Merge pull request #7087 from sfc-gh-xwang/features/read-skew

Add SkewedReadWriteWorkload
This commit is contained in:
Xiaoxi Wang 2022-05-16 16:13:57 -07:00 committed by GitHub
commit 8e2a78bf3c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 851 additions and 337 deletions

View File

@ -302,7 +302,8 @@ std::pair<std::vector<std::pair<UID, NetworkAddress>>, std::vector<std::pair<UID
return std::make_pair(logs, oldLogs);
}
const KeyRef serverKeysPrefix = "\xff/serverKeys/"_sr;
const KeyRangeRef serverKeysRange = KeyRangeRef("\xff/serverKeys/"_sr, "\xff/serverKeys0"_sr);
const KeyRef serverKeysPrefix = serverKeysRange.begin;
const ValueRef serverKeysTrue = "1"_sr, // compatible with what was serverKeysTrue
serverKeysTrueEmptyRange = "3"_sr, // the server treats the range as empty.
serverKeysFalse;
@ -328,6 +329,18 @@ UID serverKeysDecodeServer(const KeyRef& key) {
rd >> server_id;
return server_id;
}
std::pair<UID, Key> serverKeysDecodeServerBegin(const KeyRef& key) {
UID server_id;
BinaryReader rd(key.removePrefix(serverKeysPrefix), Unversioned());
rd >> server_id;
rd.readBytes(1); // skip "/"
const auto remainingBytes = rd.remainingBytes();
KeyRef ref = KeyRef(rd.arenaRead(remainingBytes), remainingBytes);
// std::cout << ref.size() << " " << ref.toString() << std::endl;
return std::make_pair(server_id, Key(ref));
}
bool serverHasKey(ValueRef storedValue) {
return storedValue == serverKeysTrue || storedValue == serverKeysTrueEmptyRange;
}

View File

@ -99,11 +99,13 @@ void decodeStorageCacheValue(const ValueRef& value, std::vector<uint16_t>& serve
// Using the serverID as a prefix, then followed by the beginning of the shard range
// as the key, the value indicates whether the shard does or does not exist on the server.
// These values can be changed as data movement occurs.
extern const KeyRangeRef serverKeysRange;
extern const KeyRef serverKeysPrefix;
extern const ValueRef serverKeysTrue, serverKeysTrueEmptyRange, serverKeysFalse;
const Key serverKeysKey(UID serverID, const KeyRef& keys);
const Key serverKeysPrefixFor(UID serverID);
UID serverKeysDecodeServer(const KeyRef& key);
std::pair<UID, Key> serverKeysDecodeServerBegin(const KeyRef& key);
bool serverHasKey(ValueRef storedValue);
extern const KeyRangeRef conflictingKeysRange;

View File

@ -267,6 +267,7 @@ set(FDBSERVER_SRCS
workloads/ReadAfterWrite.actor.cpp
workloads/ReadHotDetection.actor.cpp
workloads/ReadWrite.actor.cpp
workloads/ReadWriteWorkload.actor.h
workloads/RemoveServersSafely.actor.cpp
workloads/ReportConflictingKeys.actor.cpp
workloads/RestoreBackup.actor.cpp
@ -281,6 +282,7 @@ set(FDBSERVER_SRCS
workloads/Sideband.actor.cpp
workloads/SidebandSingle.actor.cpp
workloads/SimpleAtomicAdd.actor.cpp
workloads/SkewedReadWrite.actor.cpp
workloads/SlowTaskWorkload.actor.cpp
workloads/SnapTest.actor.cpp
workloads/SpecialKeySpaceCorrectness.actor.cpp

View File

@ -99,6 +99,20 @@ Key KVWorkload::keyForIndex(uint64_t index) const {
}
}
int64_t KVWorkload::indexForKey(const KeyRef& key, bool absent) const {
int idx = 0;
if (nodePrefix > 0) {
ASSERT(keyBytes >= 32);
idx += 16;
}
ASSERT(keyBytes >= 16);
// extract int64_t index, the reverse process of emplaceIndex()
auto end = key.size() - idx - (absent ? 1 : 0);
std::string str((char*)key.begin() + idx, end);
int64_t res = std::stoll(str, nullptr, 16);
return res;
}
Key KVWorkload::keyForIndex(uint64_t index, bool absent) const {
int adjustedKeyBytes = (absent) ? (keyBytes + 1) : keyBytes;
Key result = makeString(adjustedKeyBytes);
@ -112,8 +126,8 @@ Key KVWorkload::keyForIndex(uint64_t index, bool absent) const {
idx += 16;
}
ASSERT(keyBytes >= 16);
double d = double(index) / nodeCount;
emplaceIndex(data, idx, *(int64_t*)&d);
emplaceIndex(data, idx, (int64_t)index);
// ASSERT(indexForKey(result) == (int64_t)index); // debug assert
return result;
}

View File

@ -28,202 +28,13 @@
