BackupContainerFileSystem::FilesAndSizesT filesAndSizes = wait(reader->listFiles(MANIFEST_FOLDER "/", filter));
|
||||
|
||||
std::vector<BlobManifestFile> result;
|
||||
for (auto& f : filesAndSizes) {
|
||||
|
@ -107,6 +108,9 @@ public:
|
|||
try {
|
||||
state Standalone<BlobManifest> manifest;
|
||||
Standalone<VectorRef<KeyValueRef>> rows = wait(getSystemKeys(self));
|
||||
if (rows.size() == 0) {
|
||||
return Void();
|
||||
}
|
||||
manifest.rows = rows;
|
||||
Value data = encode(manifest);
|
||||
wait(writeToFile(self, data));
|
||||
|
@ -134,10 +138,23 @@ private:
|
|||
blobRangeKeys // Key ranges managed by blob
|
||||
};
|
||||
for (auto range : ranges) {
|
||||
// todo use getRangeStream for better performance
|
||||
RangeResult result = wait(tr.getRange(range, GetRangeLimits::BYTE_LIMIT_UNLIMITED));
|
||||
for (auto& row : result) {
|
||||
rows.push_back_deep(rows.arena(), KeyValueRef(row.key, row.value));
|
||||
state GetRangeLimits limits(SERVER_KNOBS->BLOB_MANIFEST_RW_ROWS);
|
||||
limits.minRows = 0;
|
||||
state KeySelectorRef begin = firstGreaterOrEqual(range.begin);
|
||||
state KeySelectorRef end = firstGreaterOrEqual(range.end);
|
||||
loop {
|
||||
RangeResult result = wait(tr.getRange(begin, end, limits, Snapshot::True));
|
||||
for (auto& row : result) {
|
||||
rows.push_back_deep(rows.arena(), KeyValueRef(row.key, row.value));
|
||||
}
|
||||
if (!result.more) {
|
||||
break;
|
||||
}
|
||||
if (result.readThrough.present()) {
|
||||
begin = firstGreaterOrEqual(result.readThrough.get());
|
||||
} else {
|
||||
begin = firstGreaterThan(result.end()[-1].key);
|
||||
}
|
||||
}
|
||||
}
|
||||
return rows;
|
||||
|
@ -149,11 +166,19 @@ private:
|
|||
|
||||
// Write data to blob manifest file
|
||||
ACTOR static Future<Void> writeToFile(Reference<BlobManifestDumper> self, Value data) {
|
||||
static int32_t lastWrittenBytes = 0;
|
||||
if (data.size() == lastWrittenBytes) {
|
||||
dprint("Skip writting blob manifest with same size {}\n", lastWrittenBytes);
|
||||
return Void();
|
||||
}
|
||||
lastWrittenBytes = data.size();
|
||||
|
||||
state Reference<BackupContainerFileSystem> writer;
|
||||
state std::string fullPath;
|
||||
|
||||
std::tie(writer, fullPath) = self->blobConn_->createForWrite(MANIFEST_FOLDER);
|
||||
state std::string fileName = format(MANIFEST_FOLDER "/manifest.%lld.%lld", self->epoch_, self->seqNo_);
|
||||
state std::string fileName =
|
||||
format(MANIFEST_FOLDER "/" MANIFEST_FOLDER ".%lld.%lld", self->epoch_, self->seqNo_);
|
||||
state Reference<IBackupFile> file = wait(writer->writeFile(fileName));
|
||||
wait(file->append(data.begin(), data.size()));
|
||||
wait(file->finish());
|
||||
|
@ -208,7 +233,7 @@ public:
|
|||
ACTOR static Future<Void> execute(Reference<BlobManifestLoader> self) {
|
||||
try {
|
||||
Value data = wait(readFromFile(self));
|
||||
Standalone<BlobManifest> manifest = decode(data);
|
||||
state Standalone<BlobManifest> manifest = decode(data);
|
||||
wait(writeSystemKeys(self, manifest.rows));
|
||||
BlobGranuleRestoreVersionVector _ = wait(listGranules(self));
|
||||
} catch (Error& e) {
|
||||
|
@ -227,13 +252,32 @@ public:
|
|||
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
|
||||
|
||||
try {
|
||||
std::vector<KeyRangeRef> granules;
|
||||
state Standalone<VectorRef<KeyRef>> blobRanges;
|
||||
// Read all granules
|
||||
state GetRangeLimits limits(SERVER_KNOBS->BLOB_MANIFEST_RW_ROWS);
|
||||
limits.minRows = 0;
|
||||
state KeySelectorRef begin = firstGreaterOrEqual(blobGranuleMappingKeys.begin);
|
||||
state KeySelectorRef end = firstGreaterOrEqual(blobGranuleMappingKeys.end);
|
||||
loop {
|
||||
RangeResult rows = wait(tr.getRange(begin, end, limits, Snapshot::True));
|
||||
for (auto& row : rows) {
|
||||
blobRanges.push_back_deep(blobRanges.arena(), row.key);
|
||||
}
|
||||
if (!rows.more) {
|
||||
break;
|
||||
}
|
||||
if (rows.readThrough.present()) {
|
||||
begin = firstGreaterOrEqual(rows.readThrough.get());
|
||||
} else {
|
||||
begin = firstGreaterThan(rows.end()[-1].key);
|
||||
}
|
||||
}
|
||||
|
||||
// check each granule range
|
||||
state int i = 0;
|
||||
auto limit = GetRangeLimits::BYTE_LIMIT_UNLIMITED;
|
||||
state RangeResult blobRanges = wait(tr.getRange(blobGranuleMappingKeys, limit));
|
||||
for (i = 0; i < blobRanges.size() - 1; i++) {
|
||||
Key startKey = blobRanges[i].key.removePrefix(blobGranuleMappingKeys.begin);
|
||||
Key endKey = blobRanges[i + 1].key.removePrefix(blobGranuleMappingKeys.begin);
|
||||
Key startKey = blobRanges[i].removePrefix(blobGranuleMappingKeys.begin);
|
||||
Key endKey = blobRanges[i + 1].removePrefix(blobGranuleMappingKeys.begin);
|
||||
state KeyRange granuleRange = KeyRangeRef(startKey, endKey);
|
||||
try {
|
||||
Standalone<BlobGranuleRestoreVersion> granule = wait(getGranule(&tr, granuleRange));
|
||||
|
@ -296,17 +340,32 @@ private:
|
|||
|
||||
// Write system keys to database
|
||||
ACTOR static Future<Void> writeSystemKeys(Reference<BlobManifestLoader> self, VectorRef<KeyValueRef> rows) {
|
||||
state int start = 0;
|
||||
state int end = 0;
|
||||
for (start = 0; start < rows.size(); start = end) {
|
||||
end = std::min(start + SERVER_KNOBS->BLOB_MANIFEST_RW_ROWS, rows.size());
|
||||
wait(writeSystemKeys(self, rows, start, end));
|
||||
}
|
||||
return Void();
|
||||
}
|
||||
|
||||
// Write system keys from start index to end(exclusive), so that we don't exceed the limit of transaction limit
|
||||
ACTOR static Future<Void> writeSystemKeys(Reference<BlobManifestLoader> self,
|
||||
VectorRef<KeyValueRef> rows,
|
||||
int start,
|
||||
int end) {
|
||||
state Transaction tr(self->db_);
|
||||
loop {
|
||||
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
|
||||
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
|
||||
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
|
||||
try {
|
||||
for (auto& row : rows) {
|
||||
tr.set(row.key, row.value);
|
||||
for (int i = start; i < end; ++i) {
|
||||
tr.set(rows[i].key, rows[i].value);
|
||||
}
|
||||
wait(tr.commit());
|
||||
dprint("Blob manifest loaded {} rows\n", rows.size());
|
||||
dprint("Blob manifest loaded rows from {} to {}\n", start, end);
|
||||
TraceEvent("BlobManifestLoader").detail("RowStart", start).detail("RowEnd", end);
|
||||
return Void();
|
||||
} catch (Error& e) {
|
||||
wait(tr.onError(e));
|
||||
|
@ -320,8 +379,7 @@ private:
|
|||
KeyRange historyKeyRange = blobGranuleHistoryKeyRangeFor(range);
|
||||
// reverse lookup so that the first row is the newest version
|
||||
state RangeResult results =
|
||||
wait(tr->getRange(historyKeyRange, GetRangeLimits::BYTE_LIMIT_UNLIMITED, Snapshot::False, Reverse::True));
|
||||
|
||||
wait(tr->getRange(historyKeyRange, GetRangeLimits::BYTE_LIMIT_UNLIMITED, Snapshot::True, Reverse::True));
|
||||
for (KeyValueRef row : results) {
|
||||
state KeyRange keyRange;
|
||||
state Version version;
|
||||
|
@ -363,24 +421,39 @@ private:
|
|||
|
||||
// List all files for given granule
|
||||
ACTOR static Future<std::vector<GranuleFileVersion>> listGranuleFiles(Transaction* tr, UID granuleID) {
|
||||
state std::vector<GranuleFileVersion> files;
|
||||
|
||||
state KeyRange fileKeyRange = blobGranuleFileKeyRangeFor(granuleID);
|
||||
RangeResult results = wait(tr->getRange(fileKeyRange, GetRangeLimits::BYTE_LIMIT_UNLIMITED));
|
||||
state GetRangeLimits limits(SERVER_KNOBS->BLOB_MANIFEST_RW_ROWS);
|
||||
limits.minRows = 0;
|
||||
state KeySelectorRef begin = firstGreaterOrEqual(fileKeyRange.begin);
|
||||
state KeySelectorRef end = firstGreaterOrEqual(fileKeyRange.end);
|
||||
loop {
|
||||
RangeResult results = wait(tr->getRange(begin, end, limits, Snapshot::True));
|
||||
for (auto& row : results) {
|
||||
UID gid;
|
||||
Version version;
|
||||
uint8_t fileType;
|
||||
Standalone<StringRef> filename;
|
||||
int64_t offset;
|
||||
int64_t length;
|
||||
int64_t fullFileLength;
|
||||
Optional<BlobGranuleCipherKeysMeta> cipherKeysMeta;
|
||||
|
||||
std::vector<GranuleFileVersion> files;
|
||||
for (auto& row : results) {
|
||||
UID gid;
|
||||
Version version;
|
||||
uint8_t fileType;
|
||||
Standalone<StringRef> filename;
|
||||
int64_t offset;
|
||||
int64_t length;
|
||||
int64_t fullFileLength;
|
||||
Optional<BlobGranuleCipherKeysMeta> cipherKeysMeta;
|
||||
|
||||
std::tie(gid, version, fileType) = decodeBlobGranuleFileKey(row.key);
|
||||
std::tie(filename, offset, length, fullFileLength, cipherKeysMeta) = decodeBlobGranuleFileValue(row.value);
|
||||
GranuleFileVersion vs = { version, fileType, filename.toString(), length };
|
||||
files.push_back(vs);
|
||||
std::tie(gid, version, fileType) = decodeBlobGranuleFileKey(row.key);
|
||||
std::tie(filename, offset, length, fullFileLength, cipherKeysMeta) =
|
||||
decodeBlobGranuleFileValue(row.value);
|
||||
GranuleFileVersion vs = { version, fileType, filename.toString(), length };
|
||||
files.push_back(vs);
|
||||
}
|
||||
if (!results.more) {
|
||||
break;
|
||||
}
|
||||
if (results.readThrough.present()) {
|
||||
begin = firstGreaterOrEqual(results.readThrough.get());
|
||||
} else {
|
||||
begin = firstGreaterThan(results.end()[-1].key);
|
||||
}
|
||||
}
|
||||
return files;
|
||||
}
|
||||
|
@ -453,3 +526,40 @@ ACTOR Future<int64_t> lastBlobEpoc(Database db, Reference<BlobConnectionProvider
|
|||
int64_t epoc = wait(BlobManifestLoader::lastBlobEpoc(loader));
|
||||
return epoc;
|
||||
}
|
||||
|
||||
// Return true if the given key range is restoring
|
||||
ACTOR Future<bool> isFullRestoreMode(Database db, KeyRangeRef keys) {
|
||||
state Transaction tr(db);
|
||||
loop {
|
||||
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
|
||||
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
|
||||
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
|
||||
try {
|
||||
state GetRangeLimits limits(SERVER_KNOBS->BLOB_MANIFEST_RW_ROWS);
|
||||
limits.minRows = 0;
|
||||
state KeySelectorRef begin = firstGreaterOrEqual(blobRestoreCommandKeys.begin);
|
||||
state KeySelectorRef end = firstGreaterOrEqual(blobRestoreCommandKeys.end);
|
||||
loop {
|
||||
RangeResult ranges = wait(tr.getRange(begin, end, limits, Snapshot::True));
|
||||
for (auto& r : ranges) {
|
||||
KeyRange keyRange = decodeBlobRestoreCommandKeyFor(r.key);
|
||||
if (keyRange.contains(keys)) {
|
||||
Standalone<BlobRestoreStatus> status = decodeBlobRestoreStatus(r.value);
|
||||
return status.progress < 100; // progress is less than 100
|
||||
}
|
||||
}
|
||||
if (!ranges.more) {
|
||||
break;
|
||||
}
|
||||
if (ranges.readThrough.present()) {
|
||||
begin = firstGreaterOrEqual(ranges.readThrough.get());
|
||||
} else {
|
||||
begin = firstGreaterThan(ranges.end()[-1].key);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
} catch (Error& e) {
|
||||
wait(tr.onError(e));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include "flow/ActorCollection.h"
|
||||
#include "flow/FastRef.h"
|
||||
#include "flow/IRandom.h"
|
||||
#include "flow/Trace.h"
|
||||
#include "flow/flow.h"
|
||||
#include "fdbclient/StorageServerInterface.h"
|
||||
#include "fdbclient/BlobConnectionProvider.h"
|
||||
|
@ -63,14 +64,7 @@ public:
|
|||
|
||||
// Start migration
|
||||
ACTOR static Future<Void> start(Reference<BlobMigrator> self) {
|
||||
if (!isFullRestoreMode()) {
|
||||
return Void();
|
||||
}
|
||||
wait(delay(10)); // TODO need to wait for a signal for readiness of blob manager
|
||||
|
||||
BlobGranuleRestoreVersionVector granules = wait(listBlobGranules(self->db_, self->blobConn_));
|
||||
self->blobGranules_ = granules;
|
||||
|
||||
wait(checkIfReadyForMigration(self));
|
||||
wait(prepare(self, normalKeys));
|
||||
wait(advanceVersion(self));
|
||||
wait(serverLoop(self));
|
||||
|
@ -78,6 +72,28 @@ public:
|
|||
}
|
||||
|
||||
private:
|
||||
// Check if blob manifest is loaded so that blob migration can start
|
||||
ACTOR static Future<Void> checkIfReadyForMigration(Reference<BlobMigrator> self) {
|
||||
loop {
|
||||
bool isFullRestore = wait(isFullRestoreMode(self->db_, normalKeys));
|
||||
if (isFullRestore) {
|
||||
BlobGranuleRestoreVersionVector granules = wait(listBlobGranules(self->db_, self->blobConn_));
|
||||
if (!granules.empty()) {
|
||||
self->blobGranules_ = granules;
|
||||
for (BlobGranuleRestoreVersion granule : granules) {
|
||||
TraceEvent("RestorableGranule")
|
||||
.detail("GranuleId", granule.granuleID.toString())
|
||||
.detail("KeyRange", granule.keyRange.toString())
|
||||
.detail("Version", granule.version)
|
||||
.detail("SizeInBytes", granule.sizeInBytes);
|
||||
}
|
||||
return Void();
|
||||
}
|
||||
}
|
||||
wait(delay(SERVER_KNOBS->BLOB_MIGRATOR_CHECK_INTERVAL));
|
||||
}
|
||||
}
|
||||
|
||||
// Prepare for data migration for given key range.
|
||||
ACTOR static Future<Void> prepare(Reference<BlobMigrator> self, KeyRangeRef keys) {
|
||||
// Register as a storage server, so that DataDistributor could start data movement after
|
||||
|
@ -136,8 +152,9 @@ private:
|
|||
}
|
||||
}
|
||||
if (owning) {
|
||||
dprint("Unassign {} from storage server {}\n", keys.toString(), id.toString());
|
||||
wait(krmSetRange(&tr, serverKeysPrefixFor(id), keys, serverKeysFalse));
|
||||
dprint("Unassign {} from storage server {}\n", keys.toString(), id.toString());
|
||||
TraceEvent("UnassignKeys").detail("Keys", keys.toString()).detail("From", id.toString());
|
||||
}
|
||||
}
|
||||
wait(tr.commit());
|
||||
|
@ -185,8 +202,10 @@ private:
|
|||
// Calculated progress
|
||||
int64_t total = sizeInBytes(self);
|
||||
int progress = (total - incompleted) * 100 / total;
|
||||
bool done = incompleted == 0;
|
||||
dprint("Progress {} :{}%. done {}\n", serverID.toString(), progress, done);
|
||||
state bool done = incompleted == 0;
|
||||
dprint("Migration progress :{}%. done {}\n", progress, done);
|
||||
TraceEvent("BlobMigratorProgress").detail("Progress", progress).detail("Done", done);
|
||||
wait(updateProgress(self, normalKeys, progress));
|
||||
return done;
|
||||
} catch (Error& e) {
|
||||
wait(tr.onError(e));
|
||||
|
@ -194,6 +213,32 @@ private:
|
|||
}
|
||||
}
|
||||
|
||||
// Update restore progress
|
||||
ACTOR static Future<Void> updateProgress(Reference<BlobMigrator> self, KeyRangeRef range, int progress) {
|
||||
state Transaction tr(self->db_);
|
||||
loop {
|
||||
try {
|
||||
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
|
||||
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
|
||||
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
|
||||
state Key key = blobRestoreCommandKeyFor(range);
|
||||
Optional<Value> value = wait(tr.get(key));
|
||||
if (value.present()) {
|
||||
Standalone<BlobRestoreStatus> status = decodeBlobRestoreStatus(value.get());
|
||||
if (progress > status.progress) {
|
||||
status.progress = progress;
|
||||
Value updatedValue = blobRestoreCommandValueFor(status);
|
||||
tr.set(key, updatedValue);
|
||||
wait(tr.commit());
|
||||
}
|
||||
}
|
||||
return Void();
|
||||
} catch (Error& e) {
|
||||
wait(tr.onError(e));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Advance version, so that future commits will have a larger version than the restored data
|
||||
ACTOR static Future<Void> advanceVersion(Reference<BlobMigrator> self) {
|
||||
state Transaction tr(self->db_);
|
||||
|
@ -207,6 +252,7 @@ private:
|
|||
if (currentVersion <= expectedVersion) {
|
||||
tr.set(minRequiredCommitVersionKey, BinaryWriter::toValue(expectedVersion + 1, Unversioned()));
|
||||
dprint("Advance version from {} to {}\n", currentVersion, expectedVersion);
|
||||
TraceEvent("AdvanceVersion").detail("Current", currentVersion).detail("New", expectedVersion);
|
||||
wait(tr.commit());
|
||||
}
|
||||
return Void();
|
||||
|
@ -218,7 +264,7 @@ private:
|
|||
|
||||
// Main server loop
|
||||
ACTOR static Future<Void> serverLoop(Reference<BlobMigrator> self) {
|
||||
self->actors_.add(waitFailureServer(self->interf_.ssi.waitFailure.getFuture()));
|
||||
self->actors_.add(waitFailureServer(self->interf_.waitFailure.getFuture()));
|
||||
self->actors_.add(logProgress(self));
|
||||
self->actors_.add(handleRequest(self));
|
||||
self->actors_.add(handleUnsupportedRequest(self));
|
||||
|
@ -226,6 +272,7 @@ private:
|
|||
try {
|
||||
choose {
|
||||
when(HaltBlobMigratorRequest req = waitNext(self->interf_.haltBlobMigrator.getFuture())) {
|
||||
dprint("Stopping blob migrator {}\n", self->interf_.id().toString());
|
||||
req.reply.send(Void());
|
||||
TraceEvent("BlobMigratorHalted", self->interf_.id()).detail("ReqID", req.requesterID);
|
||||
break;
|
||||
|
@ -237,6 +284,8 @@ private:
|
|||
throw;
|
||||
}
|
||||
}
|
||||
self->actors_.clear(true);
|
||||
dprint("Stopped blob migrator {}\n", self->interf_.id().toString());
|
||||
return Void();
|
||||
}
|
||||
|
||||
|
@ -267,7 +316,7 @@ private:
|
|||
req.reply.send(rep);
|
||||
}
|
||||
when(GetStorageMetricsRequest req = waitNext(ssi.getStorageMetrics.getFuture())) {
|
||||
fmt::print("Handle GetStorageMetrics\n");
|
||||
// fmt::print("Handle GetStorageMetrics\n");
|
||||
StorageMetrics metrics;
|
||||
metrics.bytes = sizeInBytes(self);
|
||||
GetStorageMetricsReply resp;
|
||||
|
@ -331,7 +380,7 @@ private:
|
|||
req.reply.sendError(unsupported_operation());
|
||||
}
|
||||
when(UpdateCommitCostRequest req = waitNext(ssi.updateCommitCostRequest.getFuture())) {
|
||||
dprint("Unsupported UpdateCommitCostRequest\n");
|
||||
// dprint("Unsupported UpdateCommitCostRequest\n");
|
||||
req.reply.sendError(unsupported_operation());
|
||||
}
|
||||
when(FetchCheckpointKeyValuesRequest req = waitNext(ssi.fetchCheckpointKeyValues.getFuture())) {
|
||||
|
@ -358,9 +407,9 @@ private:
|
|||
}
|
||||
|
||||
ACTOR static Future<Void> processStorageQueuingMetricsRequest(StorageQueuingMetricsRequest req) {
|
||||
dprint("Unsupported StorageQueuingMetricsRequest\n");
|
||||
// FIXME get rid of this delay. it's a temp solution to avoid starvaion scheduling of DD
|
||||
// processes
|
||||
// dprint("Unsupported StorageQueuingMetricsRequest\n");
|
||||
// FIXME get rid of this delay. it's a temp solution to avoid starvaion scheduling of DD
|
||||
// processes
|
||||
wait(delay(1));
|
||||
req.reply.sendError(unsupported_operation());
|
||||
return Void();
|
||||
|
@ -398,7 +447,8 @@ private:
|
|||
|
||||
// Main entry point
|
||||
ACTOR Future<Void> blobMigrator(BlobMigratorInterface interf, Reference<AsyncVar<ServerDBInfo> const> dbInfo) {
|
||||
fmt::print("Start blob migrator {} \n", interf.id().toString());
|
||||
TraceEvent("StartBlobMigrator").detail("Interface", interf.id().toString());
|
||||
dprint("Starting blob migrator {}\n", interf.id().toString());
|
||||
try {
|
||||
Reference<BlobMigrator> self = makeReference<BlobMigrator>(dbInfo, interf);
|
||||
wait(BlobMigrator::start(self));
|
||||
|
|
|
@ -292,6 +292,8 @@ struct BlobWorkerData : NonCopyable, ReferenceCounted<BlobWorkerData> {
|
|||
int64_t lastResidentMemory = 0;
|
||||
double lastResidentMemoryCheckTime = -100.0;
|
||||
|
||||
bool isFullRestoreMode = false;
|
||||
|
||||
BlobWorkerData(UID id, Reference<AsyncVar<ServerDBInfo> const> dbInfo, Database db)
|
||||
: id(id), db(db), tenantData(BGTenantMap(dbInfo)), dbInfo(dbInfo),
|
||||
initialSnapshotLock(new FlowLock(SERVER_KNOBS->BLOB_WORKER_INITIAL_SNAPSHOT_PARALLELISM)),
|
||||
|
@ -2146,7 +2148,7 @@ ACTOR Future<Void> blobGranuleUpdateFiles(Reference<BlobWorkerData> bwData,
|
|||
}
|
||||
|
||||
// No need to start Change Feed in full restore mode
|
||||
if (isFullRestoreMode())
|
||||
if (bwData->isFullRestoreMode)
|
||||
return Void();
|
||||
|
||||
checkMergeCandidate = granuleCheckMergeCandidate(bwData,
|
||||
|
@ -2171,13 +2173,16 @@ ACTOR Future<Void> blobGranuleUpdateFiles(Reference<BlobWorkerData> bwData,
|
|||
// will get an exception if we try to read any popped data, killing this actor
|
||||
readOldChangeFeed = true;
|
||||
|
||||
// because several feeds will be reading the same version range of this change feed at the same time, set
|
||||
// cache result to true
|
||||
oldChangeFeedFuture = bwData->db->getChangeFeedStream(cfData,
|
||||
oldCFKey.get(),
|
||||
startVersion + 1,
|
||||
startState.changeFeedStartVersion,
|
||||
metadata->keyRange,
|
||||
bwData->changeFeedStreamReplyBufferSize,
|
||||
false);
|
||||
false,
|
||||
{ ReadType::NORMAL, CacheResult::True });
|
||||
|
||||
} else {
|
||||
readOldChangeFeed = false;
|
||||
|
@ -2281,7 +2286,7 @@ ACTOR Future<Void> blobGranuleUpdateFiles(Reference<BlobWorkerData> bwData,
|
|||
// popped up to V+1 is ok. Or in other words, if the last delta @ V, we only missed data
|
||||
// at V+1 onward if popVersion >= V+2
|
||||
if (metadata->bufferedDeltaVersion < metadata->activeCFData.get()->popVersion - 1) {
|
||||
CODE_PROBE(true, "Blob Worker detected popped");
|
||||
CODE_PROBE(true, "Blob Worker detected popped", probe::decoration::rare);
|
||||
TraceEvent("BlobWorkerChangeFeedPopped", bwData->id)
|
||||
.detail("Granule", metadata->keyRange)
|
||||
.detail("GranuleID", startState.granuleID)
|
||||
|
@ -2460,6 +2465,8 @@ ACTOR Future<Void> blobGranuleUpdateFiles(Reference<BlobWorkerData> bwData,
|
|||
if (readOldChangeFeed) {
|
||||
ASSERT(cfRollbackVersion + 1 < startState.changeFeedStartVersion);
|
||||
ASSERT(oldCFKey.present());
|
||||
// because several feeds will be reading the same version range of this change
|
||||
// feed at the same time, set cache result to true
|
||||
oldChangeFeedFuture =
|
||||
bwData->db->getChangeFeedStream(cfData,
|
||||
oldCFKey.get(),
|
||||
|
@ -2467,7 +2474,8 @@ ACTOR Future<Void> blobGranuleUpdateFiles(Reference<BlobWorkerData> bwData,
|
|||
startState.changeFeedStartVersion,
|
||||
metadata->keyRange,
|
||||
bwData->changeFeedStreamReplyBufferSize,
|
||||
false);
|
||||
false,
|
||||
{ ReadType::NORMAL, CacheResult::True });
|
||||
|
||||
} else {
|
||||
if (cfRollbackVersion + 1 < startState.changeFeedStartVersion) {
|
||||
|
@ -3588,7 +3596,7 @@ ACTOR Future<Void> doBlobGranuleFileRequest(Reference<BlobWorkerData> bwData, Bl
|
|||
state Reference<GranuleMetadata> metadata = m;
|
||||
// state Version granuleBeginVersion = req.beginVersion;
|
||||
// skip waiting for CF ready for recovery mode
|
||||
if (!isFullRestoreMode()) {
|
||||
if (!bwData->isFullRestoreMode) {
|
||||
choose {
|
||||
when(wait(metadata->readable.getFuture())) {}
|
||||
when(wait(metadata->cancelled.getFuture())) { throw wrong_shard_server(); }
|
||||
|
@ -3646,7 +3654,7 @@ ACTOR Future<Void> doBlobGranuleFileRequest(Reference<BlobWorkerData> bwData, Bl
|
|||
// this is an active granule query
|
||||
loop {
|
||||
// skip check since CF doesn't start for bare metal recovery mode
|
||||
if (isFullRestoreMode()) {
|
||||
if (bwData->isFullRestoreMode) {
|
||||
break;
|
||||
}
|
||||
if (!metadata->activeCFData.get().isValid() || !metadata->cancelled.canBeSet()) {
|
||||
|
@ -3689,7 +3697,7 @@ ACTOR Future<Void> doBlobGranuleFileRequest(Reference<BlobWorkerData> bwData, Bl
|
|||
// if feed was popped by another worker and BW only got empty versions, it wouldn't itself see that it
|
||||
// got popped, but we can still reject the in theory this should never happen with other protections but
|
||||
// it's a useful and inexpensive sanity check
|
||||
if (!isFullRestoreMode()) {
|
||||
if (!bwData->isFullRestoreMode) {
|
||||
Version emptyVersion = metadata->activeCFData.get()->popVersion - 1;
|
||||
if (req.readVersion > metadata->durableDeltaVersion.get() &&
|
||||
emptyVersion > metadata->bufferedDeltaVersion) {
|
||||
|
@ -3985,7 +3993,7 @@ ACTOR Future<GranuleStartState> openGranule(Reference<BlobWorkerData> bwData, As
|
|||
|
||||
ForcedPurgeState purgeState = wait(fForcedPurgeState);
|
||||
if (purgeState != ForcedPurgeState::NonePurged) {
|
||||
CODE_PROBE(true, "Worker trying to open force purged granule");
|
||||
CODE_PROBE(true, "Worker trying to open force purged granule", probe::decoration::rare);
|
||||
if (BW_DEBUG) {
|
||||
fmt::print("Granule [{0} - {1}) is force purged on BW {2}, abandoning\n",
|
||||
req.keyRange.begin.printable(),
|
||||
|
@ -3995,6 +4003,9 @@ ACTOR Future<GranuleStartState> openGranule(Reference<BlobWorkerData> bwData, As
|
|||
throw granule_assignment_conflict();
|
||||
}
|
||||
|
||||
bool isFullRestore = wait(isFullRestoreMode(bwData->db, req.keyRange));
|
||||
bwData->isFullRestoreMode = isFullRestore;
|
||||
|
||||
Optional<Value> prevLockValue = wait(fLockValue);
|
||||
state bool hasPrevOwner = prevLockValue.present();
|
||||
state bool createChangeFeed = false;
|
||||
|
@ -4069,7 +4080,7 @@ ACTOR Future<GranuleStartState> openGranule(Reference<BlobWorkerData> bwData, As
|
|||
}
|
||||
|
||||
// for recovery mode - don't create change feed, don't create snapshot
|
||||
if (isFullRestoreMode()) {
|
||||
if (bwData->isFullRestoreMode) {
|
||||
createChangeFeed = false;
|
||||
info.doSnapshot = false;
|
||||
GranuleFiles granuleFiles = wait(loadPreviousFiles(&tr, info.granuleID));
|
||||
|
@ -4091,7 +4102,7 @@ ACTOR Future<GranuleStartState> openGranule(Reference<BlobWorkerData> bwData, As
|
|||
}
|
||||
}
|
||||
|
||||
if (createChangeFeed && !isFullRestoreMode()) {
|
||||
if (createChangeFeed && !bwData->isFullRestoreMode) {
|
||||
// create new change feed for new version of granule
|
||||
wait(updateChangeFeed(
|
||||
&tr, granuleIDToCFKey(info.granuleID), ChangeFeedStatus::CHANGE_FEED_CREATE, req.keyRange));
|
||||
|
@ -4103,7 +4114,8 @@ ACTOR Future<GranuleStartState> openGranule(Reference<BlobWorkerData> bwData, As
|
|||
// If anything in previousGranules, need to do the handoff logic and set
|
||||
// ret.previousChangeFeedId, and the previous durable version will come from the previous
|
||||
// granules
|
||||
if (info.history.present() && info.history.get().value.parentVersions.size() > 0 && !isFullRestoreMode()) {
|
||||
if (info.history.present() && info.history.get().value.parentVersions.size() > 0 &&
|
||||
!bwData->isFullRestoreMode) {
|
||||
CODE_PROBE(true, "Granule open found parent");
|
||||
if (info.history.get().value.parentVersions.size() == 1) { // split
|
||||
state KeyRangeRef parentRange(info.history.get().value.parentBoundaries[0],
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
#include <map>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
#include "fdbclient/FDBTypes.h"
|
||||
|
@ -691,7 +692,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
|
|||
WorkerDetails newMGWorker;
|
||||
if (self->db.blobGranulesEnabled.get()) {
|
||||
newBMWorker = findNewProcessForSingleton(self, ProcessClass::BlobManager, id_used);
|
||||
if (isFullRestoreMode()) {
|
||||
if (self->db.blobRestoreEnabled.get()) {
|
||||
newMGWorker = findNewProcessForSingleton(self, ProcessClass::BlobMigrator, id_used);
|
||||
}
|
||||
}
|
||||
|
@ -710,7 +711,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
|
|||
ProcessClass::Fitness bestFitnessForMG;
|
||||
if (self->db.blobGranulesEnabled.get()) {
|
||||
bestFitnessForBM = findBestFitnessForSingleton(self, newBMWorker, ProcessClass::BlobManager);
|
||||
if (isFullRestoreMode()) {
|
||||
if (self->db.blobRestoreEnabled.get()) {
|
||||
bestFitnessForMG = findBestFitnessForSingleton(self, newMGWorker, ProcessClass::BlobManager);
|
||||
}
|
||||
}
|
||||
|
@ -744,7 +745,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
|
|||
if (self->db.blobGranulesEnabled.get()) {
|
||||
bmHealthy = isHealthySingleton<BlobManagerInterface>(
|
||||
self, newBMWorker, bmSingleton, bestFitnessForBM, self->recruitingBlobManagerID);
|
||||
if (isFullRestoreMode()) {
|
||||
if (self->db.blobRestoreEnabled.get()) {
|
||||
mgHealthy = isHealthySingleton<BlobMigratorInterface>(
|
||||
self, newMGWorker, mgSingleton, bestFitnessForMG, self->recruitingBlobMigratorID);
|
||||
}
|
||||
|
@ -775,7 +776,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
|
|||
if (self->db.blobGranulesEnabled.get()) {
|
||||
currBMProcessId = bmSingleton.interface.get().locality.processId();
|
||||
newBMProcessId = newBMWorker.interf.locality.processId();
|
||||
if (isFullRestoreMode()) {
|
||||
if (self->db.blobRestoreEnabled.get()) {
|
||||
currMGProcessId = mgSingleton.interface.get().locality.processId();
|
||||
newMGProcessId = newMGWorker.interf.locality.processId();
|
||||
}
|
||||
|
@ -792,7 +793,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
|
|||
if (self->db.blobGranulesEnabled.get()) {
|
||||
currPids.emplace_back(currBMProcessId);
|
||||
newPids.emplace_back(newBMProcessId);
|
||||
if (isFullRestoreMode()) {
|
||||
if (self->db.blobRestoreEnabled.get()) {
|
||||
currPids.emplace_back(currMGProcessId);
|
||||
newPids.emplace_back(newMGProcessId);
|
||||
}
|
||||
|
@ -810,7 +811,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
|
|||
if (!self->db.blobGranulesEnabled.get()) {
|
||||
ASSERT(currColocMap[currBMProcessId] == 0);
|
||||
ASSERT(newColocMap[newBMProcessId] == 0);
|
||||
if (isFullRestoreMode()) {
|
||||
if (self->db.blobRestoreEnabled.get()) {
|
||||
ASSERT(currColocMap[currMGProcessId] == 0);
|
||||
ASSERT(newColocMap[newMGProcessId] == 0);
|
||||
}
|
||||
|
@ -836,7 +837,7 @@ void checkBetterSingletons(ClusterControllerData* self) {
|
|||
ddSingleton.recruit(self);
|
||||
} else if (self->db.blobGranulesEnabled.get() && newColocMap[newBMProcessId] < currColocMap[currBMProcessId]) {
|
||||
bmSingleton.recruit(self);
|
||||
} else if (self->db.blobGranulesEnabled.get() && isFullRestoreMode() &&
|
||||
} else if (self->db.blobGranulesEnabled.get() && self->db.blobRestoreEnabled.get() &&
|
||||
newColocMap[newMGProcessId] < currColocMap[currMGProcessId]) {
|
||||
mgSingleton.recruit(self);
|
||||
} else if (SERVER_KNOBS->ENABLE_ENCRYPTION && newColocMap[newEKPProcessId] < currColocMap[currEKPProcessId]) {
|
||||
|
@ -1404,13 +1405,13 @@ ACTOR Future<Void> registerWorker(RegisterWorkerRequest req,
|
|||
self, w, currSingleton, registeringSingleton, self->recruitingRatekeeperID);
|
||||
}
|
||||
|
||||
if (self->db.blobGranulesEnabled.get() && isFullRestoreMode() && req.blobManagerInterf.present()) {
|
||||
if (self->db.blobGranulesEnabled.get() && req.blobManagerInterf.present()) {
|
||||
auto currSingleton = BlobManagerSingleton(self->db.serverInfo->get().blobManager);
|
||||
auto registeringSingleton = BlobManagerSingleton(req.blobManagerInterf);
|
||||
haltRegisteringOrCurrentSingleton<BlobManagerInterface>(
|
||||
self, w, currSingleton, registeringSingleton, self->recruitingBlobManagerID);
|
||||
}
|
||||
if (req.blobMigratorInterf.present()) {
|
||||
if (req.blobMigratorInterf.present() && self->db.blobRestoreEnabled.get()) {
|
||||
auto currSingleton = BlobMigratorSingleton(self->db.serverInfo->get().blobMigrator);
|
||||
auto registeringSingleton = BlobMigratorSingleton(req.blobMigratorInterf);
|
||||
haltRegisteringOrCurrentSingleton<BlobMigratorInterface>(
|
||||
|
@ -2553,6 +2554,43 @@ ACTOR Future<int64_t> getNextBMEpoch(ClusterControllerData* self) {
|
|||
}
|
||||
}
|
||||
|
||||
ACTOR Future<Void> watchBlobRestoreCommand(ClusterControllerData* self) {
|
||||
state Reference<ReadYourWritesTransaction> tr = makeReference<ReadYourWritesTransaction>(self->cx);
|
||||
state Key blobRestoreCommandKey = blobRestoreCommandKeyFor(normalKeys);
|
||||
loop {
|
||||
try {
|
||||
tr->reset();
|
||||
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
|
||||
tr->setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
|
||||
Optional<Value> blobRestoreCommand = wait(tr->get(blobRestoreCommandKey));
|
||||
if (blobRestoreCommand.present()) {
|
||||
Standalone<BlobRestoreStatus> status = decodeBlobRestoreStatus(blobRestoreCommand.get());
|
||||
TraceEvent("WatchBlobRestoreCommand").detail("Progress", status.progress);
|
||||
if (status.progress == 0) {
|
||||
self->db.blobRestoreEnabled.set(true);
|
||||
if (self->db.blobGranulesEnabled.get()) {
|
||||
const auto& blobManager = self->db.serverInfo->get().blobManager;
|
||||
if (blobManager.present()) {
|
||||
BlobManagerSingleton(blobManager)
|
||||
.haltBlobGranules(self, blobManager.get().locality.processId());
|
||||
}
|
||||
const auto& blobMigrator = self->db.serverInfo->get().blobMigrator;
|
||||
if (blobMigrator.present()) {
|
||||
BlobMigratorSingleton(blobMigrator).halt(self, blobMigrator.get().locality.processId());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
state Future<Void> watch = tr->watch(blobRestoreCommandKey);
|
||||
wait(tr->commit());
|
||||
wait(watch);
|
||||
} catch (Error& e) {
|
||||
wait(tr->onError(e));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ACTOR Future<Void> startBlobMigrator(ClusterControllerData* self, double waitTime) {
|
||||
// If master fails at the same time, give it a chance to clear master PID.
|
||||
// Also wait to avoid too many consecutive recruits in a small time window.
|
||||
|
@ -2629,9 +2667,8 @@ ACTOR Future<Void> monitorBlobMigrator(ClusterControllerData* self) {
|
|||
}
|
||||
loop {
|
||||
if (self->db.serverInfo->get().blobMigrator.present() && !self->recruitBlobMigrator.get()) {
|
||||
state Future<Void> wfClient =
|
||||
waitFailureClient(self->db.serverInfo->get().blobMigrator.get().ssi.waitFailure,
|
||||
SERVER_KNOBS->BLOB_MIGRATOR_FAILURE_TIME);
|
||||
state Future<Void> wfClient = waitFailureClient(self->db.serverInfo->get().blobMigrator.get().waitFailure,
|
||||
SERVER_KNOBS->BLOB_MIGRATOR_FAILURE_TIME);
|
||||
loop {
|
||||
choose {
|
||||
when(wait(wfClient)) {
|
||||
|
@ -2643,11 +2680,11 @@ ACTOR Future<Void> monitorBlobMigrator(ClusterControllerData* self) {
|
|||
when(wait(self->recruitBlobMigrator.onChange())) {}
|
||||
}
|
||||
}
|
||||
} else if (self->db.blobGranulesEnabled.get() && isFullRestoreMode()) {
|
||||
} else if (self->db.blobGranulesEnabled.get() && self->db.blobRestoreEnabled.get()) {
|
||||
// if there is no blob migrator present but blob granules are now enabled, recruit a BM
|
||||
wait(startBlobMigrator(self, recruitThrottler.newRecruitment()));
|
||||
} else {
|
||||
wait(self->db.blobGranulesEnabled.onChange());
|
||||
wait(self->db.blobGranulesEnabled.onChange() || self->db.blobRestoreEnabled.onChange());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -2778,7 +2815,7 @@ ACTOR Future<Void> monitorBlobManager(ClusterControllerData* self) {
|
|||
const auto& blobManager = self->db.serverInfo->get().blobManager;
|
||||
BlobManagerSingleton(blobManager)
|
||||
.haltBlobGranules(self, blobManager.get().locality.processId());
|
||||
if (isFullRestoreMode()) {
|
||||
if (self->db.blobRestoreEnabled.get()) {
|
||||
const auto& blobMigrator = self->db.serverInfo->get().blobMigrator;
|
||||
BlobMigratorSingleton(blobMigrator).halt(self, blobMigrator.get().locality.processId());
|
||||
}
|
||||
|
@ -3079,8 +3116,9 @@ ACTOR Future<Void> clusterControllerCore(ClusterControllerFullInterface interf,
|
|||
self.addActor.send(monitorDataDistributor(&self));
|
||||
self.addActor.send(monitorRatekeeper(&self));
|
||||
self.addActor.send(monitorBlobManager(&self));
|
||||
self.addActor.send(monitorBlobMigrator(&self));
|
||||
self.addActor.send(watchBlobGranulesConfigKey(&self));
|
||||
self.addActor.send(monitorBlobMigrator(&self));
|
||||
self.addActor.send(watchBlobRestoreCommand(&self));
|
||||
self.addActor.send(monitorConsistencyScan(&self));
|
||||
self.addActor.send(metaclusterMetricsUpdater(&self));
|
||||
self.addActor.send(dbInfoUpdater(&self));
|
||||
|
|
|
@ -414,7 +414,8 @@ ACTOR Future<Void> commitBatcher(ProxyCommitData* commitData,
|
|||
}
|
||||
|
||||
Optional<TenantNameRef> const& tenantName = req.tenantInfo.name;
|
||||
if (tenantName.present() && commitData->tenantsOverStorageQuota.count(tenantName.get()) > 0) {
|
||||
if (SERVER_KNOBS->STORAGE_QUOTA_ENABLED && tenantName.present() &&
|
||||
commitData->tenantsOverStorageQuota.count(tenantName.get()) > 0) {
|
||||
req.reply.sendError(storage_quota_exceeded());
|
||||
continue;
|
||||
}
|
||||
|
@ -1309,7 +1310,7 @@ ACTOR Future<WriteMutationRefVar> writeMutationFetchEncryptKey(CommitBatchContex
|
|||
wait(getLatestEncryptCipherKey(self->pProxyCommitData->db, domainId, p.first, BlobCipherMetrics::TLOG));
|
||||
self->cipherKeys[domainId] = cipherKey;
|
||||
|
||||
CODE_PROBE(true, "Raw access mutation encryption");
|
||||
CODE_PROBE(true, "Raw access mutation encryption", probe::decoration::rare);
|
||||
ASSERT_NE(domainId, INVALID_ENCRYPT_DOMAIN_ID);
|
||||
encryptedMutation = mutation->encrypt(self->cipherKeys, domainId, *arena, BlobCipherMetrics::TLOG);
|
||||
self->toCommit.writeTypedMessage(encryptedMutation);
|
||||
|
@ -2971,7 +2972,9 @@ ACTOR Future<Void> commitProxyServerCore(CommitProxyInterface proxy,
|
|||
proxy.expireIdempotencyId,
|
||||
commitData.expectedIdempotencyIdCountForKey,
|
||||
&commitData.idempotencyClears));
|
||||
addActor.send(monitorTenantsOverStorageQuota(proxy.id(), db, &commitData));
|
||||
if (SERVER_KNOBS->STORAGE_QUOTA_ENABLED) {
|
||||
addActor.send(monitorTenantsOverStorageQuota(proxy.id(), db, &commitData));
|
||||
}
|
||||
|
||||
// wait for txnStateStore recovery
|
||||
wait(success(commitData.txnStateStore->readValue(StringRef())));
|
||||
|
|
|
@ -316,7 +316,7 @@ class ConfigNodeImpl {
|
|||
ACTOR static Future<Void> getConfigClasses(ConfigNodeImpl* self, ConfigTransactionGetConfigClassesRequest req) {
|
||||
state Optional<CoordinatorsHash> locked = wait(getLocked(self));
|
||||
if (locked.present()) {
|
||||
CODE_PROBE(true, "attempting to read config classes from locked ConfigNode");
|
||||
CODE_PROBE(true, "attempting to read config classes from locked ConfigNode", probe::decoration::rare);
|
||||
req.reply.sendError(coordinators_changed());
|
||||
return Void();
|
||||
}
|
||||
|
@ -360,7 +360,7 @@ class ConfigNodeImpl {
|
|||
ACTOR static Future<Void> getKnobs(ConfigNodeImpl* self, ConfigTransactionGetKnobsRequest req) {
|
||||
state Optional<CoordinatorsHash> locked = wait(getLocked(self));
|
||||
if (locked.present()) {
|
||||
CODE_PROBE(true, "attempting to read knobs from locked ConfigNode");
|
||||
CODE_PROBE(true, "attempting to read knobs from locked ConfigNode", probe::decoration::rare);
|
||||
req.reply.sendError(coordinators_changed());
|
||||
return Void();
|
||||
}
|
||||
|
|
|
@ -697,6 +697,9 @@ struct DDQueue : public IDDRelocationQueue {
|
|||
RemoteTeamIsFull,
|
||||
RemoteTeamIsNotHealthy,
|
||||
NoAvailablePhysicalShard,
|
||||
UnknownForceNew,
|
||||
NoAnyHealthy,
|
||||
DstOverloaded,
|
||||
NumberOfTypes,
|
||||
};
|
||||
std::vector<int> retryFindDstReasonCount;
|
||||
|
@ -1423,6 +1426,7 @@ ACTOR Future<Void> dataDistributionRelocator(DDQueue* self,
|
|||
state double startTime = now();
|
||||
state std::vector<UID> destIds;
|
||||
state uint64_t debugID = deterministicRandom()->randomUInt64();
|
||||
state bool enableShardMove = SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && SERVER_KNOBS->ENABLE_DD_PHYSICAL_SHARD;
|
||||
|
||||
try {
|
||||
if (now() - self->lastInterval < 1.0) {
|
||||
|
@ -1539,8 +1543,7 @@ ACTOR Future<Void> dataDistributionRelocator(DDQueue* self,
|
|||
req.src = rd.src;
|
||||
req.completeSources = rd.completeSources;
|
||||
|
||||
if (SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && SERVER_KNOBS->ENABLE_DD_PHYSICAL_SHARD &&
|
||||
tciIndex == 1) {
|
||||
if (enableShardMove && tciIndex == 1) {
|
||||
ASSERT(physicalShardIDCandidate != UID().first() &&
|
||||
physicalShardIDCandidate != anonymousShardId.first());
|
||||
Optional<ShardsAffectedByTeamFailure::Team> remoteTeamWithPhysicalShard =
|
||||
|
@ -1587,64 +1590,65 @@ ACTOR Future<Void> dataDistributionRelocator(DDQueue* self,
|
|||
anyWithSource = true;
|
||||
}
|
||||
|
||||
if (SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && SERVER_KNOBS->ENABLE_DD_PHYSICAL_SHARD) {
|
||||
// critical to the correctness of team selection by PhysicalShardCollection
|
||||
// tryGetAvailableRemoteTeamWith() enforce to select a remote team paired with a primary
|
||||
// team Thus, tryGetAvailableRemoteTeamWith() may select an almost full remote team In this
|
||||
// case, we must re-select a remote team We set foundTeams = false to avoid finishing team
|
||||
// selection Then, forceToUseNewPhysicalShard is set, which enforce to use getTeam to select
|
||||
// a remote team
|
||||
if (enableShardMove) {
|
||||
if (tciIndex == 1 && !forceToUseNewPhysicalShard) {
|
||||
// critical to the correctness of team selection by PhysicalShardCollection
|
||||
// tryGetAvailableRemoteTeamWith() enforce to select a remote team paired with a primary
|
||||
// team Thus, tryGetAvailableRemoteTeamWith() may select an almost full remote team In
|
||||
// this case, we must re-select a remote team We set foundTeams = false to avoid
|
||||
// finishing team selection Then, forceToUseNewPhysicalShard is set, which enforce to
|
||||
// use getTeam to select a remote team
|
||||
bool minAvailableSpaceRatio = bestTeam.first.get()->getMinAvailableSpaceRatio(true);
|
||||
if (minAvailableSpaceRatio < SERVER_KNOBS->TARGET_AVAILABLE_SPACE_RATIO) {
|
||||
retryFindDstReason = DDQueue::RetryFindDstReason::RemoteTeamIsFull;
|
||||
foundTeams = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && SERVER_KNOBS->ENABLE_DD_PHYSICAL_SHARD) {
|
||||
// critical to the correctness of team selection by PhysicalShardCollection
|
||||
// tryGetAvailableRemoteTeamWith() enforce to select a remote team paired with a primary
|
||||
// team Thus, tryGetAvailableRemoteTeamWith() may select an unhealthy remote team In
|
||||
// this case, we must re-select a remote team We set foundTeams = false to avoid
|
||||
// finishing team selection Then, forceToUseNewPhysicalShard is set, which enforce to
|
||||
// use getTeam to select a remote team
|
||||
if (!bestTeam.first.get()->isHealthy()) {
|
||||
retryFindDstReason = DDQueue::RetryFindDstReason::RemoteTeamIsNotHealthy;
|
||||
foundTeams = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
bestTeams.emplace_back(bestTeam.first.get(), true);
|
||||
// Always set bestTeams[i].second = true to disable optimization in data move between DCs
|
||||
// for the correctness of PhysicalShardCollection
|
||||
// Currently, enabling the optimization will break the invariant of PhysicalShardCollection
|
||||
// Invariant: once a physical shard is created with a specific set of SSes, this SS set will
|
||||
// never get changed.