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/workloads/BulkSetup.actor.h"
#include "fdbserver/workloads/ReadWriteWorkload.actor.h"
#include "fdbclient/ReadYourWrites.h"
#include "flow/TDMetric.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
const int sampleSize = 10000;
static Future<Version> nextRV;
static Version lastRV = invalidVersion;
ACTOR static Future<Version> getNextRV(Database db) {
state Transaction tr(db);
loop {
try {
Version v = wait(tr.getReadVersion());
return v;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
static Future<Version> getInconsistentReadVersion(Database const& db) {
if (!nextRV.isValid() || nextRV.isReady()) { // if no getNextRV() running
if (nextRV.isValid())
lastRV = nextRV.get();
nextRV = getNextRV(db);
}
if (lastRV == invalidVersion)
return nextRV;
else
return lastRV;
}
DESCR struct TransactionSuccessMetric {
int64_t totalLatency; // ns
int64_t startLatency; // ns
int64_t commitLatency; // ns
int64_t retries; // count
};
DESCR struct TransactionFailureMetric {
int64_t startLatency; // ns
int64_t errorCode; // flow error code
};
DESCR struct ReadMetric {
int64_t readLatency; // ns
};
struct ReadWriteWorkload : KVWorkload {
int readsPerTransactionA, writesPerTransactionA;
int readsPerTransactionB, writesPerTransactionB;
int extraReadConflictRangesPerTransaction, extraWriteConflictRangesPerTransaction;
double testDuration, transactionsPerSecond, alpha, warmingDelay, loadTime, maxInsertRate, debugInterval, debugTime;
double metricsStart, metricsDuration, clientBegin;
std::string valueString;
bool dependentReads;
bool enableReadLatencyLogging;
double periodicLoggingInterval;
bool cancelWorkersAtDuration;
bool inconsistentReads;
bool adjacentReads;
bool adjacentWrites;
bool rampUpLoad;
int rampSweepCount;
double hotKeyFraction, forceHotProbability;
bool rangeReads;
bool useRYW;
bool rampTransactionType;
bool rampUpConcurrency;
bool batchPriority;
Standalone<StringRef> descriptionString;
Int64MetricHandle totalReadsMetric;
Int64MetricHandle totalRetriesMetric;
EventMetricHandle<TransactionSuccessMetric> transactionSuccessMetric;
EventMetricHandle<TransactionFailureMetric> transactionFailureMetric;
EventMetricHandle<ReadMetric> readMetric;
std::vector<Future<Void>> clients;
PerfIntCounter aTransactions, bTransactions, retries;
ContinuousSample<double> latencies, readLatencies, commitLatencies, GRVLatencies, fullReadLatencies;
double readLatencyTotal;
int readLatencyCount;
std::vector<uint64_t> insertionCountsToMeasure;
std::vector<std::pair<uint64_t, double>> ratesAtKeyCounts;
std::vector<PerfMetric> periodicMetrics;
bool doSetup;
ReadWriteWorkload(WorkloadContext const& wcx)
: KVWorkload(wcx), loadTime(0.0), clientBegin(0), dependentReads(false), adjacentReads(false),
adjacentWrites(false), totalReadsMetric(LiteralStringRef("RWWorkload.TotalReads")),
totalRetriesMetric(LiteralStringRef("RWWorkload.TotalRetries")), aTransactions("A Transactions"),
bTransactions("B Transactions"), retries("Retries"), latencies(sampleSize), readLatencies(sampleSize),
commitLatencies(sampleSize), GRVLatencies(sampleSize), fullReadLatencies(sampleSize), readLatencyTotal(0),
readLatencyCount(0) {
transactionSuccessMetric.init(LiteralStringRef("RWWorkload.SuccessfulTransaction"));
transactionFailureMetric.init(LiteralStringRef("RWWorkload.FailedTransaction"));
readMetric.init(LiteralStringRef("RWWorkload.Read"));
testDuration = getOption(options, LiteralStringRef("testDuration"), 10.0);
transactionsPerSecond = getOption(options, LiteralStringRef("transactionsPerSecond"), 5000.0) / clientCount;
double allowedLatency = getOption(options, LiteralStringRef("allowedLatency"), 0.250);
actorCount = ceil(transactionsPerSecond * allowedLatency);
actorCount = getOption(options, LiteralStringRef("actorCountPerTester"), actorCount);
readsPerTransactionA = getOption(options, LiteralStringRef("readsPerTransactionA"), 10);