|
||||
|
||||
if (tciIndex == 0) {
|
||||
ASSERT(foundTeams);
|
||||
ShardsAffectedByTeamFailure::Team primaryTeam =
|
||||
ShardsAffectedByTeamFailure::Team(bestTeams[0].first->getServerIDs(), true);
|
||||
if (forceToUseNewPhysicalShard &&
|
||||
retryFindDstReason == DDQueue::RetryFindDstReason::None) {
|
||||
// This is an abnormally state where we try to create new physical shard, but we
|
||||
// don't know why. This state is to track unknown reason for force creating new
|
||||
// physical shard.
|
||||
retryFindDstReason = DDQueue::RetryFindDstReason::UnknownForceNew;
|
||||
}
|
||||
physicalShardIDCandidate =
|
||||
self->physicalShardCollection->determinePhysicalShardIDGivenPrimaryTeam(
|
||||
primaryTeam, metrics, forceToUseNewPhysicalShard, debugID);
|
||||
ASSERT(physicalShardIDCandidate != UID().first() &&
|
||||
physicalShardIDCandidate != anonymousShardId.first());
|
||||
}
|
||||
} else {
|
||||
bestTeams.emplace_back(bestTeam.first.get(), bestTeam.second);
|
||||
}
|
||||
|
||||
// get physicalShardIDCandidate
|
||||
if (SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && SERVER_KNOBS->ENABLE_DD_PHYSICAL_SHARD &&
|
||||
tciIndex == 0) {
|
||||
ASSERT(foundTeams);
|
||||
ShardsAffectedByTeamFailure::Team primaryTeam =
|
||||
ShardsAffectedByTeamFailure::Team(bestTeams[0].first->getServerIDs(), true);
|
||||
physicalShardIDCandidate =
|
||||
self->physicalShardCollection->determinePhysicalShardIDGivenPrimaryTeam(
|
||||
primaryTeam, metrics, forceToUseNewPhysicalShard, debugID);
|
||||
ASSERT(physicalShardIDCandidate != UID().first() &&
|
||||
physicalShardIDCandidate != anonymousShardId.first());
|
||||
}
|
||||
}
|
||||
tciIndex++;
|
||||
}
|
||||
|
||||
// critical to the correctness of team selection by PhysicalShardCollection
|
||||
// tryGetAvailableRemoteTeamWith() enforce to select a remote team paired with a primary team
|
||||
// Thus, tryGetAvailableRemoteTeamWith() may select an unhealthy remote team
|
||||
// In this case, we must re-select a remote team
|
||||
// We set foundTeams = false to avoid finishing team selection
|
||||
// Then, forceToUseNewPhysicalShard is set, which enforce to use getTeam to select a remote team
|
||||
if (SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && SERVER_KNOBS->ENABLE_DD_PHYSICAL_SHARD &&
|
||||
bestTeams.size() > 1 && !forceToUseNewPhysicalShard) {
|
||||
if (!bestTeams[1].first->isHealthy()) {
|
||||
retryFindDstReason = DDQueue::RetryFindDstReason::RemoteTeamIsNotHealthy;
|
||||
foundTeams = false;
|
||||
}
|
||||
}
|
||||
|
||||
// once we've found healthy candidate teams, make sure they're not overloaded with outstanding moves
|
||||
// already
|
||||
anyDestOverloaded = !canLaunchDest(bestTeams, rd.priority, self->destBusymap);
|
||||
|
@ -1654,6 +1658,14 @@ ACTOR Future<Void> dataDistributionRelocator(DDQueue* self,
|
|||
break;
|
||||
}
|
||||
|
||||
if (retryFindDstReason == DDQueue::RetryFindDstReason::None && foundTeams) {
|
||||
if (!anyHealthy) {
|
||||
retryFindDstReason = DDQueue::RetryFindDstReason::NoAnyHealthy;
|
||||
} else if (anyDestOverloaded) {
|
||||
retryFindDstReason = DDQueue::RetryFindDstReason::DstOverloaded;
|
||||
}
|
||||
}
|
||||
|
||||
if (anyDestOverloaded) {
|
||||
CODE_PROBE(true, "Destination overloaded throttled move");
|
||||
destOverloadedCount++;
|
||||
|
@ -1665,7 +1677,7 @@ ACTOR Future<Void> dataDistributionRelocator(DDQueue* self,
|
|||
.detail("AnyDestOverloaded", anyDestOverloaded)
|
||||
.detail("NumOfTeamCollections", self->teamCollections.size())
|
||||
.detail("Servers", destServersString(bestTeams));
|
||||
if (SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && SERVER_KNOBS->ENABLE_DD_PHYSICAL_SHARD) {
|
||||
if (enableShardMove) {
|
||||
if (rd.isRestore() && destOverloadedCount > 50) {
|
||||
throw data_move_dest_team_not_found();
|
||||
}
|
||||
|
@ -1689,14 +1701,14 @@ ACTOR Future<Void> dataDistributionRelocator(DDQueue* self,
|
|||
// When forceToUseNewPhysicalShard = false, we get paired primary team and remote team
|
||||
// However, this may be failed
|
||||
// Any retry triggers to use new physicalShard which enters the normal routine
|
||||
if (SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && SERVER_KNOBS->ENABLE_DD_PHYSICAL_SHARD) {
|
||||
if (enableShardMove) {
|
||||
forceToUseNewPhysicalShard = true;
|
||||
}
|
||||
|
||||
// TODO different trace event + knob for overloaded? Could wait on an async var for done moves
|
||||
}
|
||||
|
||||
if (SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && SERVER_KNOBS->ENABLE_DD_PHYSICAL_SHARD) {
|
||||
if (enableShardMove) {
|
||||
if (!rd.isRestore()) {
|
||||
// when !rd.isRestore(), dataMoveId is just decided as physicalShardIDCandidate
|
||||
// thus, update the physicalShardIDCandidate to related data structures
|
||||
|
@ -1954,7 +1966,7 @@ ACTOR Future<Void> dataDistributionRelocator(DDQueue* self,
|
|||
self->shardsAffectedByTeamFailure->finishMove(rd.keys);
|
||||
relocationComplete.send(rd);
|
||||
|
||||
if (SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && SERVER_KNOBS->ENABLE_DD_PHYSICAL_SHARD) {
|
||||
if (enableShardMove) {
|
||||
// update physical shard collection
|
||||
std::vector<ShardsAffectedByTeamFailure::Team> selectedTeams;
|
||||
for (int i = 0; i < bestTeams.size(); i++) {
|
||||
|
@ -2525,6 +2537,12 @@ ACTOR Future<Void> dataDistributionQueue(Reference<IDDTxnProcessor> db,
|
|||
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::RemoteTeamIsFull])
|
||||
.detail("RemoteTeamIsNotHealthy",
|
||||
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::RemoteTeamIsNotHealthy])
|
||||
.detail("UnknownForceNew",
|
||||
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::UnknownForceNew])
|
||||
.detail("NoAnyHealthy",
|
||||
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::NoAnyHealthy])
|
||||
.detail("DstOverloaded",
|
||||
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::DstOverloaded])
|
||||
.detail(
|
||||
"NoAvailablePhysicalShard",
|
||||
self.retryFindDstReasonCount[DDQueue::RetryFindDstReason::NoAvailablePhysicalShard]);
|
||||
|
|
|
@ -623,7 +623,9 @@ std::vector<RangeToSplit> findTenantShardBoundaries(KeyRangeMap<ShardTrackedData
|
|||
result.emplace_back(shardContainingTenantEnd, faultLines);
|
||||
}
|
||||
} else {
|
||||
CODE_PROBE(true, "Shards that contain tenant key range not split since shard stats are unavailable");
|
||||
CODE_PROBE(true,
|
||||
"Shards that contain tenant key range not split since shard stats are unavailable",
|
||||
probe::decoration::rare);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1358,7 +1360,7 @@ ACTOR Future<Void> fetchTopKShardMetrics(DataDistributionTracker* self, GetTopKM
|
|||
when(wait(g_network->isSimulated() && BUGGIFY_WITH_PROB(0.01) ? Never()
|
||||
: fetchTopKShardMetrics_impl(self, req))) {}
|
||||
when(wait(delay(SERVER_KNOBS->DD_SHARD_METRICS_TIMEOUT))) {
|
||||
CODE_PROBE(true, "TopK DD_SHARD_METRICS_TIMEOUT", probe::decoration::rare);
|
||||
CODE_PROBE(true, "TopK DD_SHARD_METRICS_TIMEOUT");
|
||||
req.reply.send(GetTopKMetricsReply());
|
||||
}
|
||||
}
|
||||
|
@ -2087,4 +2089,4 @@ TEST_CASE("/DataDistributor/Tracker/FetchTopK") {
|
|||
ASSERT(reply.minReadLoad == -1);
|
||||
|
||||
return Void();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -588,7 +588,6 @@ ACTOR Future<Void> dataDistribution(Reference<DataDistributor> self,
|
|||
state Reference<DDTeamCollection> primaryTeamCollection;
|
||||
state Reference<DDTeamCollection> remoteTeamCollection;
|
||||
state bool trackerCancelled;
|
||||
state bool ddIsTenantAware = SERVER_KNOBS->DD_TENANT_AWARENESS_ENABLED;
|
||||
loop {
|
||||
trackerCancelled = false;
|
||||
self->initialized = Promise<Void>();
|
||||
|
@ -610,7 +609,7 @@ ACTOR Future<Void> dataDistribution(Reference<DataDistributor> self,
|
|||
state Reference<AsyncVar<bool>> processingUnhealthy(new AsyncVar<bool>(false));
|
||||
state Reference<AsyncVar<bool>> processingWiggle(new AsyncVar<bool>(false));
|
||||
|
||||
if (ddIsTenantAware) {
|
||||
if (SERVER_KNOBS->DD_TENANT_AWARENESS_ENABLED || SERVER_KNOBS->STORAGE_QUOTA_ENABLED) {
|
||||
self->ddTenantCache = makeReference<TenantCache>(cx, self->ddId);
|
||||
wait(self->ddTenantCache.get()->build());
|
||||
}
|
||||
|
@ -684,6 +683,8 @@ ACTOR Future<Void> dataDistribution(Reference<DataDistributor> self,
|
|||
"DDTenantCacheMonitor",
|
||||
self->ddId,
|
||||
&normalDDQueueErrors()));
|
||||
}
|
||||
if (self->ddTenantCache.present() && SERVER_KNOBS->STORAGE_QUOTA_ENABLED) {
|
||||
actors.push_back(reportErrorsExcept(self->ddTenantCache.get()->monitorStorageQuota(),
|
||||
"StorageQuotaTracker",
|
||||
self->ddId,
|
||||
|
@ -1320,7 +1321,7 @@ GetStorageWigglerStateReply getStorageWigglerStates(Reference<DataDistributor> s
|
|||
|
||||
TenantsOverStorageQuotaReply getTenantsOverStorageQuota(Reference<DataDistributor> self) {
|
||||
TenantsOverStorageQuotaReply reply;
|
||||
if (self->ddTenantCache.present()) {
|
||||
if (self->ddTenantCache.present() && SERVER_KNOBS->STORAGE_QUOTA_ENABLED) {
|
||||
reply.tenants = self->ddTenantCache.get()->getTenantsOverQuota();
|
||||
}
|
||||
return reply;
|
||||
|
@ -1537,14 +1538,18 @@ ACTOR Future<Void> dataDistributor(DataDistributorInterface di, Reference<AsyncV
|
|||
when(DistributorSnapRequest snapReq = waitNext(di.distributorSnapReq.getFuture())) {
|
||||
auto& snapUID = snapReq.snapUID;
|
||||
if (ddSnapReqResultMap.count(snapUID)) {
|
||||
CODE_PROBE(true, "Data distributor received a duplicate finished snapshot request");
|
||||
CODE_PROBE(true,
|
||||
"Data distributor received a duplicate finished snapshot request",
|
||||
probe::decoration::rare);
|
||||
auto result = ddSnapReqResultMap[snapUID];
|
||||
result.isError() ? snapReq.reply.sendError(result.getError()) : snapReq.reply.send(result.get());
|
||||
TraceEvent("RetryFinishedDistributorSnapRequest")
|
||||
.detail("SnapUID", snapUID)
|
||||
.detail("Result", result.isError() ? result.getError().code() : 0);
|
||||
} else if (ddSnapReqMap.count(snapReq.snapUID)) {
|
||||
CODE_PROBE(true, "Data distributor received a duplicate ongoing snapshot request");
|
||||
CODE_PROBE(true,
|
||||
"Data distributor received a duplicate ongoing snapshot request",
|
||||
probe::decoration::rare);
|
||||
TraceEvent("RetryOngoingDistributorSnapRequest").detail("SnapUID", snapUID);
|
||||
ASSERT(snapReq.snapPayload == ddSnapReqMap[snapUID].snapPayload);
|
||||
ddSnapReqMap[snapUID] = snapReq;
|
||||
|
|
|
@ -475,7 +475,7 @@ public:
|
|||
if (targetTps.present()) {
|
||||
auto const smoothedTargetTps = stats.updateAndGetTargetLimit(targetTps.get());
|
||||
te.detail("SmoothedTargetTps", smoothedTargetTps).detail("NumProxies", numProxies);
|
||||
result[tag] = smoothedTargetTps / numProxies;
|
||||
result[tag] = std::max(1.0, smoothedTargetTps / numProxies);
|
||||
} else {
|
||||
te.disable();
|
||||
}
|
||||
|
|
|
@ -49,7 +49,7 @@ bool GrvProxyTagThrottler::TagQueue::isMaxThrottled(double maxThrottleDuration)
|
|||
}
|
||||
|
||||
void GrvProxyTagThrottler::TagQueue::rejectRequests(LatencyBandsMap& latencyBandsMap) {
|
||||
CODE_PROBE(true, "GrvProxyTagThrottler rejecting requests");
|
||||
CODE_PROBE(true, "GrvProxyTagThrottler rejecting requests", probe::decoration::rare);
|
||||
while (!requests.empty()) {
|
||||
auto& delayedReq = requests.front();
|
||||
delayedReq.updateProxyTagThrottledDuration(latencyBandsMap);
|
||||
|
@ -58,6 +58,14 @@ void GrvProxyTagThrottler::TagQueue::rejectRequests(LatencyBandsMap& latencyBand
|
|||
}
|
||||
}
|
||||
|
||||
void GrvProxyTagThrottler::TagQueue::endReleaseWindow(int64_t numStarted, double elapsed) {
|
||||
if (rateInfo.present()) {
|
||||
CODE_PROBE(requests.empty(), "Tag queue ending release window with empty request queue");
|
||||
CODE_PROBE(!requests.empty(), "Tag queue ending release window with requests still queued");
|
||||
rateInfo.get().endReleaseWindow(numStarted, requests.empty(), elapsed);
|
||||
}
|
||||
}
|
||||
|
||||
GrvProxyTagThrottler::GrvProxyTagThrottler(double maxThrottleDuration)
|
||||
: maxThrottleDuration(maxThrottleDuration),
|
||||
latencyBandsMap("GrvProxyTagThrottler",
|
||||
|
@ -202,16 +210,14 @@ void GrvProxyTagThrottler::releaseTransactions(double elapsed,
|
|||
}
|
||||
}
|
||||
|
||||
// End release windows for queues with valid rateInfo
|
||||
// End release windows for all tag queues
|
||||
{
|
||||
TransactionTagMap<uint32_t> transactionsReleasedMap;
|
||||
for (const auto& [tag, count] : transactionsReleased) {
|
||||
transactionsReleasedMap[tag] = count;
|
||||
}
|
||||
for (auto& [tag, queue] : queues) {
|
||||
if (queue.rateInfo.present()) {
|
||||
queue.rateInfo.get().endReleaseWindow(transactionsReleasedMap[tag], false, elapsed);
|
||||
}
|
||||
queue.endReleaseWindow(transactionsReleasedMap[tag], elapsed);
|
||||
}
|
||||
}
|
||||
// If the capacity is increased, that means the vector has been illegally resized, potentially
|
||||
|
@ -438,3 +444,33 @@ TEST_CASE("/GrvProxyTagThrottler/Fifo") {
|
|||
wait(mockFifoClient(&throttler));
|
||||
return Void();
|
||||
}
|
||||
|
||||
// Tests that while throughput is low, the tag throttler
|
||||
// does not accumulate too much budget.
|
||||
//
|
||||
// A server is setup to server 10 transactions per second,
|
||||
// then runs idly for 60 seconds. Then a client starts
|
||||
// and attempts 20 transactions per second for 60 seconds.
|
||||
// The server throttles the client to only achieve
|
||||
// 10 transactions per second during this 60 second window.
|
||||
// If the throttler is allowed to accumulate budget indefinitely
|
||||
// during the idle 60 seconds, this test will fail.
|
||||
TEST_CASE("/GrvProxyTagThrottler/LimitedIdleBudget") {
|
||||
state GrvProxyTagThrottler throttler(5.0);
|
||||
state TagSet tagSet;
|
||||
state TransactionTagMap<uint32_t> counters;
|
||||
{
|
||||
TransactionTagMap<double> rates;
|
||||
rates["sampleTag"_sr] = 10.0;
|
||||
throttler.updateRates(rates);
|
||||
}
|
||||
tagSet.addTag("sampleTag"_sr);
|
||||
|
||||
state Future<Void> server = mockServer(&throttler);
|
||||
wait(delay(60.0));
|
||||
state Future<Void> client = mockClient(&throttler, TransactionPriority::DEFAULT, tagSet, 1, 20.0, &counters);
|
||||
wait(timeout(client && server, 60.0, Void()));
|
||||
TraceEvent("TagQuotaTest_LimitedIdleBudget").detail("Counter", counters["sampleTag"_sr]);
|
||||
ASSERT(isNear(counters["sampleTag"_sr], 60.0 * 10.0));
|
||||
return Void();
|
||||
}
|
||||
|
|
|
@ -35,7 +35,7 @@ bool GrvTransactionRateInfo::canStart(int64_t numAlreadyStarted, int64_t count)
|
|||
std::min(limit + budget, SERVER_KNOBS->START_TRANSACTION_MAX_TRANSACTIONS_TO_START);
|
||||
}
|
||||
|
||||
void GrvTransactionRateInfo::endReleaseWindow(int64_t numStartedAtPriority, bool queueEmptyAtPriority, double elapsed) {
|
||||
void GrvTransactionRateInfo::endReleaseWindow(int64_t numStarted, bool queueEmpty, double elapsed) {
|
||||
// Update the budget to accumulate any extra capacity available or remove any excess that was used.
|
||||
// The actual delta is the portion of the limit we didn't use multiplied by the fraction of the rate window that
|
||||
// elapsed.
|
||||
|
@ -52,16 +52,15 @@ void GrvTransactionRateInfo::endReleaseWindow(int64_t numStartedAtPriority, bool
|
|||
//
|
||||
// Note that "rate window" here indicates a period of SERVER_KNOBS->START_TRANSACTION_RATE_WINDOW seconds,
|
||||
// whereas "release window" is the period between wait statements, with duration indicated by "elapsed."
|
||||
budget =
|
||||
std::max(0.0, budget + elapsed * (limit - numStartedAtPriority) / SERVER_KNOBS->START_TRANSACTION_RATE_WINDOW);
|
||||
budget = std::max(0.0, budget + elapsed * (limit - numStarted) / SERVER_KNOBS->START_TRANSACTION_RATE_WINDOW);
|
||||
|
||||
// If we are emptying out the queue of requests, then we don't need to carry much budget forward
|
||||
// If we did keep accumulating budget, then our responsiveness to changes in workflow could be compromised
|
||||
if (queueEmptyAtPriority) {
|
||||
if (queueEmpty) {
|
||||
budget = std::min(budget, SERVER_KNOBS->START_TRANSACTION_MAX_EMPTY_QUEUE_BUDGET);
|
||||
}
|
||||
|
||||
smoothReleased.addDelta(numStartedAtPriority);
|
||||
smoothReleased.addDelta(numStarted);
|
||||
}
|
||||
|
||||
void GrvTransactionRateInfo::disable() {
|
||||
|
|
|
@ -740,7 +740,8 @@ private:
|
|||
}
|
||||
|
||||
CODE_PROBE(self->enableEncryption && self->uncommittedBytes() > 0,
|
||||
"KeyValueStoreMemory recovered partial transaction while encryption-at-rest is enabled");
|
||||
"KeyValueStoreMemory recovered partial transaction while encryption-at-rest is enabled",
|
||||
probe::decoration::rare);
|
||||
self->semiCommit();
|
||||
|
||||
return Void();
|
||||
|
|
|
@ -180,7 +180,6 @@ bool MockStorageServer::allShardStatusEqual(const KeyRangeRef& range, MockShardS
|
|||
|
||||
bool MockStorageServer::allShardStatusIn(const KeyRangeRef& range, const std::set<MockShardStatus>& status) {
|
||||
auto ranges = serverKeys.intersectingRanges(range);
|
||||
TraceEvent("AllShardStatusIn", id).detail("RangesEmpty", ranges.empty()).detail("Range", range);
|
||||
ASSERT(!ranges.empty()); // at least the range is allKeys
|
||||
|
||||
for (auto it = ranges.begin(); it != ranges.end(); ++it) {
|
||||
|
@ -192,7 +191,6 @@ bool MockStorageServer::allShardStatusIn(const KeyRangeRef& range, const std::se
|
|||
|
||||
void MockStorageServer::setShardStatus(const KeyRangeRef& range, MockShardStatus status, bool restrictSize) {
|
||||
auto ranges = serverKeys.intersectingRanges(range);
|
||||
TraceEvent("SetShardStatus", id).detail("KeyRange", range).detail("Status", status);
|
||||
|
||||
if (ranges.empty()) {
|
||||
CODE_PROBE(true, "new shard is adding to server");
|
||||
|
@ -202,15 +200,15 @@ void MockStorageServer::setShardStatus(const KeyRangeRef& range, MockShardStatus
|
|||
|
||||
// change the old status
|
||||
if (ranges.begin().begin() < range.begin && ranges.begin().end() > range.end) {
|
||||
CODE_PROBE(true, "Implicitly split single shard to 3 pieces");
|
||||
CODE_PROBE(true, "Implicitly split single shard to 3 pieces", probe::decoration::rare);
|
||||
threeWayShardSplitting(ranges.begin().range(), range, ranges.begin().cvalue().shardSize, restrictSize);
|
||||
} else {
|
||||
if (ranges.begin().begin() < range.begin) {
|
||||
CODE_PROBE(true, "Implicitly split begin range to 2 pieces");
|
||||
CODE_PROBE(true, "Implicitly split begin range to 2 pieces", probe::decoration::rare);
|
||||
twoWayShardSplitting(ranges.begin().range(), range.begin, ranges.begin().cvalue().shardSize, restrictSize);
|
||||
}
|
||||
if (ranges.end().begin() > range.end) {
|
||||
CODE_PROBE(true, "Implicitly split end range to 2 pieces");
|
||||
CODE_PROBE(true, "Implicitly split end range to 2 pieces", probe::decoration::rare);
|
||||
auto lastRange = ranges.end();
|
||||
--lastRange;
|
||||
twoWayShardSplitting(lastRange.range(), range.end, ranges.end().cvalue().shardSize, restrictSize);
|
||||
|
@ -230,7 +228,7 @@ void MockStorageServer::setShardStatus(const KeyRangeRef& range, MockShardStatus
|
|||
it.value() = ShardInfo{ status, newSize };
|
||||
} else if ((oldStatus == MockShardStatus::COMPLETED || oldStatus == MockShardStatus::FETCHED) &&
|
||||
(status == MockShardStatus::INFLIGHT || status == MockShardStatus::FETCHED)) {
|
||||
CODE_PROBE(true, "Shard already on server");
|
||||
CODE_PROBE(true, "Shard already on server", probe::decoration::rare);
|
||||
} else {
|
||||
TraceEvent(SevError, "MockShardStatusTransitionError", id)
|
||||
.detail("From", oldStatus)
|
||||
|
@ -620,7 +618,7 @@ Future<std::vector<KeyRangeLocationInfo>> MockGlobalState::getKeyRangeLocations(
|
|||
ASSERT_EQ(srcTeam.size(), 1);
|
||||
rep.results.emplace_back(it->range(), extractStorageServerInterfaces(srcTeam.front().servers));
|
||||
}
|
||||
CODE_PROBE(it != ranges.end(), "getKeyRangeLocations is limited", probe::decoration::rare);
|
||||
CODE_PROBE(it != ranges.end(), "getKeyRangeLocations is limited");
|
||||
|
||||
std::vector<KeyRangeLocationInfo> results;
|
||||
for (int shard = 0; shard < rep.results.size(); shard++) {
|
||||
|
|
|
@ -196,7 +196,7 @@ private:
|
|||
|
||||
Standalone<StringRef> e = wait(self->queue->readNext(payloadSize + 1));
|
||||
if (e.size() != payloadSize + 1) {
|
||||
CODE_PROBE(true, "Zero fill within payload");
|
||||
CODE_PROBE(true, "Zero fill within payload", probe::decoration::rare);
|
||||
zeroFillSize = payloadSize + 1 - e.size();
|
||||
break;
|
||||
}
|
||||
|
@ -210,7 +210,7 @@ private:
|
|||
}
|
||||
}
|
||||
if (zeroFillSize) {
|
||||
CODE_PROBE(true, "Fixing a partial commit at the end of the tlog queue");
|
||||
CODE_PROBE(true, "Fixing a partial commit at the end of the tlog queue", probe::decoration::rare);
|
||||
for (int i = 0; i < zeroFillSize; i++)
|
||||
self->queue->push(StringRef((const uint8_t*)"", 1));
|
||||
}
|
||||
|
|
|
@ -170,7 +170,7 @@ private:
|
|||
|
||||
Standalone<StringRef> e = wait(self->queue->readNext(payloadSize + 1));
|
||||
if (e.size() != payloadSize + 1) {
|
||||
CODE_PROBE(true, "Zero fill within payload");
|
||||
CODE_PROBE(true, "Zero fill within payload", probe::decoration::rare);
|
||||
zeroFillSize = payloadSize + 1 - e.size();
|
||||
break;
|
||||
}
|
||||
|
@ -186,7 +186,7 @@ private:
|
|||
}
|
||||
}
|
||||
if (zeroFillSize) {
|
||||
CODE_PROBE(true, "Fixing a partial commit at the end of the tlog queue");
|
||||
CODE_PROBE(true, "Fixing a partial commit at the end of the tlog queue", probe::decoration::rare);
|
||||
for (int i = 0; i < zeroFillSize; i++)
|
||||
self->queue->push(StringRef((const uint8_t*)"", 1));
|
||||
}
|
||||
|
|
|
@ -289,11 +289,7 @@ ACTOR Future<Void> resolveBatch(Reference<Resolver> self,
|
|||
// Detect conflicts
|
||||
double expire = now() + SERVER_KNOBS->SAMPLE_EXPIRATION_TIME;
|
||||
ConflictBatch conflictBatch(self->conflictSet, &reply.conflictingKeyRangeMap, &reply.arena);
|
||||
Version newOldestVersion = req.version - SERVER_KNOBS->MAX_WRITE_TRANSACTION_LIFE_VERSIONS;
|
||||
if (g_network->isSimulated() && g_simulator->speedUpSimulation) {
|
||||
newOldestVersion = req.version - std::max(5 * SERVER_KNOBS->VERSIONS_PER_SECOND,
|
||||
SERVER_KNOBS->MAX_WRITE_TRANSACTION_LIFE_VERSIONS);
|
||||
}
|
||||
const Version newOldestVersion = req.version - SERVER_KNOBS->MAX_WRITE_TRANSACTION_LIFE_VERSIONS;
|
||||
for (int t = 0; t < req.transactions.size(); t++) {
|
||||
conflictBatch.addTransaction(req.transactions[t], newOldestVersion);
|
||||
self->resolvedReadConflictRanges += req.transactions[t].read_conflict_ranges.size();
|
||||
|
@ -372,7 +368,7 @@ ACTOR Future<Void> resolveBatch(Reference<Resolver> self,
|
|||
isEncryptionOpSupported(EncryptOperationType::TLOG_ENCRYPTION) ? &cipherKeys
|
||||
: nullptr);
|
||||
}
|
||||
CODE_PROBE(self->forceRecovery, "Resolver detects forced recovery");
|
||||
CODE_PROBE(self->forceRecovery, "Resolver detects forced recovery", probe::decoration::rare);
|
||||
}
|
||||
|
||||
self->resolvedStateTransactions += req.txnStateTransactions.size();
|
||||
|
|
|
@ -172,7 +172,7 @@ private:
|
|||
|
||||
Standalone<StringRef> e = wait(self->queue->readNext(payloadSize + 1));
|
||||
if (e.size() != payloadSize + 1) {
|
||||
CODE_PROBE(true, "Zero fill within payload");
|
||||
CODE_PROBE(true, "Zero fill within payload", probe::decoration::rare);
|
||||
zeroFillSize = payloadSize + 1 - e.size();
|
||||
break;
|
||||
}
|
||||
|
@ -188,7 +188,7 @@ private:
|
|||
}
|
||||
}
|
||||
if (zeroFillSize) {
|
||||
CODE_PROBE(true, "Fixing a partial commit at the end of the tlog queue");
|
||||
CODE_PROBE(true, "Fixing a partial commit at the end of the tlog queue", probe::decoration::rare);
|
||||
for (int i = 0; i < zeroFillSize; i++)
|
||||
self->queue->push(StringRef((const uint8_t*)"", 1));
|
||||
}
|
||||
|
@ -1262,7 +1262,7 @@ ACTOR Future<Void> processPopRequests(TLogData* self, Reference<LogData> logData
|
|||
TraceEvent("PlayIgnoredPop", logData->logId).detail("Tag", tag.toString()).detail("Version", version);
|
||||
ignoredPops.push_back(tLogPopCore(self, tag, version, logData));
|
||||
if (++ignoredPopsPlayed % SERVER_KNOBS->TLOG_POP_BATCH_SIZE == 0) {
|
||||
CODE_PROBE(true, "Yielding while processing pop requests");
|
||||
CODE_PROBE(true, "Yielding while processing pop requests", probe::decoration::rare);
|
||||
wait(yield());
|
||||
}
|
||||
}
|
||||
|
@ -1857,7 +1857,8 @@ Future<Void> tLogPeekMessages(PromiseType replyPromise,
|
|||
}
|
||||
if (sequenceData.isSet()) {
|
||||
if (sequenceData.getFuture().get().first != rep.end) {
|
||||
CODE_PROBE(true, "tlog peek second attempt ended at a different version");
|
||||
CODE_PROBE(
|
||||
true, "tlog peek second attempt ended at a different version", probe::decoration::rare);
|
||||
replyPromise.sendError(operation_obsolete());
|
||||
return Void();
|
||||
}
|
||||
|
|
|
@ -127,25 +127,38 @@ public:
|
|||
|
||||
loop {
|
||||
state double fetchStartTime = now();
|
||||
state std::vector<TenantName> tenants = tenantCache->getTenantList();
|
||||
state std::vector<TenantGroupName> groups;
|
||||
for (const auto& [group, storage] : tenantCache->tenantStorageMap) {
|
||||
groups.push_back(group);
|
||||
}
|
||||
state int i;
|
||||
for (i = 0; i < tenants.size(); i++) {
|
||||
state ReadYourWritesTransaction tr(tenantCache->dbcx(), tenants[i]);
|
||||
loop {
|
||||
try {
|
||||
state int64_t size = wait(tr.getEstimatedRangeSizeBytes(normalKeys));
|
||||
tenantCache->tenantStorageMap[tenants[i]].usage = size;
|
||||
break;
|
||||
} catch (Error& e) {
|
||||
if (e.code() == error_code_tenant_not_found) {
|
||||
tenantCache->tenantStorageMap.erase(tenants[i]);
|
||||
for (i = 0; i < groups.size(); i++) {
|
||||
state TenantGroupName group = groups[i];
|
||||
state int64_t usage = 0;
|
||||
// `tenants` needs to be a copy so that the erase (below) or inserts/erases from other
|
||||
// functions (when this actor yields) do not interfere with the iteration
|
||||
state std::unordered_set<TenantName> tenants = tenantCache->tenantStorageMap[group].tenants;
|
||||
state std::unordered_set<TenantName>::iterator iter = tenants.begin();
|
||||
for (; iter != tenants.end(); iter++) {
|
||||
state TenantName tenant = *iter;
|
||||
state ReadYourWritesTransaction tr(tenantCache->dbcx(), tenant);
|
||||
loop {
|
||||
try {
|
||||
state int64_t size = wait(tr.getEstimatedRangeSizeBytes(normalKeys));
|
||||
usage += size;
|
||||
break;
|
||||
} else {
|
||||
TraceEvent("TenantCacheGetStorageUsageError", tenantCache->id()).error(e);
|
||||
wait(tr.onError(e));
|
||||
} catch (Error& e) {
|
||||
if (e.code() == error_code_tenant_not_found) {
|
||||
tenantCache->tenantStorageMap[group].tenants.erase(tenant);
|
||||
break;
|
||||
} else {
|
||||
TraceEvent("TenantCacheGetStorageUsageError", tenantCache->id()).error(e);
|
||||
wait(tr.onError(e));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
tenantCache->tenantStorageMap[group].usage = usage;
|
||||
}
|
||||
|
||||
lastTenantListFetchTime = now();
|
||||
|
@ -162,22 +175,24 @@ public:
|
|||
state Transaction tr(tenantCache->dbcx());
|
||||
|
||||
loop {
|
||||
loop {
|
||||
try {
|
||||
state RangeResult currentQuotas = wait(tr.getRange(storageQuotaKeys, CLIENT_KNOBS->TOO_MANY));
|
||||
for (auto const kv : currentQuotas) {
|
||||
TenantName const tenant = kv.key.removePrefix(storageQuotaPrefix);
|
||||
int64_t const quota = BinaryReader::fromStringRef<int64_t>(kv.value, Unversioned());
|
||||
tenantCache->tenantStorageMap[tenant].quota = quota;
|
||||
}
|
||||
tr.reset();
|
||||
break;
|
||||
} catch (Error& e) {
|
||||
TraceEvent("TenantCacheGetStorageQuotaError", tenantCache->id()).error(e);
|
||||
wait(tr.onError(e));
|
||||
try {
|
||||
state RangeResult currentQuotas = wait(tr.getRange(storageQuotaKeys, CLIENT_KNOBS->TOO_MANY));
|
||||
// Reset the quota for all groups; this essentially sets the quota to `max` for groups where the
|
||||
// quota might have been cleared (i.e., groups that will not be returned in `getRange` request above).
|
||||
for (auto& [group, storage] : tenantCache->tenantStorageMap) {
|
||||
storage.quota = std::numeric_limits<int64_t>::max();
|
||||
}
|
||||
for (const auto kv : currentQuotas) {
|
||||
const TenantGroupName group = kv.key.removePrefix(storageQuotaPrefix);
|
||||
const int64_t quota = BinaryReader::fromStringRef<int64_t>(kv.value, Unversioned());
|
||||
tenantCache->tenantStorageMap[group].quota = quota;
|
||||
}
|
||||
tr.reset();
|
||||
wait(delay(SERVER_KNOBS->TENANT_CACHE_STORAGE_QUOTA_REFRESH_INTERVAL));
|
||||
} catch (Error& e) {
|
||||
TraceEvent("TenantCacheGetStorageQuotaError", tenantCache->id()).error(e);
|
||||
wait(tr.onError(e));
|
||||
}
|
||||
wait(delay(SERVER_KNOBS->TENANT_CACHE_STORAGE_QUOTA_REFRESH_INTERVAL));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@ -189,6 +204,10 @@ void TenantCache::insert(TenantName& tenantName, TenantMapEntry& tenant) {
|
|||
TenantInfo tenantInfo(tenantName, Optional<Standalone<StringRef>>(), tenant.id);
|
||||
tenantCache[tenantPrefix] = makeReference<TCTenantInfo>(tenantInfo, tenant.prefix);
|
||||
tenantCache[tenantPrefix]->updateCacheGeneration(generation);
|
||||
|
||||
if (tenant.tenantGroup.present()) {
|
||||
tenantStorageMap[tenant.tenantGroup.get()].tenants.insert(tenantName);
|
||||
}
|
||||
}
|
||||
|
||||
void TenantCache::startRefresh() {
|
||||
|
@ -289,13 +308,13 @@ Optional<Reference<TCTenantInfo>> TenantCache::tenantOwning(KeyRef key) const {
|
|||
}
|
||||
|
||||
std::unordered_set<TenantName> TenantCache::getTenantsOverQuota() const {
|
||||
std::unordered_set<TenantName> tenants;
|
||||
for (const auto& [tenant, storage] : tenantStorageMap) {
|
||||
std::unordered_set<TenantName> tenantsOverQuota;
|
||||
for (const auto& [tenantGroup, storage] : tenantStorageMap) {
|
||||
if (storage.usage > storage.quota) {
|
||||
tenants.insert(tenant);
|
||||
tenantsOverQuota.insert(storage.tenants.begin(), storage.tenants.end());
|
||||
}
|
||||
}
|
||||
return tenants;
|
||||
return tenantsOverQuota;
|
||||
}
|
||||
|
||||
Future<Void> TenantCache::monitorTenantMap() {
|
||||
|
|
|
@ -2025,7 +2025,8 @@ public:
|
|||
bool memoryOnly,
|
||||
Reference<IPageEncryptionKeyProvider> keyProvider,
|
||||
Promise<Void> errorPromise = {})
|
||||
: keyProvider(keyProvider), ioLock(FLOW_KNOBS->MAX_OUTSTANDING, SERVER_KNOBS->REDWOOD_PRIORITY_LAUNCHS),
|
||||
: keyProvider(keyProvider),
|
||||
ioLock(makeReference<PriorityMultiLock>(FLOW_KNOBS->MAX_OUTSTANDING, SERVER_KNOBS->REDWOOD_IO_PRIORITIES)),
|
||||
pageCacheBytes(pageCacheSizeBytes), desiredPageSize(desiredPageSize), desiredExtentSize(desiredExtentSize),
|
||||
filename(filename), memoryOnly(memoryOnly), errorPromise(errorPromise),
|
||||
remapCleanupWindowBytes(remapCleanupWindowBytes), concurrentExtentReads(new FlowLock(concurrentExtentReads)) {
|
||||
|
@ -2037,7 +2038,7 @@ public:
|
|||
// This sets the page cache size for all PageCacheT instances using the same evictor
|
||||
pageCache.evictor().sizeLimit = pageCacheBytes;
|
||||
|
||||
g_redwoodMetrics.ioLock = &ioLock;
|
||||
g_redwoodMetrics.ioLock = ioLock.getPtr();
|
||||
if (!g_redwoodMetricsActor.isValid()) {
|
||||
g_redwoodMetricsActor = redwoodMetricsLogger();
|
||||
}
|
||||
|
@ -2499,7 +2500,7 @@ public:
|
|||
unsigned int level,
|
||||
bool header) {
|
||||
|
||||
state PriorityMultiLock::Lock lock = wait(self->ioLock.lock(header ? ioMaxPriority : ioMinPriority));
|
||||
state PriorityMultiLock::Lock lock = wait(self->ioLock->lock(header ? ioMaxPriority : ioMinPriority));
|
||||
++g_redwoodMetrics.metric.pagerDiskWrite;
|
||||
g_redwoodMetrics.level(level).metrics.events.addEventReason(PagerEvents::PageWrite, reason);
|
||||
if (self->memoryOnly) {
|
||||
|
@ -2779,7 +2780,7 @@ public:
|
|||
int blockSize,
|
||||
int64_t offset,
|
||||
int priority) {
|
||||
state PriorityMultiLock::Lock lock = wait(self->ioLock.lock(std::min(priority, ioMaxPriority)));
|
||||
state PriorityMultiLock::Lock lock = wait(self->ioLock->lock(std::min(priority, ioMaxPriority)));
|
||||
++g_redwoodMetrics.metric.pagerDiskRead;
|
||||
int bytes = wait(self->pageFile->read(pageBuffer->rawData() + pageOffset, blockSize, offset));
|
||||
return bytes;
|
||||
|
@ -3593,7 +3594,7 @@ public:
|
|||
|
||||
// The next section explicitly cancels all pending operations held in the pager
|
||||
debug_printf("DWALPager(%s) shutdown kill ioLock\n", self->filename.c_str());
|
||||
self->ioLock.kill();
|
||||
self->ioLock->kill();
|
||||
|
||||
debug_printf("DWALPager(%s) shutdown cancel recovery\n", self->filename.c_str());
|
||||
self->recoverFuture.cancel();
|
||||
|
@ -3802,7 +3803,7 @@ private:
|
|||
|
||||
Reference<IPageEncryptionKeyProvider> keyProvider;
|
||||
|
||||
PriorityMultiLock ioLock;
|
||||
Reference<PriorityMultiLock> ioLock;
|
||||
|
||||
int64_t pageCacheBytes;
|
||||
|
||||
|
@ -8894,32 +8895,25 @@ void RedwoodMetrics::getIOLockFields(TraceEvent* e, std::string* s) {
|
|||
int maxPriority = ioLock->maxPriority();
|
||||
|
||||
if (e != nullptr) {
|
||||
e->detail("ActiveReads", ioLock->totalRunners());
|
||||
e->detail("AwaitReads", ioLock->totalWaiters());
|
||||
e->detail("IOActiveTotal", ioLock->getRunnersCount());
|
||||
e->detail("IOWaitingTotal", ioLock->getWaitersCount());
|
||||
|
||||
for (int priority = 0; priority <= maxPriority; ++priority) {
|
||||
e->detail(format("ActiveP%d", priority), ioLock->numRunners(priority));
|
||||
e->detail(format("AwaitP%d", priority), ioLock->numWaiters(priority));
|
||||
e->detail(format("IOActiveP%d", priority), ioLock->getRunnersCount(priority));
|
||||
e->detail(format("IOWaitingP%d", priority), ioLock->getWaitersCount(priority));
|
||||
}
|
||||
}
|
||||
|
||||
if (s != nullptr) {
|
||||
std::string active = "Active";
|
||||
std::string await = "Await";
|
||||
|
||||
*s += "\n";
|
||||
*s += format("%-15s %-8u ", "ActiveReads", ioLock->totalRunners());
|
||||
*s += format("%-15s %-8u ", "AwaitReads", ioLock->totalWaiters());
|
||||
*s += "\n";
|
||||
|
||||
*s += format("%-15s %-8u ", "IOActiveTotal", ioLock->getRunnersCount());
|
||||
for (int priority = 0; priority <= maxPriority; ++priority) {
|
||||
*s +=
|
||||
format("%-15s %-8u ", (active + 'P' + std::to_string(priority)).c_str(), ioLock->numRunners(priority));
|
||||
*s += format("IOActiveP%-6d %-8u ", priority, ioLock->getRunnersCount(priority));
|
||||
}
|
||||
*s += "\n";
|
||||
*s += format("%-15s %-8u ", "IOWaitingTotal", ioLock->getWaitersCount());
|
||||
for (int priority = 0; priority <= maxPriority; ++priority) {
|
||||
*s +=
|
||||
format("%-15s %-8u ", (await + 'P' + std::to_string(priority)).c_str(), ioLock->numWaiters(priority));
|
||||
*s += format("IOWaitingP%-5d %-8u ", priority, ioLock->getWaitersCount(priority));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -11407,57 +11401,3 @@ TEST_CASE(":/redwood/performance/histograms") {
|
|||
|
||||
return Void();
|
||||
}
|
||||
|
||||
ACTOR Future<Void> waitLockIncrement(PriorityMultiLock* pml, int priority, int* pout) {
|
||||
state PriorityMultiLock::Lock lock = wait(pml->lock(priority));
|
||||
wait(delay(deterministicRandom()->random01() * .1));
|
||||
++*pout;
|
||||
return Void();
|
||||
}
|
||||
|
||||
TEST_CASE("/redwood/PriorityMultiLock") {
|
||||
state std::vector<int> priorities = { 10, 20, 40 };
|
||||
state int concurrency = 25;
|
||||
state PriorityMultiLock* pml = new PriorityMultiLock(concurrency, priorities);
|
||||
state std::vector<int> counts;
|
||||
counts.resize(priorities.size(), 0);
|
||||
|
||||
// Clog the lock buy taking concurrency locks at each level
|
||||
state std::vector<Future<PriorityMultiLock::Lock>> lockFutures;
|
||||
for (int i = 0; i < priorities.size(); ++i) {
|
||||
for (int j = 0; j < concurrency; ++j) {
|
||||
lockFutures.push_back(pml->lock(i));
|
||||
}
|
||||
}
|
||||
|
||||
// Wait for n = concurrency locks to be acquired
|
||||
wait(quorum(lockFutures, concurrency));
|
||||
|
||||
state std::vector<Future<Void>> futures;
|
||||
for (int i = 0; i < 10e3; ++i) {
|
||||
int p = i % priorities.size();
|
||||
futures.push_back(waitLockIncrement(pml, p, &counts[p]));
|
||||
}
|
||||
|
||||
state Future<Void> f = waitForAll(futures);
|
||||
|
||||
// Release the locks
|
||||
lockFutures.clear();
|
||||
|
||||
// Print stats and wait for all futures to be ready
|
||||
loop {
|
||||
choose {
|
||||
when(wait(delay(1))) {
|
||||
printf("counts: ");
|
||||
for (auto c : counts) {
|
||||
printf("%d ", c);
|
||||
}
|
||||
printf(" pml: %s\n", pml->toString().c_str());
|
||||
}
|
||||
when(wait(f)) { break; }
|
||||
}
|
||||
}
|
||||
|
||||
delete pml;
|
||||
return Void();
|
||||
}
|
||||
|
|
|
@ -162,10 +162,7 @@ ACTOR Future<Void> loadManifest(Database db, Reference<BlobConnectionProvider> b
|
|||
ACTOR Future<Void> printRestoreSummary(Database db, Reference<BlobConnectionProvider> blobConn);
|
||||
ACTOR Future<BlobGranuleRestoreVersionVector> listBlobGranules(Database db, Reference<BlobConnectionProvider> blobConn);
|
||||
ACTOR Future<int64_t> lastBlobEpoc(Database db, Reference<BlobConnectionProvider> blobConn);
|
||||
|
||||
inline bool isFullRestoreMode() {
|
||||
return SERVER_KNOBS->BLOB_FULL_RESTORE_MODE;
|
||||
};
|
||||
ACTOR Future<bool> isFullRestoreMode(Database db, KeyRangeRef range);
|
||||
|
||||
#include "flow/unactorcompiler.h"
|
||||
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
struct BlobMigratorInterface {
|
||||
constexpr static FileIdentifier file_identifier = 869199;
|
||||
RequestStream<struct HaltBlobMigratorRequest> haltBlobMigrator;
|
||||
RequestStream<ReplyPromise<Void>> waitFailure;
|
||||
LocalityData locality;
|
||||
UID uniqueID;
|
||||
StorageServerInterface ssi;
|
||||
|
@ -48,7 +49,7 @@ struct BlobMigratorInterface {
|
|||
|
||||
template <class Archive>
|
||||
void serialize(Archive& ar) {
|
||||
serializer(ar, locality, uniqueID, haltBlobMigrator);
|
||||
serializer(ar, locality, uniqueID, haltBlobMigrator, waitFailure);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -144,6 +144,7 @@ public:
|
|||
Future<Void> clientCounter;
|
||||
int clientCount;
|
||||
AsyncVar<bool> blobGranulesEnabled;
|
||||
AsyncVar<bool> blobRestoreEnabled;
|
||||
ClusterType clusterType = ClusterType::STANDALONE;
|
||||
Optional<ClusterName> metaclusterName;
|
||||
Optional<MetaclusterRegistrationEntry> metaclusterRegistration;
|
||||
|
@ -159,7 +160,7 @@ public:
|
|||
TaskPriority::DefaultEndpoint,
|
||||
LockAware::True)), // SOMEDAY: Locality!