writesPerTransactionA = getOption(options, LiteralStringRef("writesPerTransactionA"), 0);
readsPerTransactionB = getOption(options, LiteralStringRef("readsPerTransactionB"), 1);
writesPerTransactionB = getOption(options, LiteralStringRef("writesPerTransactionB"), 9);
alpha = getOption(options, LiteralStringRef("alpha"), 0.1);
extraReadConflictRangesPerTransaction =
getOption(options, LiteralStringRef("extraReadConflictRangesPerTransaction"), 0);
extraWriteConflictRangesPerTransaction =
getOption(options, LiteralStringRef("extraWriteConflictRangesPerTransaction"), 0);
valueString = std::string(maxValueBytes, '.');
if (nodePrefix > 0) {
keyBytes += 16;
}
metricsStart = getOption(options, LiteralStringRef("metricsStart"), 0.0);
metricsDuration = getOption(options, LiteralStringRef("metricsDuration"), testDuration);
if (getOption(options, LiteralStringRef("discardEdgeMeasurements"), true)) {
// discardEdgeMeasurements keeps the metrics from the middle 3/4 of the test
metricsStart += testDuration * 0.125;
metricsDuration *= 0.75;
}
dependentReads = getOption(options, LiteralStringRef("dependentReads"), false);
warmingDelay = getOption(options, LiteralStringRef("warmingDelay"), 0.0);
maxInsertRate = getOption(options, LiteralStringRef("maxInsertRate"), 1e12);
debugInterval = getOption(options, LiteralStringRef("debugInterval"), 0.0);
debugTime = getOption(options, LiteralStringRef("debugTime"), 0.0);
enableReadLatencyLogging = getOption(options, LiteralStringRef("enableReadLatencyLogging"), false);
periodicLoggingInterval = getOption(options, LiteralStringRef("periodicLoggingInterval"), 5.0);
cancelWorkersAtDuration = getOption(options, LiteralStringRef("cancelWorkersAtDuration"), true);
inconsistentReads = getOption(options, LiteralStringRef("inconsistentReads"), false);
adjacentReads = getOption(options, LiteralStringRef("adjacentReads"), false);
adjacentWrites = getOption(options, LiteralStringRef("adjacentWrites"), false);
rampUpLoad = getOption(options, LiteralStringRef("rampUpLoad"), false);
useRYW = getOption(options, LiteralStringRef("useRYW"), false);
rampSweepCount = getOption(options, LiteralStringRef("rampSweepCount"), 1);
rangeReads = getOption(options, LiteralStringRef("rangeReads"), false);
rampTransactionType = getOption(options, LiteralStringRef("rampTransactionType"), false);
rampUpConcurrency = getOption(options, LiteralStringRef("rampUpConcurrency"), false);
doSetup = getOption(options, LiteralStringRef("setup"), true);
batchPriority = getOption(options, LiteralStringRef("batchPriority"), false);
descriptionString = getOption(options, LiteralStringRef("description"), LiteralStringRef("ReadWrite"));
if (rampUpConcurrency)
ASSERT(rampSweepCount == 2); // Implementation is hard coded to ramp up and down
// Validate that keyForIndex() is monotonic
for (int i = 0; i < 30; i++) {
int64_t a = deterministicRandom()->randomInt64(0, nodeCount);
int64_t b = deterministicRandom()->randomInt64(0, nodeCount);
if (a > b) {
std::swap(a, b);
}
ASSERT(a <= b);
ASSERT((keyForIndex(a, false) <= keyForIndex(b, false)));
}
std::vector<std::string> insertionCountsToMeasureString =
getOption(options, LiteralStringRef("insertionCountsToMeasure"), std::vector<std::string>());
for (int i = 0; i < insertionCountsToMeasureString.size(); i++) {
try {
uint64_t count = boost::lexical_cast<uint64_t>(insertionCountsToMeasureString[i]);
insertionCountsToMeasure.push_back(count);
} catch (...) {
}
}
{
// with P(hotTrafficFraction) an access is directed to one of a fraction
// of hot keys, else it is directed to a disjoint set of cold keys
hotKeyFraction = getOption(options, LiteralStringRef("hotKeyFraction"), 0.0);
double hotTrafficFraction = getOption(options, LiteralStringRef("hotTrafficFraction"), 0.0);
ASSERT(hotKeyFraction >= 0 && hotTrafficFraction <= 1);
ASSERT(hotKeyFraction <= hotTrafficFraction); // hot keys should be actually hot!