|
||||
unfinishedRecoveries(0), logGenerations(0), cachePopulated(false), clientCount(0),
|
||||
blobGranulesEnabled(config.blobGranulesEnabled) {
|
||||
blobGranulesEnabled(config.blobGranulesEnabled), blobRestoreEnabled(false) {
|
||||
clientCounter = countClients(this);
|
||||
}
|
||||
|
||||
|
|
|
@ -60,6 +60,7 @@ class GrvProxyTagThrottler {
|
|||
void setRate(double rate);
|
||||
bool isMaxThrottled(double maxThrottleDuration) const;
|
||||
void rejectRequests(LatencyBandsMap&);
|
||||
void endReleaseWindow(int64_t numStarted, double elapsed);
|
||||
};
|
||||
|
||||
// Track the budgets for each tag
|
||||
|
|
|
@ -55,7 +55,7 @@ public:
|
|||
|
||||
// Updates the budget to accumulate any extra capacity available or remove any excess that was used.
|
||||
// Call at the end of a release window.
|
||||
void endReleaseWindow(int64_t numStartedAtPriority, bool queueEmptyAtPriority, double elapsed);
|
||||
void endReleaseWindow(int64_t numStarted, bool queueEmpty, double elapsed);
|
||||
|
||||
// Smoothly sets rate. If currently disabled, reenable
|
||||
void setRate(double rate);
|
||||
|
|
|
@ -208,7 +208,7 @@ class Ratekeeper {
|
|||
Deque<std::pair<double, Version>> blobWorkerVersionHistory;
|
||||
Optional<Key> remoteDC;
|
||||
|
||||
double getRecoveryDuration(Version ver) {
|
||||
double getRecoveryDuration(Version ver) const {
|
||||
auto it = version_recovery.lower_bound(ver);
|
||||
double recoveryDuration = 0;
|
||||
while (it != version_recovery.end()) {
|
||||
|
|
|
@ -192,7 +192,7 @@ Future<Void> serveStorageMetricsRequests(ServiceType* self, StorageServerInterfa
|
|||
choose {
|
||||
when(state WaitMetricsRequest req = waitNext(ssi.waitMetrics.getFuture())) {
|
||||
if (!req.tenantInfo.present() && !self->isReadable(req.keys)) {
|
||||
CODE_PROBE(true, "waitMetrics immediate wrong_shard_server()");
|
||||
CODE_PROBE(true, "waitMetrics immediate wrong_shard_server()", probe::decoration::rare);
|
||||
self->sendErrorWithPenalty(req.reply, wrong_shard_server(), self->getPenalty());
|
||||
} else {
|
||||
self->addActor(self->waitMetricsTenantAware(req));
|
||||
|
@ -233,4 +233,4 @@ Future<Void> serveStorageMetricsRequests(ServiceType* self, StorageServerInterfa
|
|||
}
|
||||
}
|
||||
#include "flow/unactorcompiler.h"
|
||||
#endif // FDBSERVER_STORAGEMETRICS_H
|
||||
#endif // FDBSERVER_STORAGEMETRICS_H
|
||||
|
|
|
@ -35,8 +35,9 @@ typedef Map<KeyRef, Reference<TCTenantInfo>> TenantMapByPrefix;
|
|||
struct Storage {
|
||||
int64_t quota = std::numeric_limits<int64_t>::max();
|
||||
int64_t usage = 0;
|
||||
std::unordered_set<TenantName> tenants;
|
||||
};
|
||||
typedef std::unordered_map<TenantName, Storage> TenantStorageMap;
|
||||
typedef std::unordered_map<TenantGroupName, Storage> TenantStorageMap;
|
||||
|
||||
struct TenantCacheTenantCreated {
|
||||
KeyRange keys;
|
||||
|
@ -56,7 +57,8 @@ private:
|
|||
uint64_t generation;
|
||||
TenantMapByPrefix tenantCache;
|
||||
|
||||
// Map from tenant names to storage quota and usage
|
||||
// Map from tenant group names to the list of tenants, cumumlative storage used by
|
||||
// all the tenants in the group, and its storage quota.
|
||||
TenantStorageMap tenantStorageMap;
|
||||
|
||||
// mark the start of a new sweep of the tenant cache
|
||||
|
|
|
@ -566,6 +566,8 @@ struct ChangeFeedInfo : ReferenceCounted<ChangeFeedInfo> {
|
|||
// back, we can avoid notifying other SS of change feeds that don't durably exist
|
||||
Version metadataCreateVersion = invalidVersion;
|
||||
|
||||
FlowLock fetchLock = FlowLock(1);
|
||||
|
||||
bool removing = false;
|
||||
bool destroyed = false;
|
||||
|
||||
|
@ -1109,15 +1111,13 @@ public:
|
|||
|
||||
FlowLock serveFetchCheckpointParallelismLock;
|
||||
|
||||
PriorityMultiLock ssLock;
|
||||
Reference<PriorityMultiLock> ssLock;
|
||||
std::vector<int> readPriorityRanks;
|
||||
|
||||
Future<PriorityMultiLock::Lock> getReadLock(const Optional<ReadOptions>& options) {
|
||||
// TODO: Fix perf regression in 100% cache read case where taking this lock adds too much overhead
|
||||
return PriorityMultiLock::Lock();
|
||||
// int readType = (int)(options.present() ? options.get().type : ReadType::NORMAL);
|
||||
// readType = std::clamp<int>(readType, 0, readPriorityRanks.size() - 1);
|
||||
// return ssLock.lock(readPriorityRanks[readType]);
|
||||
int readType = (int)(options.present() ? options.get().type : ReadType::NORMAL);
|
||||
readType = std::clamp<int>(readType, 0, readPriorityRanks.size() - 1);
|
||||
return ssLock->lock(readPriorityRanks[readType]);
|
||||
}
|
||||
|
||||
FlowLock serveAuditStorageParallelismLock;
|
||||
|
@ -1406,7 +1406,8 @@ public:
|
|||
fetchKeysParallelismFullLock(SERVER_KNOBS->FETCH_KEYS_PARALLELISM_FULL),
|
||||
fetchKeysBytesBudget(SERVER_KNOBS->STORAGE_FETCH_BYTES), fetchKeysBudgetUsed(false),
|
||||
serveFetchCheckpointParallelismLock(SERVER_KNOBS->SERVE_FETCH_CHECKPOINT_PARALLELISM),
|
||||
ssLock(SERVER_KNOBS->STORAGE_SERVER_READ_CONCURRENCY, SERVER_KNOBS->STORAGESERVER_READ_PRIORITIES),
|
||||
ssLock(makeReference<PriorityMultiLock>(SERVER_KNOBS->STORAGE_SERVER_READ_CONCURRENCY,
|
||||
SERVER_KNOBS->STORAGESERVER_READ_PRIORITIES)),
|
||||
serveAuditStorageParallelismLock(SERVER_KNOBS->SERVE_AUDIT_STORAGE_PARALLELISM),
|
||||
instanceID(deterministicRandom()->randomUniqueID().first()), shuttingDown(false), behind(false),
|
||||
versionBehind(false), debug_inApplyUpdate(false), debug_lastValidateTime(0), lastBytesInputEBrake(0),
|
||||
|
@ -1414,7 +1415,7 @@ public:
|
|||
busiestWriteTagContext(ssi.id()), counters(this),
|
||||
storageServerSourceTLogIDEventHolder(
|
||||
makeReference<EventCacheHolder>(ssi.id().toString() + "/StorageServerSourceTLogID")) {
|
||||
readPriorityRanks = parseStringToVector<int>(SERVER_KNOBS->STORAGESERVER_READ_RANKS, ',');
|
||||
readPriorityRanks = parseStringToVector<int>(SERVER_KNOBS->STORAGESERVER_READTYPE_PRIORITY_MAP, ',');
|
||||
ASSERT(readPriorityRanks.size() > (int)ReadType::MAX);
|
||||
version.initMetric("StorageServer.Version"_sr, counters.cc.getId());
|
||||
oldestVersion.initMetric("StorageServer.OldestVersion"_sr, counters.cc.getId());
|
||||
|
@ -4765,7 +4766,6 @@ ACTOR Future<Void> mapSubquery(StorageServer* data,
|
|||
Arena* pArena,
|
||||
int matchIndex,
|
||||
bool isRangeQuery,
|
||||
bool isBoundary,
|
||||
KeyValueRef* it,
|
||||
MappedKeyValueRef* kvm,
|
||||
Key mappedKey) {
|
||||
|
@ -4773,31 +4773,42 @@ ACTOR Future<Void> mapSubquery(StorageServer* data,
|
|||
// Use the mappedKey as the prefix of the range query.
|
||||
GetRangeReqAndResultRef getRange = wait(quickGetKeyValues(data, mappedKey, version, pArena, pOriginalReq));
|
||||
if ((!getRange.result.empty() && matchIndex == MATCH_INDEX_MATCHED_ONLY) ||
|
||||
(getRange.result.empty() && matchIndex == MATCH_INDEX_UNMATCHED_ONLY)) {
|
||||
(getRange.result.empty() && matchIndex == MATCH_INDEX_UNMATCHED_ONLY) || matchIndex == MATCH_INDEX_ALL) {
|
||||
kvm->key = it->key;
|
||||
kvm->value = it->value;
|
||||
}
|
||||
|
||||
kvm->boundaryAndExist = isBoundary && !getRange.result.empty();
|
||||
kvm->reqAndResult = getRange;
|
||||
} else {
|
||||
GetValueReqAndResultRef getValue = wait(quickGetValue(data, mappedKey, version, pArena, pOriginalReq));
|
||||
kvm->reqAndResult = getValue;
|
||||
kvm->boundaryAndExist = isBoundary && getValue.result.present();
|
||||
}
|
||||
return Void();
|
||||
}
|
||||
|
||||
int getMappedKeyValueSize(MappedKeyValueRef mappedKeyValue) {
|
||||
auto& reqAndResult = mappedKeyValue.reqAndResult;
|
||||
int bytes = 0;
|
||||
if (std::holds_alternative<GetValueReqAndResultRef>(reqAndResult)) {
|
||||
const auto& getValue = std::get<GetValueReqAndResultRef>(reqAndResult);
|
||||
bytes = getValue.expectedSize();
|
||||
} else if (std::holds_alternative<GetRangeReqAndResultRef>(reqAndResult)) {
|
||||
const auto& getRange = std::get<GetRangeReqAndResultRef>(reqAndResult);
|
||||
bytes = getRange.result.expectedSize();
|
||||
} else {
|
||||
throw internal_error();
|
||||
}
|
||||
return bytes;
|
||||
}
|
||||
|
||||
ACTOR Future<GetMappedKeyValuesReply> mapKeyValues(StorageServer* data,
|
||||
GetKeyValuesReply input,
|
||||
StringRef mapper,
|
||||
// To provide span context, tags, debug ID to underlying lookups.
|
||||
GetMappedKeyValuesRequest* pOriginalReq,
|
||||
Optional<Key> tenantPrefix,
|
||||
int matchIndex) {
|
||||
int matchIndex,
|
||||
int* remainingLimitBytes) {
|
||||
state GetMappedKeyValuesReply result;
|
||||
result.version = input.version;
|
||||
result.more = input.more;
|
||||
result.cached = input.cached;
|
||||
result.arena.dependsOn(input.arena);
|
||||
|
||||
|
@ -4826,22 +4837,15 @@ ACTOR Future<GetMappedKeyValuesReply> mapKeyValues(StorageServer* data,
|
|||
g_traceBatch.addEvent("TransactionDebug",
|
||||
pOriginalReq->options.get().debugID.get().first(),
|
||||
"storageserver.mapKeyValues.BeforeLoop");
|
||||
for (; offset < sz; offset += SERVER_KNOBS->MAX_PARALLEL_QUICK_GET_VALUE) {
|
||||
|
||||
for (; offset<sz&& * remainingLimitBytes> 0; offset += SERVER_KNOBS->MAX_PARALLEL_QUICK_GET_VALUE) {
|
||||
// Divide into batches of MAX_PARALLEL_QUICK_GET_VALUE subqueries
|
||||
for (int i = 0; i + offset < sz && i < SERVER_KNOBS->MAX_PARALLEL_QUICK_GET_VALUE; i++) {
|
||||
KeyValueRef* it = &input.data[i + offset];
|
||||
MappedKeyValueRef* kvm = &kvms[i];
|
||||
bool isBoundary = (i + offset) == 0 || (i + offset) == sz - 1;
|
||||
// need to keep the boundary, so that caller can use it as a continuation.
|
||||
if (isBoundary || matchIndex == MATCH_INDEX_ALL) {
|
||||
kvm->key = it->key;
|
||||
kvm->value = it->value;
|
||||
} else {
|
||||
// Clear key value to the default.
|
||||
kvm->key = ""_sr;
|
||||
kvm->value = ""_sr;
|
||||
}
|
||||
|
||||
// Clear key value to the default.
|
||||
kvm->key = ""_sr;
|
||||
kvm->value = ""_sr;
|
||||
Key mappedKey = constructMappedKey(it, vt, mappedKeyFormatTuple);
|
||||
// Make sure the mappedKey is always available, so that it's good even we want to get key asynchronously.
|
||||
result.arena.dependsOn(mappedKey.arena());
|
||||
|
@ -4849,16 +4853,8 @@ ACTOR Future<GetMappedKeyValuesReply> mapKeyValues(StorageServer* data,
|
|||
// std::cout << "key:" << printable(kvm->key) << ", value:" << printable(kvm->value)
|
||||
// << ", mappedKey:" << printable(mappedKey) << std::endl;
|
||||
|
||||
subqueries.push_back(mapSubquery(data,
|
||||
input.version,
|
||||
pOriginalReq,
|
||||
&result.arena,
|
||||
matchIndex,
|
||||
isRangeQuery,
|
||||
isBoundary,
|
||||
it,
|
||||
kvm,
|
||||
mappedKey));
|
||||
subqueries.push_back(mapSubquery(
|
||||
data, input.version, pOriginalReq, &result.arena, matchIndex, isRangeQuery, it, kvm, mappedKey));
|
||||
}
|
||||
wait(waitForAll(subqueries));
|
||||
if (pOriginalReq->options.present() && pOriginalReq->options.get().debugID.present())
|
||||
|
@ -4867,9 +4863,31 @@ ACTOR Future<GetMappedKeyValuesReply> mapKeyValues(StorageServer* data,
|
|||
"storageserver.mapKeyValues.AfterBatch");
|
||||
subqueries.clear();
|
||||
for (int i = 0; i + offset < sz && i < SERVER_KNOBS->MAX_PARALLEL_QUICK_GET_VALUE; i++) {
|
||||
// since we always read the index, so always consider the index size
|
||||
int indexSize = sizeof(KeyValueRef) + input.data[i + offset].expectedSize();
|
||||
int size = indexSize + getMappedKeyValueSize(kvms[i]);
|
||||
*remainingLimitBytes -= size;
|
||||
result.data.push_back(result.arena, kvms[i]);
|
||||
if (SERVER_KNOBS->STRICTLY_ENFORCE_BYTE_LIMIT && *remainingLimitBytes <= 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int resultSize = result.data.size();
|
||||
if (resultSize > 0) {
|
||||
// keep index for boundary index entries, so that caller can use it as a continuation.
|
||||
result.data[0].key = input.data[0].key;
|
||||
result.data[0].value = input.data[0].value;
|
||||
result.data[0].boundaryAndExist = getMappedKeyValueSize(kvms[0]) > 0;
|
||||
|
||||
result.data.back().key = input.data[resultSize - 1].key;
|
||||
result.data.back().value = input.data[resultSize - 1].value;
|
||||
// index needs to be -1
|
||||
int index = (resultSize - 1) % SERVER_KNOBS->MAX_PARALLEL_QUICK_GET_VALUE;
|
||||
result.data.back().boundaryAndExist = getMappedKeyValueSize(kvms[index]) > 0;
|
||||
}
|
||||
result.more = input.more || resultSize < sz;
|
||||
if (pOriginalReq->options.present() && pOriginalReq->options.get().debugID.present())
|
||||
g_traceBatch.addEvent("TransactionDebug",
|
||||
pOriginalReq->options.get().debugID.get().first(),
|
||||
|
@ -5124,12 +5142,15 @@ ACTOR Future<Void> getMappedKeyValuesQ(StorageServer* data, GetMappedKeyValuesRe
|
|||
req.reply.send(none);
|
||||
} else {
|
||||
state int remainingLimitBytes = req.limitBytes;
|
||||
|
||||
// create a temporary byte limit for index fetching ONLY, this should be excessive
|
||||
// because readRange is cheap when reading additional bytes
|
||||
state int bytesForIndex =
|
||||
std::min(req.limitBytes, (int)(req.limitBytes * SERVER_KNOBS->FRACTION_INDEX_BYTELIMIT_PREFETCH));
|
||||
GetKeyValuesReply getKeyValuesReply = wait(readRange(data,
|
||||
version,
|
||||
KeyRangeRef(begin, end),
|
||||
req.limit,
|
||||
&remainingLimitBytes,
|
||||
&bytesForIndex,
|
||||
span.context,
|
||||
req.options,
|
||||
tenantPrefix));
|
||||
|
@ -5143,9 +5164,10 @@ ACTOR Future<Void> getMappedKeyValuesQ(StorageServer* data, GetMappedKeyValuesRe
|
|||
try {
|
||||
// Map the scanned range to another list of keys and look up.
|
||||
GetMappedKeyValuesReply _r =
|
||||
wait(mapKeyValues(data, getKeyValuesReply, req.mapper, &req, tenantPrefix, req.matchIndex));
|
||||
wait(mapKeyValues(data, getKeyValuesReply, req.mapper, &req, req.matchIndex, &remainingLimitBytes));
|
||||
r = _r;
|
||||
} catch (Error& e) {
|
||||
// catch txn_too_old here if prefetch runs for too long, and returns it back to client
|
||||
TraceEvent("MapError").error(e);
|
||||
throw;
|
||||
}
|
||||
|
@ -6142,6 +6164,7 @@ ACTOR Future<Standalone<VectorRef<BlobGranuleChunkRef>>> tryReadBlobGranules(Tra
|
|||
loop {
|
||||
try {
|
||||
Standalone<VectorRef<BlobGranuleChunkRef>> chunks = wait(tr->readBlobGranules(keys, 0, readVersion));
|
||||
TraceEvent(SevDebug, "ReadBlobGranules").detail("Keys", keys).detail("Chunks", chunks.size());
|
||||
return chunks;
|
||||
} catch (Error& e) {
|
||||
if (retryCount >= maxRetryCount) {
|
||||
|
@ -6173,10 +6196,7 @@ ACTOR Future<Void> tryGetRangeFromBlob(PromiseStream<RangeResult> results,
|
|||
for (i = 0; i < chunks.size(); ++i) {
|
||||
state KeyRangeRef chunkRange = chunks[i].keyRange;
|
||||
state RangeResult rows = wait(readBlobGranule(chunks[i], keys, 0, fetchVersion, blobConn));
|
||||
TraceEvent("ReadBlobData")
|
||||
.detail("Rows", rows.size())
|
||||
.detail("ChunkRange", chunkRange.toString())
|
||||
.detail("Keys", keys.toString());
|
||||
TraceEvent(SevDebug, "ReadBlobData").detail("Rows", rows.size()).detail("ChunkRange", chunkRange);
|
||||
if (rows.size() == 0) {
|
||||
rows.readThrough = KeyRef(rows.arena(), std::min(chunkRange.end, keys.end));
|
||||
}
|
||||
|
@ -6189,7 +6209,7 @@ ACTOR Future<Void> tryGetRangeFromBlob(PromiseStream<RangeResult> results,
|
|||
} catch (Error& e) {
|
||||
TraceEvent(SevWarn, "ReadBlobDataFailure")
|
||||
.suppressFor(5.0)
|
||||
.detail("Keys", keys.toString())
|
||||
.detail("Keys", keys)
|
||||
.detail("FetchVersion", fetchVersion)
|
||||
.detail("Error", e.what());
|
||||
tr->reset();
|
||||
|
@ -6290,6 +6310,15 @@ ACTOR Future<Version> fetchChangeFeedApplier(StorageServer* data,
|
|||
Version beginVersion,
|
||||
Version endVersion,
|
||||
ReadOptions readOptions) {
|
||||
state FlowLock::Releaser feedFetchReleaser;
|
||||
|
||||
// avoid fetching the same version range of the same change feed multiple times.
|
||||
choose {
|
||||
when(wait(changeFeedInfo->fetchLock.take())) {
|
||||
feedFetchReleaser = FlowLock::Releaser(changeFeedInfo->fetchLock);
|
||||
}
|
||||
when(wait(changeFeedInfo->durableFetchVersion.whenAtLeast(endVersion))) { return invalidVersion; }
|
||||
}
|
||||
|
||||
state Version startVersion = beginVersion;
|
||||
startVersion = std::max(startVersion, emptyVersion + 1);
|
||||
|
@ -6309,6 +6338,7 @@ ACTOR Future<Version> fetchChangeFeedApplier(StorageServer* data,
|
|||
return invalidVersion;
|
||||
}
|
||||
|
||||
// FIXME: if this feed range is not wholly contained within the shard, set cache to true on reading
|
||||
state Reference<ChangeFeedData> feedResults = makeReference<ChangeFeedData>();
|
||||
state Future<Void> feed = data->cx->getChangeFeedStream(feedResults,
|
||||
rangeId,
|
||||
|
@ -6824,6 +6854,16 @@ ACTOR Future<std::vector<Key>> fetchChangeFeedMetadata(StorageServer* data,
|
|||
return feedIds;
|
||||
}
|
||||
|
||||
ReadOptions readOptionsForFeedFetch(const ReadOptions& options, const KeyRangeRef& keys, const KeyRangeRef& feedRange) {
|
||||
if (!feedRange.contains(keys)) {
|
||||
return options;
|
||||
}
|
||||
// If feed range wholly contains shard range, cache on fetch because other shards will likely also fetch it
|
||||
ReadOptions newOptions = options;
|
||||
newOptions.cacheResult = true;
|
||||
return newOptions;
|
||||
}
|
||||
|
||||
// returns max version fetched for each feed
|
||||
// newFeedIds is used for the second fetch to get data for new feeds that weren't there for the first fetch
|
||||
ACTOR Future<std::unordered_map<Key, Version>> dispatchChangeFeeds(StorageServer* data,
|
||||
|
@ -6848,8 +6888,9 @@ ACTOR Future<std::unordered_map<Key, Version>> dispatchChangeFeeds(StorageServer
|
|||
auto feedIt = data->uidChangeFeed.find(feedId);
|
||||
// feed may have been moved away or deleted after move was scheduled, do nothing in that case
|
||||
if (feedIt != data->uidChangeFeed.end() && !feedIt->second->removing) {
|
||||
ReadOptions fetchReadOptions = readOptionsForFeedFetch(readOptions, keys, feedIt->second->range);
|
||||
feedFetches[feedIt->second->id] =
|
||||
fetchChangeFeed(data, feedIt->second, beginVersion, endVersion, readOptions);
|
||||
fetchChangeFeed(data, feedIt->second, beginVersion, endVersion, fetchReadOptions);
|
||||
}
|
||||
}
|
||||
for (auto& feedId : newFeedIds) {
|
||||
|
@ -6857,7 +6898,8 @@ ACTOR Future<std::unordered_map<Key, Version>> dispatchChangeFeeds(StorageServer
|
|||
// we just read the change feed data map earlier in fetchKeys without yielding, so these feeds must exist
|
||||
ASSERT(feedIt != data->uidChangeFeed.end());
|
||||
ASSERT(!feedIt->second->removing);
|
||||
feedFetches[feedIt->second->id] = fetchChangeFeed(data, feedIt->second, 0, endVersion, readOptions);
|
||||
ReadOptions fetchReadOptions = readOptionsForFeedFetch(readOptions, keys, feedIt->second->range);
|
||||
feedFetches[feedIt->second->id] = fetchChangeFeed(data, feedIt->second, 0, endVersion, fetchReadOptions);
|
||||
}
|
||||
|
||||
loop {
|
||||
|
@ -6998,7 +7040,8 @@ ACTOR Future<Void> fetchKeys(StorageServer* data, AddingShard* shard) {
|
|||
// We must also ensure we have fetched all change feed metadata BEFORE changing the phase to fetching to ensure
|
||||
// change feed mutations get applied correctly
|
||||
state std::vector<Key> changeFeedsToFetch;
|
||||
if (!isFullRestoreMode()) {
|
||||
state bool isFullRestore = wait(isFullRestoreMode(data->cx, keys));
|
||||
if (!isFullRestore) {
|
||||
std::vector<Key> _cfToFetch = wait(fetchCFMetadata);
|
||||
changeFeedsToFetch = _cfToFetch;
|
||||
}
|
||||
|
@ -7076,7 +7119,7 @@ ACTOR Future<Void> fetchKeys(StorageServer* data, AddingShard* shard) {
|
|||
|
||||
state PromiseStream<RangeResult> results;
|
||||
state Future<Void> hold;
|
||||
if (SERVER_KNOBS->FETCH_USING_BLOB) {
|
||||
if (isFullRestore) {
|
||||
hold = tryGetRangeFromBlob(results, &tr, keys, fetchVersion, data->blobConn);
|
||||
} else {
|
||||
hold = tryGetRange(results, &tr, keys);
|
||||
|
@ -7114,7 +7157,6 @@ ACTOR Future<Void> fetchKeys(StorageServer* data, AddingShard* shard) {
|
|||
data->thisServerID);
|
||||
}
|
||||
}
|
||||
|
||||
metricReporter.addFetchedBytes(expectedBlockSize, this_block.size());
|
||||
|
||||
// Write this_block to storage
|
||||
|
@ -10414,20 +10456,20 @@ ACTOR Future<Void> metricsCore(StorageServer* self, StorageServerInterface ssi)
|
|||
te.detail("StorageEngine", self->storage.getKeyValueStoreType().toString());
|
||||
te.detail("Tag", self->tag.toString());
|
||||
std::vector<int> rpr = self->readPriorityRanks;
|
||||
te.detail("ReadsActive", self->ssLock.totalRunners());
|
||||
te.detail("ReadsWaiting", self->ssLock.totalWaiters());
|
||||
te.detail("ReadsTotalActive", self->ssLock->getRunnersCount());
|
||||
te.detail("ReadsTotalWaiting", self->ssLock->getWaitersCount());
|
||||
int type = (int)ReadType::FETCH;
|
||||
te.detail("ReadFetchActive", self->ssLock.numRunners(rpr[type]));
|
||||
te.detail("ReadFetchWaiting", self->ssLock.numWaiters(rpr[type]));
|
||||
te.detail("ReadFetchActive", self->ssLock->getRunnersCount(rpr[type]));
|
||||
te.detail("ReadFetchWaiting", self->ssLock->getWaitersCount(rpr[type]));
|
||||
type = (int)ReadType::LOW;
|
||||
te.detail("ReadLowActive", self->ssLock.numRunners(rpr[type]));
|
||||
te.detail("ReadLowWaiting", self->ssLock.numWaiters(rpr[type]));
|
||||
te.detail("ReadLowActive", self->ssLock->getRunnersCount(rpr[type]));
|
||||
te.detail("ReadLowWaiting", self->ssLock->getWaitersCount(rpr[type]));
|
||||
type = (int)ReadType::NORMAL;
|
||||
te.detail("ReadNormalActive", self->ssLock.numRunners(rpr[type]));
|
||||
te.detail("ReadNormalWaiting", self->ssLock.numWaiters(rpr[type]));
|
||||
te.detail("ReadNormalActive", self->ssLock->getRunnersCount(rpr[type]));
|
||||
te.detail("ReadNormalWaiting", self->ssLock->getWaitersCount(rpr[type]));
|
||||
type = (int)ReadType::HIGH;
|
||||
te.detail("ReadHighActive", self->ssLock.numRunners(rpr[type]));
|
||||
te.detail("ReadHighWaiting", self->ssLock.numWaiters(rpr[type]));
|
||||
te.detail("ReadHighActive", self->ssLock->getRunnersCount(rpr[type]));
|
||||
te.detail("ReadHighWaiting", self->ssLock->getWaitersCount(rpr[type]));
|
||||
StorageBytes sb = self->storage.getStorageBytes();
|
||||
te.detail("KvstoreBytesUsed", sb.used);
|
||||
te.detail("KvstoreBytesFree", sb.free);
|
||||
|
@ -11243,7 +11285,7 @@ ACTOR Future<Void> storageServer(IKeyValueStore* persistentData,
|
|||
// If the storage server dies while something that uses self is still on the stack,
|
||||
// we want that actor to complete before we terminate and that memory goes out of scope
|
||||
|
||||
self.ssLock.kill();
|
||||
self.ssLock->kill();
|
||||
|
||||
state Error err = e;
|
||||
if (storageServerTerminated(self, persistentData, err)) {
|
||||
|
@ -11341,7 +11383,7 @@ ACTOR Future<Void> storageServer(IKeyValueStore* persistentData,
|
|||
throw internal_error();
|
||||
} catch (Error& e) {
|
||||
|
||||
self.ssLock.kill();
|
||||
self.ssLock->kill();
|
||||
|
||||
if (self.byteSampleRecovery.isValid()) {
|
||||
self.byteSampleRecovery.cancel();
|
||||
|
|
|
@ -2331,10 +2331,11 @@ ACTOR Future<Void> workerServer(Reference<IClusterConnectionRecord> connRecord,
|
|||
recruited.initEndpoints();
|
||||
if (blobMigratorInterf->get().present()) {
|
||||
recruited = blobMigratorInterf->get().get();
|
||||
CODE_PROBE(true, "Recruited while already a blob migrator.");
|
||||
CODE_PROBE(true, "Recruited while already a blob migrator.", probe::decoration::rare);
|
||||
} else {
|
||||
startRole(Role::BLOB_MIGRATOR, recruited.id(), interf.id());
|
||||
DUMPTOKEN(recruited.haltBlobMigrator);
|
||||
DUMPTOKEN(recruited.waitFailure);
|
||||
DUMPTOKEN(recruited.ssi.getValue);
|
||||
DUMPTOKEN(recruited.ssi.getKey);
|
||||
DUMPTOKEN(recruited.ssi.getKeyValues);
|
||||
|
@ -2345,7 +2346,6 @@ ACTOR Future<Void> workerServer(Reference<IClusterConnectionRecord> connRecord,
|
|||
DUMPTOKEN(recruited.ssi.getReadHotRanges);
|
||||
DUMPTOKEN(recruited.ssi.getRangeSplitPoints);
|
||||
DUMPTOKEN(recruited.ssi.getStorageMetrics);
|
||||
DUMPTOKEN(recruited.ssi.waitFailure);
|
||||
DUMPTOKEN(recruited.ssi.getQueuingMetrics);
|
||||
DUMPTOKEN(recruited.ssi.getKeyValueStoreType);
|
||||
DUMPTOKEN(recruited.ssi.watchValue);
|
||||
|
@ -2796,7 +2796,7 @@ ACTOR Future<Void> workerServer(Reference<IClusterConnectionRecord> connRecord,
|
|||
when(state WorkerSnapRequest snapReq = waitNext(interf.workerSnapReq.getFuture())) {
|
||||
std::string snapReqKey = snapReq.snapUID.toString() + snapReq.role.toString();
|
||||
if (snapReqResultMap.count(snapReqKey)) {
|
||||
CODE_PROBE(true, "Worker received a duplicate finished snapshot request");
|
||||
CODE_PROBE(true, "Worker received a duplicate finished snapshot request", probe::decoration::rare);
|
||||
auto result = snapReqResultMap[snapReqKey];
|
||||
result.isError() ? snapReq.reply.sendError(result.getError()) : snapReq.reply.send(result.get());
|
||||
TraceEvent("RetryFinishedWorkerSnapRequest")
|
||||
|
@ -2804,7 +2804,7 @@ ACTOR Future<Void> workerServer(Reference<IClusterConnectionRecord> connRecord,
|
|||
.detail("Role", snapReq.role)
|
||||
.detail("Result", result.isError() ? result.getError().code() : success().code());
|
||||
} else if (snapReqMap.count(snapReqKey)) {
|
||||
CODE_PROBE(true, "Worker received a duplicate ongoing snapshot request");
|
||||
CODE_PROBE(true, "Worker received a duplicate ongoing snapshot request", probe::decoration::rare);
|
||||
TraceEvent("RetryOngoingWorkerSnapRequest")
|
||||
.detail("SnapUID", snapReq.snapUID.toString())
|
||||
.detail("Role", snapReq.role);
|
||||
|
|
|
@ -20,7 +20,9 @@
|
|||
|
||||
#include <cstdint>
|
||||
|
||||
#include "fdbclient/Tenant.h"
|
||||
#include "fdbclient/TenantManagement.actor.h"
|
||||
#include "fdbserver/Knobs.h"
|
||||
#include "fdbserver/workloads/workloads.actor.h"
|
||||
|
||||
#include "flow/actorcompiler.h" // This must be the last #include.
|
||||
|
@ -28,9 +30,13 @@
|
|||
struct CreateTenantWorkload : TestWorkload {
|
||||
static constexpr auto NAME = "CreateTenant";
|
||||
TenantName tenant;
|
||||
Optional<TenantGroupName> tenantGroup;
|
||||
|
||||
CreateTenantWorkload(WorkloadContext const& wcx) : TestWorkload(wcx) {
|
||||
tenant = getOption(options, "name"_sr, "DefaultTenant"_sr);
|
||||
if (hasOption(options, "group"_sr)) {
|
||||
tenantGroup = getOption(options, "group"_sr, "DefaultGroup"_sr);
|
||||
}
|
||||
}
|
||||
|
||||
Future<Void> setup(Database const& cx) override {
|
||||
|
@ -46,7 +52,12 @@ struct CreateTenantWorkload : TestWorkload {
|
|||
|
||||
ACTOR static Future<Void> _setup(CreateTenantWorkload* self, Database db) {
|
||||
try {
|
||||
Optional<TenantMapEntry> entry = wait(TenantAPI::createTenant(db.getReference(), self->tenant));
|
||||
TenantMapEntry givenEntry;
|
||||
if (self->tenantGroup.present()) {
|
||||
givenEntry.tenantGroup = self->tenantGroup.get();
|
||||
givenEntry.encrypted = SERVER_KNOBS->ENABLE_ENCRYPTION;
|
||||
}
|
||||
Optional<TenantMapEntry> entry = wait(TenantAPI::createTenant(db.getReference(), self->tenant, givenEntry));
|
||||
ASSERT(entry.present());
|
||||
} catch (Error& e) {
|
||||
TraceEvent(SevError, "TenantCreationFailed").error(e);
|
||||
|
|
|
@ -38,6 +38,8 @@ const KeyRef prefix = "prefix"_sr;
|
|||
const KeyRef RECORD = "RECORD"_sr;
|
||||
const KeyRef INDEX = "INDEX"_sr;
|
||||
|
||||
int recordSize;
|
||||
int indexSize;
|
||||
struct GetMappedRangeWorkload : ApiWorkload {
|
||||
static constexpr auto NAME = "GetMappedRange";
|
||||
bool enabled;
|
||||
|
@ -93,19 +95,32 @@ struct GetMappedRangeWorkload : ApiWorkload {
|
|||
loop {
|
||||
std::cout << "start fillInRecords n=" << n << std::endl;
|
||||
// TODO: When n is large, split into multiple transactions.
|
||||
recordSize = 0;
|
||||
indexSize = 0;
|
||||
try {
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (self->SPLIT_RECORDS) {
|
||||
for (int split = 0; split < SPLIT_SIZE; split++) {
|
||||
tr.set(recordKey(i, split), recordValue(i, split));
|
||||
if (i == 0) {
|
||||
recordSize +=
|
||||
recordKey(i, split).size() + recordValue(i, split).size() + sizeof(KeyValueRef);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
tr.set(recordKey(i), recordValue(i));
|
||||
if (i == 0) {
|
||||
recordSize += recordKey(i).size() + recordValue(i).size() + sizeof(KeyValueRef);
|
||||
}
|
||||
}
|
||||
tr.set(indexEntryKey(i), EMPTY);
|
||||
if (i == 0) {
|
||||
indexSize += indexEntryKey(i).size() + sizeof(KeyValueRef);
|
||||
}
|
||||
}
|
||||
wait(tr.commit());
|
||||
std::cout << "finished fillInRecords with version " << tr.getCommittedVersion() << std::endl;
|
||||
std::cout << "finished fillInRecords with version " << tr.getCommittedVersion() << " recordSize "
|
||||
<< recordSize << " indexSize " << indexSize << std::endl;
|
||||
break;
|
||||
} catch (Error& e) {
|
||||
std::cout << "failed fillInRecords, retry" << std::endl;
|
||||
|
@ -146,8 +161,9 @@ struct GetMappedRangeWorkload : ApiWorkload {
|
|||
int matchIndex,
|
||||
bool isBoundary,
|
||||
bool allMissing) {
|
||||
// std::cout << "validateRecord expectedId " << expectedId << " it->key " << printable(it->key) << "
|
||||
// indexEntryKey(expectedId) " << printable(indexEntryKey(expectedId)) << std::endl;
|
||||
// std::cout << "validateRecord expectedId " << expectedId << " it->key " << printable(it->key)
|
||||
// << " indexEntryKey(expectedId) " << printable(indexEntryKey(expectedId))
|
||||
// << " matchIndex: " << matchIndex << std::endl;
|
||||
if (matchIndex == MATCH_INDEX_ALL || isBoundary) {
|
||||
ASSERT(it->key == indexEntryKey(expectedId));
|
||||
} else if (matchIndex == MATCH_INDEX_MATCHED_ONLY) {
|
||||
|
@ -163,7 +179,6 @@ struct GetMappedRangeWorkload : ApiWorkload {
|
|||
ASSERT(std::holds_alternative<GetRangeReqAndResultRef>(it->reqAndResult));
|
||||
auto& getRange = std::get<GetRangeReqAndResultRef>(it->reqAndResult);
|
||||
auto& rangeResult = getRange.result;
|
||||
ASSERT(it->boundaryAndExist == (isBoundary && !rangeResult.empty()));
|
||||
// std::cout << "rangeResult.size()=" << rangeResult.size() << std::endl;
|
||||
// In the future, we may be able to do the continuation more efficiently by combining partial results
|
||||
// together and then validate.
|
||||
|
@ -200,6 +215,7 @@ struct GetMappedRangeWorkload : ApiWorkload {
|
|||
KeySelector endSelector,
|
||||
Key mapper,
|
||||
int limit,
|
||||
int byteLimit,
|
||||
int expectedBeginId,
|
||||
GetMappedRangeWorkload* self,
|
||||
int matchIndex,
|
||||
|
@ -207,14 +223,16 @@ struct GetMappedRangeWorkload : ApiWorkload {
|
|||
|
||||
std::cout << "start scanMappedRangeWithLimits beginSelector:" << beginSelector.toString()
|
||||
<< " endSelector:" << endSelector.toString() << " expectedBeginId:" << expectedBeginId
|
||||
<< " limit:" << limit << std::endl;
|
||||
<< " limit:" << limit << " byteLimit: " << byteLimit << " recordSize: " << recordSize
|
||||
<< " STRICTLY_ENFORCE_BYTE_LIMIT: " << SERVER_KNOBS->STRICTLY_ENFORCE_BYTE_LIMIT << " allMissing "
|
||||
<< allMissing << std::endl;
|
||||
loop {
|
||||
state Reference<TransactionWrapper> tr = self->createTransaction();
|
||||
try {
|
||||
MappedRangeResult result = wait(tr->getMappedRange(beginSelector,
|
||||
endSelector,
|
||||
mapper,
|
||||
GetRangeLimits(limit),
|
||||
GetRangeLimits(limit, byteLimit),
|
||||
matchIndex,
|
||||
self->snapshot,
|
||||
Reverse::False));
|
||||
|
@ -270,17 +288,51 @@ struct GetMappedRangeWorkload : ApiWorkload {
|
|||
Key endTuple = Tuple::makeTuple(prefix, INDEX, indexKey(endId)).getDataAsStandalone();
|
||||
state KeySelector endSelector = KeySelector(firstGreaterOrEqual(endTuple));
|
||||
state int limit = 100;
|
||||
state int byteLimit = deterministicRandom()->randomInt(1, 9) * 10000;
|
||||
state int expectedBeginId = beginId;
|
||||
std::cout << "ByteLimit: " << byteLimit << " limit: " << limit
|
||||
<< " FRACTION_INDEX_BYTELIMIT_PREFETCH: " << SERVER_KNOBS->FRACTION_INDEX_BYTELIMIT_PREFETCH
|
||||
<< " MAX_PARALLEL_QUICK_GET_VALUE: " << SERVER_KNOBS->MAX_PARALLEL_QUICK_GET_VALUE << std::endl;
|
||||
while (true) {
|
||||
MappedRangeResult result = wait(self->scanMappedRangeWithLimits(
|
||||
cx, beginSelector, endSelector, mapper, limit, expectedBeginId, self, matchIndex, allMissing));
|
||||
MappedRangeResult result = wait(self->scanMappedRangeWithLimits(cx,
|
||||
beginSelector,
|
||||
endSelector,
|
||||
mapper,
|
||||
limit,
|
||||
byteLimit,
|
||||
expectedBeginId,
|
||||
self,
|
||||
matchIndex,
|
||||
allMissing));
|
||||
expectedBeginId += result.size();
|
||||
if (result.more) {
|
||||
if (result.empty()) {
|
||||
// This is usually not expected.
|
||||
std::cout << "not result but have more, try again" << std::endl;
|
||||
} else {
|
||||
// auto& reqAndResult = std::get<GetRangeReqAndResultRef>(result.back().reqAndResult);
|
||||
int size = allMissing ? indexSize : (indexSize + recordSize);
|
||||
int expectedCnt = limit;
|
||||
int indexByteLimit = byteLimit * SERVER_KNOBS->FRACTION_INDEX_BYTELIMIT_PREFETCH;
|
||||
int indexCountByteLimit = indexByteLimit / indexSize + (indexByteLimit % indexSize != 0);
|
||||
int indexCount = std::min(limit, indexCountByteLimit);
|
||||
std::cout << "indexCount: " << indexCount << std::endl;
|
||||
// result set cannot be larger than the number of index fetched
|
||||
ASSERT(result.size() <= indexCount);
|
||||
|
||||
expectedCnt = std::min(expectedCnt, indexCount);
|
||||
int boundByRecord;
|
||||
if (SERVER_KNOBS->STRICTLY_ENFORCE_BYTE_LIMIT) {
|
||||
// might have 1 additional entry over the limit
|
||||
boundByRecord = byteLimit / size + (byteLimit % size != 0);
|
||||
} else {
|
||||
// might have 1 additional batch over the limit
|
||||
int roundSize = size * SERVER_KNOBS->MAX_PARALLEL_QUICK_GET_VALUE;
|
||||
int round = byteLimit / roundSize + (byteLimit % roundSize != 0);
|
||||
boundByRecord = round * SERVER_KNOBS->MAX_PARALLEL_QUICK_GET_VALUE;
|
||||
}
|
||||
expectedCnt = std::min(expectedCnt, boundByRecord);
|
||||
std::cout << "boundByRecord: " << boundByRecord << std::endl;
|
||||
ASSERT(result.size() == expectedCnt);
|
||||
beginSelector = KeySelector(firstGreaterThan(result.back().key));
|
||||
}
|
||||
} else {
|
||||
|
@ -289,6 +341,7 @@ struct GetMappedRangeWorkload : ApiWorkload {
|
|||
}
|
||||
}
|
||||
ASSERT(expectedBeginId == endId);
|
||||
|
||||
return Void();
|
||||
}
|
||||
|
||||
|
@ -433,6 +486,8 @@ struct GetMappedRangeWorkload : ApiWorkload {
|
|||
} else if (r < 0.75) {
|
||||
matchIndex = MATCH_INDEX_UNMATCHED_ONLY;
|
||||
}
|
||||
state bool originalStrictlyEnforeByteLimit = SERVER_KNOBS->STRICTLY_ENFORCE_BYTE_LIMIT;
|
||||
(const_cast<ServerKnobs*> SERVER_KNOBS)->STRICTLY_ENFORCE_BYTE_LIMIT = deterministicRandom()->coinflip();
|
||||
wait(self->scanMappedRange(cx, 10, 490, mapper, self, matchIndex));
|
||||
|
||||
{
|
||||
|
@ -440,6 +495,8 @@ struct GetMappedRangeWorkload : ApiWorkload {
|
|||
wait(self->scanMappedRange(cx, 10, 490, mapper, self, MATCH_INDEX_UNMATCHED_ONLY, true));
|
||||
}
|
||||
|
||||
// reset it to default
|
||||
(const_cast<ServerKnobs*> SERVER_KNOBS)->STRICTLY_ENFORCE_BYTE_LIMIT = originalStrictlyEnforeByteLimit;
|
||||
return Void();
|
||||
}
|
||||
|
||||
|
|
|
@ -292,7 +292,7 @@ struct IDDTxnProcessorApiWorkload : TestWorkload {
|
|||
self->verifyServerKeyDest(params);
|
||||
// test finish or started but cancelled movement
|
||||
if (self->testStartOnly || deterministicRandom()->coinflip()) {
|
||||
CODE_PROBE(true, "RawMovementApi partial started");
|
||||
CODE_PROBE(true, "RawMovementApi partial started", probe::decoration::rare);
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -412,4 +412,4 @@ struct IDDTxnProcessorApiWorkload : TestWorkload {
|
|||
void getMetrics(std::vector<PerfMetric>& m) override {}
|
||||
};
|
||||
|
||||
WorkloadFactory<IDDTxnProcessorApiWorkload> IDDTxnProcessorApiWorkload;
|
||||
WorkloadFactory<IDDTxnProcessorApiWorkload> IDDTxnProcessorApiWorkload;
|
||||
|
|
|
@ -18,9 +18,10 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "fdbrpc/TenantName.h"
|
||||
#include "fdbclient/ManagementAPI.actor.h"
|
||||
#include "fdbclient/SystemData.h"
|
||||
#include "fdbclient/Tenant.h"
|
||||
#include "fdbclient/TenantManagement.actor.h"
|
||||
#include "fdbrpc/TenantName.h"
|
||||
#include "fdbserver/Knobs.h"
|
||||
#include "fdbserver/workloads/workloads.actor.h"
|
||||
|
@ -31,12 +32,16 @@
|
|||
|
||||
struct StorageQuotaWorkload : TestWorkload {
|
||||
static constexpr auto NAME = "StorageQuota";
|
||||
TenantGroupName group;
|
||||
TenantName tenant;
|
||||
int nodeCount;
|
||||
TenantName emptyTenant;
|
||||
|
||||
StorageQuotaWorkload(WorkloadContext const& wcx) : TestWorkload(wcx) {
|
||||
nodeCount = getOption(options, "nodeCount"_sr, 10000);
|
||||
group = getOption(options, "group"_sr, "DefaultGroup"_sr);
|
||||
tenant = getOption(options, "tenant"_sr, "DefaultTenant"_sr);
|
||||
nodeCount = getOption(options, "nodeCount"_sr, 10000);
|
||||
emptyTenant = getOption(options, "emptyTenant"_sr, "DefaultTenant"_sr);
|
||||
}
|
||||
|
||||
Future<Void> setup(Database const& cx) override {
|
||||
|
@ -67,27 +72,42 @@ struct StorageQuotaWorkload : TestWorkload {
|
|||
Standalone<KeyValueRef> operator()(int n) { return KeyValueRef(keyForIndex(n), value((n + 1) % nodeCount)); }
|
||||
|
||||
ACTOR Future<Void> _start(StorageQuotaWorkload* self, Database cx) {
|
||||
// Check that the quota set/get functions work as expected.