// p(Cold key) = (1-FHP) * (1-hkf)
// p(Cold key) = (1-htf)
// solving for FHP gives:
forceHotProbability = (hotTrafficFraction - hotKeyFraction) / (1 - hotKeyFraction);
}
}
std::string description() const override { return descriptionString.toString(); }
Future<Void> setup(Database const& cx) override { return _setup(cx, this); }
Future<Void> start(Database const& cx) override { return _start(cx, this); }
struct ReadWriteCommonImpl {
// trace methods
ACTOR static Future<bool> traceDumpWorkers(Reference<AsyncVar<ServerDBInfo> const> db) {
try {
loop {
@ -250,91 +61,7 @@ struct ReadWriteWorkload : KVWorkload {
throw;
}
}
Future<bool> check(Database const& cx) override {
clients.clear();
if (!cancelWorkersAtDuration && now() < metricsStart + metricsDuration)
metricsDuration = now() - metricsStart;
g_traceBatch.dump();
if (clientId == 0)
return traceDumpWorkers(dbInfo);
else
return true;
}
void getMetrics(std::vector<PerfMetric>& m) override {
double duration = metricsDuration;
int reads =
(aTransactions.getValue() * readsPerTransactionA) + (bTransactions.getValue() * readsPerTransactionB);
int writes =
(aTransactions.getValue() * writesPerTransactionA) + (bTransactions.getValue() * writesPerTransactionB);
m.emplace_back("Measured Duration", duration, Averaged::True);
m.emplace_back(
"Transactions/sec", (aTransactions.getValue() + bTransactions.getValue()) / duration, Averaged::False);
m.emplace_back("Operations/sec", ((reads + writes) / duration), Averaged::False);
m.push_back(aTransactions.getMetric());
m.push_back(bTransactions.getMetric());
m.push_back(retries.getMetric());
m.emplace_back("Mean load time (seconds)", loadTime, Averaged::True);
m.emplace_back("Read rows", reads, Averaged::False);
m.emplace_back("Write rows", writes, Averaged::False);
if (!rampUpLoad) {
m.emplace_back("Mean Latency (ms)", 1000 * latencies.mean(), Averaged::True);
m.emplace_back("Median Latency (ms, averaged)", 1000 * latencies.median(), Averaged::True);
m.emplace_back("90% Latency (ms, averaged)", 1000 * latencies.percentile(0.90), Averaged::True);
m.emplace_back("98% Latency (ms, averaged)", 1000 * latencies.percentile(0.98), Averaged::True);
m.emplace_back("Max Latency (ms, averaged)", 1000 * latencies.max(), Averaged::True);
m.emplace_back("Mean Row Read Latency (ms)", 1000 * readLatencies.mean(), Averaged::True);
m.emplace_back("Median Row Read Latency (ms, averaged)", 1000 * readLatencies.median(), Averaged::True);
m.emplace_back("Max Row Read Latency (ms, averaged)", 1000 * readLatencies.max(), Averaged::True);
m.emplace_back("Mean Total Read Latency (ms)", 1000 * fullReadLatencies.mean(), Averaged::True);
m.emplace_back(
"Median Total Read Latency (ms, averaged)", 1000 * fullReadLatencies.median(), Averaged::True);
m.emplace_back("Max Total Latency (ms, averaged)", 1000 * fullReadLatencies.max(), Averaged::True);
m.emplace_back("Mean GRV Latency (ms)", 1000 * GRVLatencies.mean(), Averaged::True);
m.emplace_back("Median GRV Latency (ms, averaged)", 1000 * GRVLatencies.median(), Averaged::True);
m.emplace_back("Max GRV Latency (ms, averaged)", 1000 * GRVLatencies.max(), Averaged::True);
m.emplace_back("Mean Commit Latency (ms)", 1000 * commitLatencies.mean(), Averaged::True);
m.emplace_back("Median Commit Latency (ms, averaged)", 1000 * commitLatencies.median(), Averaged::True);
m.emplace_back("Max Commit Latency (ms, averaged)", 1000 * commitLatencies.max(), Averaged::True);
}
m.emplace_back("Read rows/sec", reads / duration, Averaged::False);
m.emplace_back("Write rows/sec", writes / duration, Averaged::False);
m.emplace_back(
"Bytes read/sec", (reads * (keyBytes + (minValueBytes + maxValueBytes) * 0.5)) / duration, Averaged::False);
m.emplace_back("Bytes written/sec",
(writes * (keyBytes + (minValueBytes + maxValueBytes) * 0.5)) / duration,
Averaged::False);
m.insert(m.end(), periodicMetrics.begin(), periodicMetrics.end());
std::vector<std::pair<uint64_t, double>>::iterator ratesItr = ratesAtKeyCounts.begin();
for (; ratesItr != ratesAtKeyCounts.end(); ratesItr++)
m.emplace_back(format("%lld keys imported bytes/sec", ratesItr->first), ratesItr->second, Averaged::False);
}
Value randomValue() {
return StringRef((uint8_t*)valueString.c_str(),
deterministicRandom()->randomInt(minValueBytes, maxValueBytes + 1));
}
Standalone<KeyValueRef> operator()(uint64_t n) { return KeyValueRef(keyForIndex(n, false), randomValue()); }
template <class Trans>
void setupTransaction(Trans* tr) {
if (batchPriority) {
tr->setOption(FDBTransactionOptions::PRIORITY_BATCH);
}
}
ACTOR static Future<Void> tracePeriodically(ReadWriteWorkload* self) {
ACTOR static Future<Void> tracePeriodically(ReadWriteCommon* self) {
state double start = now();
state double elapsed = 0.0;
state int64_t last_ops = 0;
@ -470,7 +197,6 @@ struct ReadWriteWorkload : KVWorkload {
self->readLatencyCount = 0;
}
}
ACTOR static Future<Void> logLatency(Future<Optional<Value>> f,
ContinuousSample<double>* latencies,
double* totalLatency,
@ -491,7 +217,6 @@ struct ReadWriteWorkload : KVWorkload {
}
return Void();
}
ACTOR static Future<Void> logLatency(Future<RangeResult> f,
ContinuousSample<double>* latencies,
double* totalLatency,
@ -513,52 +238,7 @@ struct ReadWriteWorkload : KVWorkload {
return Void();
}
ACTOR template <class Trans>
Future<Void> readOp(Trans* tr, std::vector<int64_t> keys, ReadWriteWorkload* self, bool shouldRecord) {
if (!keys.size())
return Void();
if (!self->dependentReads) {
std::vector<Future<Void>> readers;
if (self->rangeReads) {
for (int op = 0; op < keys.size(); op++) {
++self->totalReadsMetric;
readers.push_back(logLatency(
tr->getRange(KeyRangeRef(self->keyForIndex(keys[op]), Key(strinc(self->keyForIndex(keys[op])))),
GetRangeLimits(-1, 80000)),
&self->readLatencies,
&self->readLatencyTotal,
&self->readLatencyCount,
self->readMetric,
shouldRecord));
}
} else {
for (int op = 0; op < keys.size(); op++) {
++self->totalReadsMetric;
readers.push_back(logLatency(tr->get(self->keyForIndex(keys[op])),
&self->readLatencies,
&self->readLatencyTotal,
&self->readLatencyCount,
self->readMetric,
shouldRecord));
}
}
wait(waitForAll(readers));
} else {
state int op;
for (op = 0; op < keys.size(); op++) {
++self->totalReadsMetric;
wait(logLatency(tr->get(self->keyForIndex(keys[op])),
&self->readLatencies,
&self->readLatencyTotal,
&self->readLatencyCount,
self->readMetric,
shouldRecord));
}
}
return Void();
}
ACTOR Future<Void> _setup(Database cx, ReadWriteWorkload* self) {
ACTOR static Future<Void> setup(Database cx, ReadWriteCommon* self) {
if (!self->doSetup)
return Void();
@ -580,8 +260,232 @@ struct ReadWriteWorkload : KVWorkload {
return Void();
}
};
ACTOR Future<Void> _start(Database cx, ReadWriteWorkload* self) {
Future<Void> ReadWriteCommon::tracePeriodically() {
return ReadWriteCommonImpl::tracePeriodically(this);
}