|
||||
// Set the quota to just below the current size.
|
||||
state TenantMapEntry entry1 = wait(TenantAPI::getTenant(cx.getReference(), self->tenant));
|
||||
state TenantMapEntry entry2 = wait(TenantAPI::getTenant(cx.getReference(), self->emptyTenant));
|
||||
ASSERT(entry1.tenantGroup.present() && entry1.tenantGroup.get() == self->group &&
|
||||
entry2.tenantGroup.present() && entry2.tenantGroup.get() == self->group);
|
||||
|
||||
// Get the size of the non-empty tenant. We will set the quota of the tenant group
|
||||
// to just below the current size of this tenant.
|
||||
state int64_t size = wait(getSize(cx, self->tenant));
|
||||
state int64_t quota = size - 1;
|
||||
wait(setStorageQuotaHelper(cx, self->tenant, quota));
|
||||
state Optional<int64_t> quotaRead = wait(getStorageQuotaHelper(cx, self->tenant));
|
||||
|
||||
// Check that the quota set/get functions work as expected.
|
||||
wait(setStorageQuotaHelper(cx, self->group, quota));
|
||||
state Optional<int64_t> quotaRead = wait(getStorageQuotaHelper(cx, self->group));
|
||||
ASSERT(quotaRead.present() && quotaRead.get() == quota);
|
||||
|
||||
if (!SERVER_KNOBS->DD_TENANT_AWARENESS_ENABLED) {
|
||||
if (!SERVER_KNOBS->STORAGE_QUOTA_ENABLED) {
|
||||
return Void();
|
||||
}
|
||||
|
||||
// Check that writes are rejected when the tenant is over quota.
|
||||
state bool rejected = wait(tryWrite(self, cx, /*expectOk=*/false));
|
||||
ASSERT(rejected);
|
||||
// Check that writes to both the tenants are rejected when the group is over quota.
|
||||
state bool rejected1 = wait(tryWrite(self, cx, self->tenant, /*expectOk=*/false));
|
||||
ASSERT(rejected1);
|
||||
state bool rejected2 = wait(tryWrite(self, cx, self->emptyTenant, /*expectOk=*/false));
|
||||
ASSERT(rejected2);
|
||||
|
||||
// Increase the quota. Check that writes are now able to commit.
|
||||
quota = size * 2;
|
||||
wait(setStorageQuotaHelper(cx, self->tenant, quota));
|
||||
state bool committed = wait(tryWrite(self, cx, /*expectOk=*/true));
|
||||
ASSERT(committed);
|
||||
// Increase the quota or clear the quota. Check that writes to both the tenants are now able to commit.
|
||||
if (deterministicRandom()->coinflip()) {
|
||||
quota = size * 2;
|
||||
wait(setStorageQuotaHelper(cx, self->group, quota));
|
||||
} else {
|
||||
wait(clearStorageQuotaHelper(cx, self->group));
|
||||
}
|
||||
state bool committed1 = wait(tryWrite(self, cx, self->tenant, /*expectOk=*/true));
|
||||
ASSERT(committed1);
|
||||
state bool committed2 = wait(tryWrite(self, cx, self->emptyTenant, /*expectOk=*/true));
|
||||
ASSERT(committed2);
|
||||
|
||||
return Void();
|
||||
}
|
||||
|
@ -115,11 +135,11 @@ struct StorageQuotaWorkload : TestWorkload {
|
|||
}
|
||||
}
|
||||
|
||||
ACTOR static Future<Void> setStorageQuotaHelper(Database cx, TenantName tenantName, int64_t quota) {
|
||||
ACTOR static Future<Void> setStorageQuotaHelper(Database cx, TenantGroupName tenantGroupName, int64_t quota) {
|
||||
state Transaction tr(cx);
|
||||
loop {
|
||||
try {
|
||||
setStorageQuota(tr, tenantName, quota);
|
||||
setStorageQuota(tr, tenantGroupName, quota);
|
||||
wait(tr.commit());
|
||||
return Void();
|
||||
} catch (Error& e) {
|
||||
|
@ -128,12 +148,24 @@ struct StorageQuotaWorkload : TestWorkload {
|
|||
}
|
||||
}
|
||||
|
||||
ACTOR static Future<Optional<int64_t>> getStorageQuotaHelper(Database cx, TenantName tenantName) {
|
||||
ACTOR static Future<Void> clearStorageQuotaHelper(Database cx, TenantGroupName tenantGroupName) {
|
||||
state Transaction tr(cx);
|
||||
loop {
|
||||
try {
|
||||
state Optional<int64_t> quota = wait(getStorageQuota(&tr, tenantName));
|
||||
clearStorageQuota(tr, tenantGroupName);
|
||||
wait(tr.commit());
|
||||
return Void();
|
||||
} catch (Error& e) {
|
||||
wait(tr.onError(e));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ACTOR static Future<Optional<int64_t>> getStorageQuotaHelper(Database cx, TenantGroupName tenantGroupName) {
|
||||
state Transaction tr(cx);
|
||||
loop {
|
||||
try {
|
||||
state Optional<int64_t> quota = wait(getStorageQuota(&tr, tenantGroupName));
|
||||
return quota;
|
||||
} catch (Error& e) {
|
||||
wait(tr.onError(e));
|
||||
|
@ -141,13 +173,13 @@ struct StorageQuotaWorkload : TestWorkload {
|
|||
}
|
||||
}
|
||||
|
||||
ACTOR static Future<bool> tryWrite(StorageQuotaWorkload* self, Database cx, bool expectOk) {
|
||||
ACTOR static Future<bool> tryWrite(StorageQuotaWorkload* self, Database cx, TenantName tenant, bool expectOk) {
|
||||
state int i;
|
||||
// Retry the transaction a few times if needed; this allows us wait for a while for all
|
||||
// the storage usage and quota related monitors to fetch and propagate the latest information
|
||||
// about the tenants that are over storage quota.
|
||||
for (i = 0; i < 10; i++) {
|
||||
state Transaction tr(cx, self->tenant);
|
||||
state Transaction tr(cx, tenant);
|
||||
loop {
|
||||
try {
|
||||
Standalone<KeyValueRef> kv =
|
||||
|
|
|
@ -26,8 +26,8 @@
|
|||
// This workload sets the throughput quota of a tag during the setup phase
|
||||
class ThroughputQuotaWorkload : public TestWorkload {
|
||||
TransactionTag transactionTag;
|
||||
double reservedQuota{ 0.0 };
|
||||
double totalQuota{ 0.0 };
|
||||
int64_t reservedQuota{ 0 };
|
||||
int64_t totalQuota{ 0 };
|
||||
|
||||
ACTOR static Future<Void> setup(ThroughputQuotaWorkload* self, Database cx) {
|
||||
state Reference<ReadYourWritesTransaction> tr = makeReference<ReadYourWritesTransaction>(cx);
|
||||
|
|
|
@ -118,14 +118,14 @@ Arena::Arena(Arena&& r) noexcept = default;
|
|||
Arena& Arena::operator=(const Arena& r) = default;
|
||||
Arena& Arena::operator=(Arena&& r) noexcept = default;
|
||||
void Arena::dependsOn(const Arena& p) {
|
||||
if (p.impl) {
|
||||
// x.dependsOn(y) is a no-op if they refer to the same ArenaBlocks.
|
||||
// They will already have the same lifetime.
|
||||
if (p.impl && p.impl.getPtr() != impl.getPtr()) {
|
||||
allowAccess(impl.getPtr());
|
||||
allowAccess(p.impl.getPtr());
|
||||
ArenaBlock::dependOn(impl, p.impl.getPtr());
|
||||
disallowAccess(p.impl.getPtr());
|
||||
if (p.impl.getPtr() != impl.getPtr()) {
|
||||
disallowAccess(impl.getPtr());
|
||||
}
|
||||
disallowAccess(impl.getPtr());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -297,6 +297,7 @@ void* ArenaBlock::make4kAlignedBuffer(uint32_t size) {
|
|||
}
|
||||
|
||||
void ArenaBlock::dependOn(Reference<ArenaBlock>& self, ArenaBlock* other) {
|
||||
ASSERT(self->getData() != other->getData());
|
||||
other->addref();
|
||||
if (!self || self->isTiny() || self->unused() < sizeof(ArenaBlockRef))
|
||||
create(SMALL, self)->makeReference(other);
|
||||
|
@ -775,6 +776,16 @@ TEST_CASE("/flow/Arena/Size") {
|
|||
return Void();
|
||||
}
|
||||
|
||||
// Test that x.dependsOn(x) works, and is effectively a no-op.
|
||||
TEST_CASE("/flow/Arena/SelfRef") {
|
||||
Arena a(4096);
|
||||
|
||||
// This should be a no-op.
|
||||
a.dependsOn(a);
|
||||
|
||||
return Void();
|
||||
}
|
||||
|
||||
TEST_CASE("flow/StringRef/eat") {
|
||||
StringRef str = "test/case"_sr;
|
||||
StringRef first = str.eat("/");
|
||||
|
@ -815,4 +826,4 @@ TEST_CASE("flow/StringRef/eat") {
|
|||
ASSERT(str == ""_sr);
|
||||
|
||||
return Void();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -29,21 +29,25 @@
|
|||
#define PRIORITYMULTILOCK_ACTOR_H
|
||||
|
||||
#include "flow/flow.h"
|
||||
#include <boost/intrusive/list.hpp>
|
||||
#include "flow/actorcompiler.h" // This must be the last #include.
|
||||
|
||||
#define PRIORITYMULTILOCK_DEBUG 0
|
||||
|
||||
#if PRIORITYMULTILOCK_DEBUG || !defined(NO_INTELLISENSE)
|
||||
#define pml_debug_printf(...) \
|
||||
if (now() > 0) \
|
||||
printf(__VA_ARGS__)
|
||||
if (now() > 0) { \
|
||||
printf("pml line=%04d ", __LINE__); \
|
||||
printf(__VA_ARGS__); \
|
||||
}
|
||||
#else
|
||||
#define pml_debug_printf(...)
|
||||
#endif
|
||||
|
||||
// A multi user lock with a concurrent holder limit where waiters request a lock with a priority
|
||||
// id and are granted locks based on a total concurrency and relative weights of the current active
|
||||
// priorities. Priority id's must start at 0 and are sequential integers.
|
||||
// priorities. Priority id's must start at 0 and are sequential integers. Priority id numbers
|
||||
// are not related to the importance of the priority in execution.
|
||||
//
|
||||
// Scheduling logic
|
||||
// Let
|
||||
|
@ -64,17 +68,17 @@
|
|||
// The interface is similar to FlowMutex except that lock holders can just drop the lock to release it.
|
||||
//
|
||||
// Usage:
|
||||
// Lock lock = wait(prioritylock.lock(priorityLevel));
|
||||
// Lock lock = wait(prioritylock.lock(priority_id));
|
||||
// lock.release(); // Explicit release, or
|
||||
// // let lock and all copies of lock go out of scope to release
|
||||
class PriorityMultiLock {
|
||||
|
||||
class PriorityMultiLock : public ReferenceCounted<PriorityMultiLock> {
|
||||
public:
|
||||
// Waiting on the lock returns a Lock, which is really just a Promise<Void>
|
||||
// Calling release() is not necessary, it exists in case the Lock holder wants to explicitly release
|
||||
// the Lock before it goes out of scope.
|
||||
struct Lock {
|
||||
void release() { promise.send(Void()); }
|
||||
bool isLocked() const { return promise.canBeSet(); }
|
||||
|
||||
// This is exposed in case the caller wants to use/copy it directly
|
||||
Promise<Void> promise;
|
||||
|
@ -84,10 +88,11 @@ public:
|
|||
: PriorityMultiLock(concurrency, parseStringToVector<int>(weights, ',')) {}
|
||||
|
||||
PriorityMultiLock(int concurrency, std::vector<int> weightsByPriority)
|
||||
: concurrency(concurrency), available(concurrency), waiting(0), totalPendingWeights(0), releaseDebugID(0) {
|
||||
: concurrency(concurrency), available(concurrency), waiting(0), totalPendingWeights(0) {
|
||||
|
||||
priorities.resize(weightsByPriority.size());
|
||||
for (int i = 0; i < priorities.size(); ++i) {
|
||||
priorities[i].priority = i;
|
||||
priorities[i].weight = weightsByPriority[i];
|
||||
}
|
||||
|
||||
|
@ -102,7 +107,8 @@ public:
|
|||
|
||||
// If this priority currently has no waiters
|
||||
if (q.empty()) {
|
||||
// Add this priority's weight to the total for priorities with pending work
|
||||
// Add this priority's weight to the total for priorities with pending work. This must be done
|
||||
// so that currenctCapacity() below will assign capacaity to this priority.
|
||||
totalPendingWeights += p.weight;
|
||||
|
||||
// If there are slots available and the priority has capacity then don't make the caller wait
|
||||
|
@ -114,80 +120,71 @@ public:
|
|||
Lock lock;
|
||||
addRunner(lock, &p);
|
||||
|
||||
pml_debug_printf("lock nowait line %d priority %d %s\n", __LINE__, priority, toString().c_str());
|
||||
pml_debug_printf("lock nowait priority %d %s\n", priority, toString().c_str());
|
||||
return lock;
|
||||
}
|
||||
|
||||
// If we didn't return above then add the priority to the waitingPriorities list
|
||||
waitingPriorities.push_back(p);
|
||||
}
|
||||
|
||||
Waiter w;
|
||||
q.push_back(w);
|
||||
Waiter& w = q.emplace_back();
|
||||
++waiting;
|
||||
|
||||
pml_debug_printf("lock wait line %d priority %d %s\n", __LINE__, priority, toString().c_str());
|
||||
pml_debug_printf("lock wait priority %d %s\n", priority, toString().c_str());
|
||||
return w.lockPromise.getFuture();
|
||||
}
|
||||
|
||||
void kill() {
|
||||
pml_debug_printf("kill %s\n", toString().c_str());
|
||||
brokenOnDestruct.reset();
|
||||
|
||||
// handleRelease will not free up any execution slots when it ends via cancel
|
||||
fRunner.cancel();
|
||||
available = 0;
|
||||
runners.clear();
|
||||
priorities.clear();
|
||||
|
||||
waitingPriorities.clear();
|
||||
for (auto& p : priorities) {
|
||||
p.queue.clear();
|
||||
}
|
||||
}
|
||||
|
||||
std::string toString() const {
|
||||
int runnersDone = 0;
|
||||
for (int i = 0; i < runners.size(); ++i) {
|
||||
if (runners[i].isReady()) {
|
||||
++runnersDone;
|
||||
}
|
||||
}
|
||||
|
||||
std::string s = format("{ ptr=%p concurrency=%d available=%d running=%d waiting=%d runnersQueue=%d "
|
||||
"runnersDone=%d pendingWeights=%d ",
|
||||
std::string s = format("{ ptr=%p concurrency=%d available=%d running=%d waiting=%d "
|
||||
"pendingWeights=%d ",
|
||||
this,
|
||||
concurrency,
|
||||
available,
|
||||
concurrency - available,
|
||||
waiting,
|
||||
runners.size(),
|
||||
runnersDone,
|
||||
totalPendingWeights);
|
||||
|
||||
for (int i = 0; i < priorities.size(); ++i) {
|
||||
s += format("p%d:{%s} ", i, priorities[i].toString(this).c_str());
|
||||
for (auto& p : priorities) {
|
||||
s += format("{%s} ", p.toString(this).c_str());
|
||||
}
|
||||
|
||||
s += "}";
|
||||
|
||||
if (concurrency - available != runners.size() - runnersDone) {
|
||||
pml_debug_printf("%s\n", s.c_str());
|
||||
ASSERT_EQ(concurrency - available, runners.size() - runnersDone);
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
int maxPriority() const { return priorities.size() - 1; }
|
||||
|
||||
int totalWaiters() const { return waiting; }
|
||||
int getRunnersCount() const { return concurrency - available; }
|
||||
int getWaitersCount() const { return waiting; }
|
||||
|
||||
int numWaiters(const unsigned int priority) const {
|
||||
int getWaitersCount(const unsigned int priority) const {
|
||||
ASSERT(priority < priorities.size());
|
||||
return priorities[priority].queue.size();
|
||||
}
|
||||
|
||||
int totalRunners() const { return concurrency - available; }
|
||||
|
||||
int numRunners(const unsigned int priority) const {
|
||||
int getRunnersCount(const unsigned int priority) const {
|
||||
ASSERT(priority < priorities.size());
|
||||
return priorities[priority].runners;
|
||||
}
|
||||
|
||||
private:
|
||||
struct Waiter {
|
||||
Waiter() {}
|
||||
Promise<Lock> lockPromise;
|
||||
};
|
||||
|
||||
|
@ -202,8 +199,8 @@ private:
|
|||
|
||||
typedef Deque<Waiter> Queue;
|
||||
|
||||
struct Priority {
|
||||
Priority() : runners(0), weight(0) {}
|
||||
struct Priority : boost::intrusive::list_base_hook<> {
|
||||
Priority() : runners(0), weight(0), priority(-1) {}
|
||||
|
||||
// Queue of waiters at this priority
|
||||
Queue queue;
|
||||
|
@ -211,9 +208,12 @@ private:
|
|||
int runners;
|
||||
// Configured weight for this priority
|
||||
int weight;
|
||||
// Priority number for convenience, matches *this's index in PML priorities vector
|
||||
int priority;
|
||||
|
||||
std::string toString(const PriorityMultiLock* pml) const {
|
||||
return format("weight=%d run=%d wait=%d cap=%d",
|
||||
return format("priority=%d weight=%d run=%d wait=%d cap=%d",
|
||||
priority,
|
||||
weight,
|
||||
runners,
|
||||
queue.size(),
|
||||
|
@ -222,51 +222,41 @@ private:
|
|||
};
|
||||
|
||||
std::vector<Priority> priorities;
|
||||
typedef boost::intrusive::list<Priority, boost::intrusive::constant_time_size<false>> WaitingPrioritiesList;
|
||||
|
||||
// Current or recent (ended) runners
|
||||
Deque<Future<Void>> runners;
|
||||
// List of all priorities with 1 or more waiters. This list exists so that the scheduling loop
|
||||
// does not have to iterage over the priorities vector checking priorities without waiters.
|
||||
WaitingPrioritiesList waitingPriorities;
|
||||
|
||||
Future<Void> fRunner;
|
||||
AsyncTrigger wakeRunner;
|
||||
Promise<Void> brokenOnDestruct;
|
||||
|
||||
// Used for debugging, can roll over without issue
|
||||
unsigned int releaseDebugID;
|
||||
|
||||
ACTOR static Future<Void> handleRelease(PriorityMultiLock* self, Future<Void> f, Priority* priority) {
|
||||
state [[maybe_unused]] unsigned int id = self->releaseDebugID++;
|
||||
|
||||
pml_debug_printf("%f handleRelease self=%p id=%u start \n", now(), self, id);
|
||||
ACTOR static void handleRelease(Reference<PriorityMultiLock> self, Priority* priority, Future<Void> holder) {
|
||||
pml_debug_printf("%f handleRelease self=%p start\n", now(), self.getPtr());
|
||||
try {
|
||||
wait(f);
|
||||
pml_debug_printf("%f handleRelease self=%p id=%u success\n", now(), self, id);
|
||||
wait(holder);
|
||||
pml_debug_printf("%f handleRelease self=%p success\n", now(), self.getPtr());
|
||||
} catch (Error& e) {
|
||||
pml_debug_printf("%f handleRelease self=%p id=%u error %s\n", now(), self, id, e.what());
|
||||
if (e.code() == error_code_actor_cancelled) {
|
||||
throw;
|
||||
}
|
||||
pml_debug_printf("%f handleRelease self=%p error %s\n", now(), self.getPtr(), e.what());
|
||||
}
|
||||
|
||||
pml_debug_printf("lock release line %d priority %d %s\n",
|
||||
__LINE__,
|
||||
(int)(priority - &self->priorities.front()),
|
||||
self->toString().c_str());
|
||||
pml_debug_printf("lock release priority %d %s\n", (int)(priority->priority), self->toString().c_str());
|
||||
|
||||
pml_debug_printf("%f handleRelease self=%p id=%u releasing\n", now(), self, id);
|
||||
pml_debug_printf("%f handleRelease self=%p releasing\n", now(), self.getPtr());
|
||||
++self->available;
|
||||
priority->runners -= 1;
|
||||
|
||||
// If there are any waiters or if the runners array is getting large, trigger the runner loop
|
||||
if (self->waiting > 0 || self->runners.size() > 1000) {
|
||||
if (self->waiting > 0) {
|
||||
self->wakeRunner.trigger();
|
||||
}
|
||||
return Void();
|
||||
}
|
||||
|
||||
void addRunner(Lock& lock, Priority* p) {
|
||||
p->runners += 1;
|
||||
void addRunner(Lock& lock, Priority* priority) {
|
||||
priority->runners += 1;
|
||||
--available;
|
||||
runners.push_back(handleRelease(this, lock.promise.getFuture(), p));
|
||||
handleRelease(Reference<PriorityMultiLock>::addRef(this), priority, lock.promise.getFuture());
|
||||
}
|
||||
|
||||
// Current maximum running tasks for the specified priority, which must have waiters
|
||||
|
@ -278,76 +268,50 @@ private:
|
|||
}
|
||||
|
||||
ACTOR static Future<Void> runner(PriorityMultiLock* self) {
|
||||
state int sinceYield = 0;
|
||||
state Future<Void> error = self->brokenOnDestruct.getFuture();
|
||||
|
||||
// Priority to try to run tasks from next
|
||||
state int priority = 0;
|
||||
state WaitingPrioritiesList::iterator p = self->waitingPriorities.end();
|
||||
|
||||
loop {
|
||||
pml_debug_printf(
|
||||
"runner loop start line %d priority=%d %s\n", __LINE__, priority, self->toString().c_str());
|
||||
|
||||
// Cleanup finished runner futures at the front of the runner queue.