Future<Void> ReadWriteCommon::logLatency(Future<Optional<Value>> f, bool shouldRecord) {
return ReadWriteCommonImpl::logLatency(
f, &readLatencies, &readLatencyTotal, &readLatencyCount, readMetric, shouldRecord);
}
Future<Void> ReadWriteCommon::logLatency(Future<RangeResult> f, bool shouldRecord) {
return ReadWriteCommonImpl::logLatency(
f, &readLatencies, &readLatencyTotal, &readLatencyCount, readMetric, shouldRecord);
}
Future<Void> ReadWriteCommon::setup(Database const& cx) {
return ReadWriteCommonImpl::setup(cx, this);
}
Future<bool> ReadWriteCommon::check(Database const& cx) {
clients.clear();
if (!cancelWorkersAtDuration && now() < metricsStart + metricsDuration)
metricsDuration = now() - metricsStart;
g_traceBatch.dump();
if (clientId == 0)
return ReadWriteCommonImpl::traceDumpWorkers(dbInfo);
else
return true;
}
void ReadWriteCommon::getMetrics(std::vector<PerfMetric>& m) {
double duration = metricsDuration;
int reads = (aTransactions.getValue() * readsPerTransactionA) + (bTransactions.getValue() * readsPerTransactionB);
int writes =
(aTransactions.getValue() * writesPerTransactionA) + (bTransactions.getValue() * writesPerTransactionB);
m.emplace_back("Measured Duration", duration, Averaged::True);
m.emplace_back(
"Transactions/sec", (aTransactions.getValue() + bTransactions.getValue()) / duration, Averaged::False);
m.emplace_back("Operations/sec", ((reads + writes) / duration), Averaged::False);
m.push_back(aTransactions.getMetric());
m.push_back(bTransactions.getMetric());
m.push_back(retries.getMetric());
m.emplace_back("Mean load time (seconds)", loadTime, Averaged::True);
m.emplace_back("Read rows", reads, Averaged::False);
m.emplace_back("Write rows", writes, Averaged::False);
m.emplace_back("Read rows/sec", reads / duration, Averaged::False);
m.emplace_back("Write rows/sec", writes / duration, Averaged::False);
m.emplace_back(
"Bytes read/sec", (reads * (keyBytes + (minValueBytes + maxValueBytes) * 0.5)) / duration, Averaged::False);
m.emplace_back(
"Bytes written/sec", (writes * (keyBytes + (minValueBytes + maxValueBytes) * 0.5)) / duration, Averaged::False);
m.insert(m.end(), periodicMetrics.begin(), periodicMetrics.end());
std::vector<std::pair<uint64_t, double>>::iterator ratesItr = ratesAtKeyCounts.begin();
for (; ratesItr != ratesAtKeyCounts.end(); ratesItr++)
m.emplace_back(format("%lld keys imported bytes/sec", ratesItr->first), ratesItr->second, Averaged::False);
}
Value ReadWriteCommon::randomValue() {
return StringRef((uint8_t*)valueString.c_str(), deterministicRandom()->randomInt(minValueBytes, maxValueBytes + 1));
}
Standalone<KeyValueRef> ReadWriteCommon::operator()(uint64_t n) {
return KeyValueRef(keyForIndex(n, false), randomValue());
}
bool ReadWriteCommon::shouldRecord(double checkTime) {
double timeSinceStart = checkTime - clientBegin;
return timeSinceStart >= metricsStart && timeSinceStart < (metricsStart + metricsDuration);
}
static Future<Version> nextRV;
static Version lastRV = invalidVersion;
ACTOR static Future<Version> getNextRV(Database db) {
state Transaction tr(db);
loop {
try {
Version v = wait(tr.getReadVersion());
return v;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
static Future<Version> getInconsistentReadVersion(Database const& db) {
if (!nextRV.isValid() || nextRV.isReady()) { // if no getNextRV() running
if (nextRV.isValid())
lastRV = nextRV.get();
nextRV = getNextRV(db);
}
if (lastRV == invalidVersion)
return nextRV;
else