|
||||
while (!self->runners.empty() && self->runners.front().isReady()) {
|
||||
self->runners.pop_front();
|
||||
}
|
||||
pml_debug_printf("runner loop start priority=%d %s\n", p->priority, self->toString().c_str());
|
||||
|
||||
// Wait for a runner to release its lock
|
||||
pml_debug_printf(
|
||||
"runner loop waitTrigger line %d priority=%d %s\n", __LINE__, priority, self->toString().c_str());
|
||||
pml_debug_printf("runner loop waitTrigger priority=%d %s\n", p->priority, self->toString().c_str());
|
||||
wait(self->wakeRunner.onTrigger());
|
||||
pml_debug_printf(
|
||||
"%f runner loop wake line %d priority=%d %s\n", now(), __LINE__, priority, self->toString().c_str());
|
||||
|
||||
if (++sinceYield == 100) {
|
||||
sinceYield = 0;
|
||||
pml_debug_printf(
|
||||
" runner waitDelay line %d priority=%d %s\n", __LINE__, priority, self->toString().c_str());
|
||||
wait(delay(0));
|
||||
pml_debug_printf(
|
||||
" runner afterDelay line %d priority=%d %s\n", __LINE__, priority, self->toString().c_str());
|
||||
}
|
||||
pml_debug_printf("%f runner loop wake priority=%d %s\n", now(), p->priority, self->toString().c_str());
|
||||
|
||||
// While there are available slots and there are waiters, launch tasks
|
||||
while (self->available > 0 && self->waiting > 0) {
|
||||
pml_debug_printf(
|
||||
" launch loop start line %d priority=%d %s\n", __LINE__, priority, self->toString().c_str());
|
||||
|
||||
Priority* pPriority;
|
||||
pml_debug_printf(" launch loop start priority=%d %s\n", p->priority, self->toString().c_str());
|
||||
|
||||
// Find the next priority with waiters and capacity. There must be at least one.
|
||||
loop {
|
||||
// Rotate to next priority
|
||||
if (++priority == self->priorities.size()) {
|
||||
priority = 0;
|
||||
if (p == self->waitingPriorities.end()) {
|
||||
p = self->waitingPriorities.begin();
|
||||
}
|
||||
|
||||
pPriority = &self->priorities[priority];
|
||||
pml_debug_printf(" launch loop scan priority=%d %s\n", p->priority, self->toString().c_str());
|
||||
|
||||
pml_debug_printf(" launch loop scan line %d priority=%d %s\n",
|
||||
__LINE__,
|
||||
priority,
|
||||
self->toString().c_str());
|
||||
|
||||
if (!pPriority->queue.empty() && pPriority->runners < self->currentCapacity(pPriority->weight)) {
|
||||
if (!p->queue.empty() && p->runners < self->currentCapacity(p->weight)) {
|
||||
break;
|
||||
}
|
||||
++p;
|
||||
}
|
||||
|
||||
Queue& queue = pPriority->queue;
|
||||
|
||||
Queue& queue = p->queue;
|
||||
Waiter w = queue.front();
|
||||
queue.pop_front();
|
||||
|
||||
// If this priority is now empty, subtract its weight from the total pending weights
|
||||
// If this priority is now empty, subtract its weight from the total pending weights an remove it
|
||||
// from the waitingPriorities list
|
||||
Priority* pPriority = &*p;
|
||||
if (queue.empty()) {
|
||||
p = self->waitingPriorities.erase(p);
|
||||
self->totalPendingWeights -= pPriority->weight;
|
||||
|
||||
pml_debug_printf(" emptied priority line %d priority=%d %s\n",
|
||||
__LINE__,
|
||||
priority,
|
||||
self->toString().c_str());
|
||||
pml_debug_printf(
|
||||
" emptied priority priority=%d %s\n", pPriority->priority, self->toString().c_str());
|
||||
}
|
||||
|
||||
--self->waiting;
|
||||
|
@ -365,10 +329,9 @@ private:
|
|||
self->addRunner(lock, pPriority);
|
||||
}
|
||||
|
||||
pml_debug_printf(" launched line %d alreadyDone=%d priority=%d %s\n",
|
||||
__LINE__,
|
||||
pml_debug_printf(" launched alreadyDone=%d priority=%d %s\n",
|
||||
!lock.promise.canBeSet(),
|
||||
priority,
|
||||
pPriority->priority,
|
||||
self->toString().c_str());
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,180 @@
|
|||
/*
|
||||
* BenchBlobDeltaFiles.cpp
|
||||
*
|
||||
* This source file is part of the FoundationDB open source project
|
||||
*
|
||||
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "benchmark/benchmark.h"
|
||||
#include "fdbclient/FDBTypes.h"
|
||||
#include "fdbclient/SystemData.h"
|
||||
#include "flow/IRandom.h"
|
||||
#include "flow/DeterministicRandom.h"
|
||||
|
||||
#include "fdbclient/BlobGranuleFiles.h"
|
||||
#include "flow/flow.h"
|
||||
#include <cstdlib>
|
||||
#include <stdexcept>
|
||||
|
||||
// Pre-generated GranuleDelta size in bytes for benchmark.
|
||||
const static int PRE_GEN_TARGET_BYTES[] = { 128 * 1024, 512 * 1024, 1024 * 1024 };
|
||||
|
||||
// Generate GranuleDelta using a deterministic way. Change the seed if you would test a new data set
|
||||
class DeltaGenerator {
|
||||
public:
|
||||
DeltaGenerator(uint32_t seed = 12345678) {
|
||||
randGen = Reference<IRandom>(new DeterministicRandom(seed));
|
||||
// Generate key range
|
||||
prefix = StringRef(ar, randGen->randomUniqueID().toString() + "_");
|
||||
range = KeyRangeRef(prefix, StringRef(ar, strinc(prefix)));
|
||||
// Generate version jump size
|
||||
minVersionJump = randGen->randomExp(0, 25);
|
||||
maxVersionJump = minVersionJump + randGen->randomExp(0, 25);
|
||||
// Generate value size range
|
||||
maxValueSize = randGen->randomExp(7, 9);
|
||||
// Generate start version
|
||||
version = randGen->randomUInt32();
|
||||
// Generate probabilty of update existing keys
|
||||
updateExistingKeysProb = randGen->random01();
|
||||
// Generate deltas
|
||||
for (auto i : PRE_GEN_TARGET_BYTES) {
|
||||
genDeltas(i);
|
||||
}
|
||||
|
||||
fmt::print("key range: {} - {}\n", range.begin.printable(), range.end.printable());
|
||||
fmt::print("start version: {}\n", version);
|
||||
fmt::print("max value bytes: {}\n", maxValueSize);
|
||||
fmt::print("version jump range: {} - {}\n", minVersionJump, maxVersionJump);
|
||||
fmt::print("probability for update: {}\n", updateExistingKeysProb);
|
||||
fmt::print("unseed: {}\n", randGen->randomUInt32());
|
||||
}
|
||||
|
||||
KeyRange getRange() { return range; }
|
||||
|
||||
Standalone<GranuleDeltas> getDelta(int targetBytes) {
|
||||
if (deltas.find(targetBytes) != deltas.end()) {
|
||||
return deltas[targetBytes];
|
||||
}
|
||||
throw std::invalid_argument("Test delta file size is not pre-generated!");
|
||||
}
|
||||
|
||||
private:
|
||||
void genDeltas(int targetBytes) {
|
||||
Standalone<GranuleDeltas> data;
|
||||
int totalDataBytes = 0;
|
||||
while (totalDataBytes < targetBytes) {
|
||||
data.push_back(ar, newDelta());
|
||||
totalDataBytes += data.back().expectedSize();
|
||||
}
|
||||
deltas[targetBytes] = data;
|
||||
}
|
||||
|
||||
MutationRef newMutation() { return MutationRef(ar, MutationRef::SetValue, key(), value()); }
|
||||
|
||||
MutationsAndVersionRef newDelta() {
|
||||
version += randGen->randomInt(minVersionJump, maxVersionJump);
|
||||
MutationsAndVersionRef ret(version, version);
|
||||
for (int i = 0; i < 10; i++) {
|
||||
ret.mutations.push_back_deep(ar, newMutation());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
StringRef key() {
|
||||
// Pick an existing key
|
||||
if (randGen->random01() < updateExistingKeysProb && !usedKeys.empty()) {
|
||||
int r = randGen->randomUInt32() % usedKeys.size();
|
||||
auto it = usedKeys.begin();
|
||||
for (; r != 0; r--)
|
||||
it++;
|
||||
return StringRef(ar, *it);
|
||||
}
|
||||
|
||||
// Create a new key
|
||||
std::string key = prefix.toString() + randGen->randomUniqueID().toString();
|
||||
usedKeys.insert(key);
|
||||
return StringRef(ar, key);
|
||||
}
|
||||
|
||||
StringRef value() {
|
||||
int valueSize = randGen->randomInt(maxValueSize / 2, maxValueSize * 3 / 2);
|
||||
std::string value = randGen->randomUniqueID().toString();
|
||||
if (value.size() > valueSize) {
|
||||
value = value.substr(0, valueSize);
|
||||
}
|
||||
if (value.size() < valueSize) {
|
||||
// repeated string so it's compressible
|
||||
value += std::string(valueSize - value.size(), 'x');
|
||||
}
|
||||
return StringRef(ar, value);
|
||||
}
|
||||
|
||||
Reference<IRandom> randGen;
|
||||
Arena ar;
|
||||
KeyRangeRef range;
|
||||
Key prefix;
|
||||
int maxValueSize;
|
||||
Version version;
|
||||
int minVersionJump;
|
||||
int maxVersionJump;
|
||||
std::set<std::string> usedKeys;
|
||||
double updateExistingKeysProb;
|
||||
std::map<int, Standalone<GranuleDeltas>> deltas;
|
||||
};
|
||||
|
||||
static DeltaGenerator deltaGen; // Pre-generate deltas
|
||||
|
||||
// Benchmark serialization without compression/encryption. The main CPU cost should be sortDeltasByKey
|
||||
static void bench_serialize_deltas(benchmark::State& state) {
|
||||
int targetBytes = state.range(0);
|
||||
int chunkSize = state.range(1);
|
||||
|
||||
Standalone<GranuleDeltas> delta = deltaGen.getDelta(targetBytes);
|
||||
KeyRange range = deltaGen.getRange();
|
||||
|
||||
Standalone<StringRef> fileName = "testdelta"_sr; // unused
|
||||
Optional<CompressionFilter> compressFilter; // unused. no compression
|
||||
Optional<BlobGranuleCipherKeysCtx> cipherKeysCtx; // unused. no encryption
|
||||
|
||||
uint32_t serializedBytes = 0;
|
||||
for (auto _ : state) {
|
||||
Value serialized = serializeChunkedDeltaFile(fileName, delta, range, chunkSize, compressFilter, cipherKeysCtx);
|
||||
serializedBytes += serialized.size();
|
||||
}
|
||||
state.SetBytesProcessed(static_cast<long>(state.iterations()) * targetBytes);
|
||||
state.counters["serialized_bytes"] = serializedBytes;
|
||||
}
|
||||
|
||||
// Benchmark sorting deltas
|
||||
static void bench_sort_deltas(benchmark::State& state) {
|
||||
int targetBytes = state.range(0);
|
||||
Standalone<GranuleDeltas> delta = deltaGen.getDelta(targetBytes);
|
||||
KeyRange range = deltaGen.getRange();
|
||||
|
||||
for (auto _ : state) {
|
||||
sortDeltasByKey(delta, range);
|
||||
}
|
||||
state.SetBytesProcessed(static_cast<long>(state.iterations()) * targetBytes);
|
||||
}
|
||||
|
||||
// Benchmark serialization for granule deltas 128KB, 512KB and 1024KB. Chunk size 32KB
|
||||
BENCHMARK(bench_serialize_deltas)
|
||||
->Args({ 128 * 1024, 32 * 1024 })
|
||||
->Args({ 512 * 1024, 32 * 1024 })
|
||||
->Args({ 1024 * 1024, 32 * 1024 });
|
||||
|
||||
// Benchmark sorting for granule deltas 128KB, 512KB and 1024KB. Chunk size 32KB
|
||||
BENCHMARK(bench_sort_deltas)->Args({ 128 * 1024 })->Args({ 512 * 1024 })->Args({ 1024 * 1024 });
|
|
@ -25,26 +25,28 @@
|
|||
#include "flow/PriorityMultiLock.actor.h"
|
||||
#include <deque>
|
||||
#include "flow/actorcompiler.h" // This must be the last #include.
|
||||
#include "fmt/printf.h"
|
||||
|
||||
ACTOR static Future<Void> benchPriorityMultiLock(benchmark::State* benchState) {
|
||||
state std::vector<int> priorities;
|
||||
// Arg1 is the number of active priorities to use
|
||||
// Arg2 is the number of inactive priorities to use
|
||||
state int active = benchState->range(0);
|
||||
state int inactive = benchState->range(1);
|
||||
|
||||
// Set up priority list with limits 10, 20, 30, ...
|
||||
while (priorities.size() < benchState->range(0)) {
|
||||
state std::vector<int> priorities;
|
||||
while (priorities.size() < active + inactive) {
|
||||
priorities.push_back(10 * (priorities.size() + 1));
|
||||
}
|
||||
|
||||
state int concurrency = priorities.size() * 10;
|
||||
state PriorityMultiLock* pml = new PriorityMultiLock(concurrency, priorities);
|
||||
state std::vector<int> counts;
|
||||
counts.resize(priorities.size(), 0);
|
||||
state Reference<PriorityMultiLock> pml = makeReference<PriorityMultiLock>(concurrency, priorities);
|
||||
|
||||
// Clog the lock buy taking concurrency locks
|
||||
// Clog the lock buy taking n=concurrency locks
|
||||
state std::deque<Future<PriorityMultiLock::Lock>> lockFutures;
|
||||
for (int j = 0; j < concurrency; ++j) {
|
||||
lockFutures.push_back(pml->lock(j % priorities.size()));
|
||||
lockFutures.push_back(pml->lock(j % active));
|
||||
}
|
||||
|
||||
// Wait for all of the initial locks to be taken
|
||||
// This will work regardless of their priorities as there are only n = concurrency of them
|
||||
wait(waitForAll(std::vector<Future<PriorityMultiLock::Lock>>(lockFutures.begin(), lockFutures.end())));
|
||||
|
@ -64,7 +66,7 @@ ACTOR static Future<Void> benchPriorityMultiLock(benchmark::State* benchState) {
|
|||
PriorityMultiLock::Lock lock = wait(f);
|
||||
|
||||
// Rotate to another priority
|
||||
if (++p == priorities.size()) {
|
||||
if (++p == active) {
|
||||
p = 0;
|
||||
}
|
||||
|
||||
|
@ -76,7 +78,6 @@ ACTOR static Future<Void> benchPriorityMultiLock(benchmark::State* benchState) {
|
|||
|
||||
benchState->SetItemsProcessed(static_cast<long>(benchState->iterations()));
|
||||
|
||||
delete pml;
|
||||
return Void();
|
||||
}
|
||||
|
||||
|
@ -84,4 +85,4 @@ static void bench_priorityMultiLock(benchmark::State& benchState) {
|
|||
onMainThread([&benchState]() { return benchPriorityMultiLock(&benchState); }).blockUntilReady();
|
||||
}
|
||||
|
||||
BENCHMARK(bench_priorityMultiLock)->DenseRange(1, 8)->ReportAggregatesOnly(true);
|
||||
BENCHMARK(bench_priorityMultiLock)->Args({ 5, 0 })->Ranges({ { 1, 64 }, { 0, 128 } })->ReportAggregatesOnly(true);
|
||||
|
|
|
@ -240,7 +240,7 @@ if(WITH_PYTHON)
|
|||
add_fdb_test(TEST_FILES rare/RedwoodCorrectnessBTree.toml)
|
||||
add_fdb_test(TEST_FILES rare/RedwoodDeltaTree.toml)
|
||||
add_fdb_test(TEST_FILES rare/Throttling.toml)
|
||||
add_fdb_test(TEST_FILES rare/ThroughputQuota.toml IGNORE)
|
||||
add_fdb_test(TEST_FILES rare/ThroughputQuota.toml)
|
||||
add_fdb_test(TEST_FILES rare/TransactionCost.toml)
|
||||
add_fdb_test(TEST_FILES rare/TransactionTagApiCorrectness.toml)
|
||||
add_fdb_test(TEST_FILES rare/TransactionTagSwizzledApiCorrectness.toml)
|
||||
|
|
|
@ -6,35 +6,60 @@ import subprocess
|
|||
import os
|
||||
import socket
|
||||
import time
|
||||
import fcntl
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
CLUSTER_UPDATE_TIMEOUT_SEC = 10
|
||||
EXCLUDE_SERVERS_TIMEOUT_SEC = 120
|
||||
RETRY_INTERVAL_SEC = 0.5
|
||||
PORT_LOCK_DIR = Path(tempfile.gettempdir()).joinpath("fdb_local_cluster_port_locks")
|
||||
MAX_PORT_ACQUIRE_ATTEMPTS = 1000
|
||||
|
||||
|
||||
def _get_free_port_internal():
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
s.bind(("0.0.0.0", 0))
|
||||
return s.getsockname()[1]
|
||||
class PortProvider:
|
||||
def __init__(self):
|
||||
self._used_ports = set()
|
||||
self._lock_files = []
|
||||
PORT_LOCK_DIR.mkdir(exist_ok=True)
|
||||
|
||||
def get_free_port(self):
|
||||
counter = 0
|
||||
while True:
|
||||
counter += 1
|
||||
if counter > MAX_PORT_ACQUIRE_ATTEMPTS:
|
||||
assert False, "Failed to acquire a free port after {} attempts".format(MAX_PORT_ACQUIRE_ATTEMPTS)
|
||||
port = PortProvider._get_free_port_internal()
|
||||
if port in self._used_ports:
|
||||
continue
|
||||
lock_path = PORT_LOCK_DIR.joinpath("{}.lock".format(port))
|
||||
try:
|
||||
locked_fd = open(lock_path, "w+")
|
||||
self._lock_files.append(locked_fd)
|
||||
fcntl.lockf(locked_fd, fcntl.LOCK_EX)
|
||||
self._used_ports.add(port)
|
||||
return port
|
||||
except OSError:
|
||||
print("Failed to lock file {}. Trying to aquire another port".format(lock_path), file=sys.stderr)
|
||||
pass
|
||||
|
||||
_used_ports = set()
|
||||
def is_port_in_use(port):
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
return s.connect_ex(("localhost", port)) == 0
|
||||
|
||||
def _get_free_port_internal():
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
s.bind(("0.0.0.0", 0))
|
||||
return s.getsockname()[1]
|
||||
|
||||
def get_free_port():
|
||||
global _used_ports
|
||||
port = _get_free_port_internal()
|
||||
while port in _used_ports:
|
||||
port = _get_free_port_internal()
|
||||
_used_ports.add(port)
|
||||
return port
|
||||
|
||||
|
||||
def is_port_in_use(port):
|
||||
import socket
|
||||
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
return s.connect_ex(("localhost", port)) == 0
|
||||
def release_locks(self):
|
||||
for fd in self._lock_files:
|
||||
fd.close()
|
||||
try:
|
||||
os.remove(fd.name)
|
||||
except:
|
||||
pass
|
||||
self._lock_files.clear()
|
||||
|
||||
|
||||
valid_letters_for_secret = string.ascii_letters + string.digits
|
||||
|
@ -122,6 +147,7 @@ logdir = {logdir}
|
|||
custom_config: dict = {},
|
||||
public_key_json_str: str = "",
|
||||
):
|
||||
self.port_provider = PortProvider()
|
||||
self.basedir = Path(basedir)
|
||||
self.etc = self.basedir.joinpath("etc")
|
||||
self.log = self.basedir.joinpath("log")
|
||||
|
@ -188,7 +214,7 @@ logdir = {logdir}
|
|||
|
||||
def __next_port(self):
|
||||
if self.first_port is None:
|
||||
return get_free_port()
|
||||
return self.port_provider.get_free_port()
|
||||
else:
|
||||
self.last_used_port += 1
|
||||
return self.last_used_port
|
||||
|
@ -284,7 +310,7 @@ logdir = {logdir}
|
|||
in_use = False
|
||||
for server_id in self.active_servers:
|
||||
port = self.server_ports[server_id]
|
||||
if is_port_in_use(port):
|
||||
if PortProvider.is_port_in_use(port):
|
||||
print("Port {} in use. Waiting for it to be released".format(port))
|
||||
in_use = True
|
||||
break
|
||||
|
@ -300,6 +326,10 @@ logdir = {logdir}
|
|||
|
||||
def __exit__(self, xc_type, exc_value, traceback):
|
||||
self.stop_cluster()
|
||||
self.release_ports()
|
||||
|
||||
def release_ports(self):
|
||||
self.port_provider.release_locks()
|
||||
|
||||
def __fdbcli_exec(self, cmd, stdout, stderr, timeout):
|
||||
args = [self.fdbcli_binary, "-C", self.cluster_file, "--exec", cmd]
|
||||
|
@ -334,9 +364,6 @@ logdir = {logdir}
|
|||
db_config += " blob_granules_enabled:=1"
|
||||
self.fdbcli_exec(db_config)
|
||||
|
||||
if self.blob_granules_enabled:
|
||||
self.fdbcli_exec("blobrange start \\x00 \\xff")
|
||||
|
||||
# Generate and install test certificate chains and keys
|
||||
def create_tls_cert(self):
|
||||
assert self.tls_config is not None, "TLS not enabled"
|
||||
|
|
|
@ -168,6 +168,7 @@ class UpgradeTest:
|
|||
|
||||
def __exit__(self, xc_type, exc_value, traceback):
|
||||
self.cluster.stop_cluster()
|
||||
self.cluster.release_ports()
|
||||
if CLEANUP_ON_EXIT:
|
||||
shutil.rmtree(self.tmp_dir)
|
||||
|
||||
|
|
|
@ -6,6 +6,7 @@ enable_encryption = true
|
|||
enable_tlog_encryption = true
|
||||
enable_storage_server_encryption = false
|
||||
enable_blob_granule_encryption = true
|
||||
max_write_transaction_life_versions = 5000000
|
||||
|
||||
[[test]]
|
||||
testTitle = 'EncryptedBackupAndRestore'
|
||||
|
|
|
@ -8,20 +8,36 @@ testTitle = 'TenantCreation'
|
|||
[[test.workload]]
|
||||
testName = 'CreateTenant'
|
||||
name = 'First'
|
||||
group = 'GroupA'
|
||||
|
||||
[[test.workload]]
|
||||
testName = 'CreateTenant'
|
||||
name = 'Second'
|
||||
group = 'GroupA'
|
||||
|
||||
[[test.workload]]
|
||||
testName = 'CreateTenant'
|
||||
name = 'Third'
|
||||
group = 'GroupB'
|
||||
|
||||
[[test.workload]]
|
||||
testName = 'CreateTenant'
|
||||
name = 'Fourth'
|
||||
group = 'GroupB'
|
||||
|
||||
[[test]]
|
||||
testTitle = 'StorageQuota'
|
||||
|
||||
[[test.workload]]
|
||||
testName = 'StorageQuota'
|
||||
group = 'GroupA'
|
||||
tenant = 'First'
|
||||
nodeCount = 250000
|
||||
emptyTenant = 'Second'
|
||||
|
||||
[[test.workload]]
|
||||
testName = 'StorageQuota'
|
||||
tenant = 'Second'
|
||||
group = 'GroupB'
|
||||
tenant = 'Third'
|
||||
nodeCount = 25000
|
||||
emptyTenant = 'Fourth'
|
||||
|
|
|
@ -4,15 +4,10 @@ testTitle='ThroughputQuotaTest'
|
|||
[[test.workload]]
|
||||
testName='ThroughputQuota'
|
||||
transactionTag='a'
|
||||
totalQuota=1.0
|
||||
|
||||
[[test.workload]]
|
||||
testName='Status'
|
||||
enableLatencyBands = true
|
||||
testDuration = 60.0
|
||||
totalQuota=16384
|
||||
|
||||
[[test.workload]]
|
||||
testName = 'Cycle'
|
||||
transactionsPerSecond = 2500.0
|
||||
testDuration = 60.0
|
||||
transactionsPerSecond = 250.0
|
||||
testDuration = 30.0
|
||||
expectedRate = 0
|
||||
|
|
Loading…
Reference in New Issue