return lastRV;
}
struct ReadWriteWorkload : ReadWriteCommon {
// use ReadWrite as a ramp up workload
bool rampUpLoad; // indicate this is a ramp up workload
int rampSweepCount; // how many times of ramp up
bool rampTransactionType; // choose transaction type based on client start time
bool rampUpConcurrency; // control client concurrency
// transaction setting
bool batchPriority;
bool rangeReads; // read operations are all single key range read
bool dependentReads; // read operations are issued sequentially
bool inconsistentReads; // read with previous read version
bool adjacentReads; // keys are adjacent within a transaction
bool adjacentWrites;
int extraReadConflictRangesPerTransaction, extraWriteConflictRangesPerTransaction;
// hot traffic pattern
double hotKeyFraction, forceHotProbability = 0; // key based hot traffic setting
ReadWriteWorkload(WorkloadContext const& wcx)
: ReadWriteCommon(wcx), dependentReads(false), adjacentReads(false), adjacentWrites(false) {
extraReadConflictRangesPerTransaction =
getOption(options, LiteralStringRef("extraReadConflictRangesPerTransaction"), 0);
extraWriteConflictRangesPerTransaction =
getOption(options, LiteralStringRef("extraWriteConflictRangesPerTransaction"), 0);
dependentReads = getOption(options, LiteralStringRef("dependentReads"), false);
inconsistentReads = getOption(options, LiteralStringRef("inconsistentReads"), false);
adjacentReads = getOption(options, LiteralStringRef("adjacentReads"), false);
adjacentWrites = getOption(options, LiteralStringRef("adjacentWrites"), false);
rampUpLoad = getOption(options, LiteralStringRef("rampUpLoad"), false);
rampSweepCount = getOption(options, LiteralStringRef("rampSweepCount"), 1);
rangeReads = getOption(options, LiteralStringRef("rangeReads"), false);
rampTransactionType = getOption(options, LiteralStringRef("rampTransactionType"), false);
rampUpConcurrency = getOption(options, LiteralStringRef("rampUpConcurrency"), false);
batchPriority = getOption(options, LiteralStringRef("batchPriority"), false);
descriptionString = getOption(options, LiteralStringRef("description"), LiteralStringRef("ReadWrite"));
if (rampUpConcurrency)
ASSERT(rampSweepCount == 2); // Implementation is hard coded to ramp up and down
{
// with P(hotTrafficFraction) an access is directed to one of a fraction
// of hot keys, else it is directed to a disjoint set of cold keys
hotKeyFraction = getOption(options, LiteralStringRef("hotKeyFraction"), 0.0);
double hotTrafficFraction = getOption(options, LiteralStringRef("hotTrafficFraction"), 0.0);
ASSERT(hotKeyFraction >= 0 && hotTrafficFraction <= 1);
ASSERT(hotKeyFraction <= hotTrafficFraction); // hot keys should be actually hot!
// p(Cold key) = (1-FHP) * (1-hkf)
// p(Cold key) = (1-htf)
// solving for FHP gives:
forceHotProbability = (hotTrafficFraction - hotKeyFraction) / (1 - hotKeyFraction);
}
}
std::string description() const override { return descriptionString.toString(); }
template <class Trans>
void setupTransaction(Trans* tr) {
if (batchPriority) {
tr->setOption(FDBTransactionOptions::PRIORITY_BATCH);
}
}
void getMetrics(std::vector<PerfMetric>& m) override {
ReadWriteCommon::getMetrics(m);
if (!rampUpLoad) {
m.emplace_back("Mean Latency (ms)", 1000 * latencies.mean(), Averaged::True);
m.emplace_back("Median Latency (ms, averaged)", 1000 * latencies.median(), Averaged::True);
m.emplace_back("90% Latency (ms, averaged)", 1000 * latencies.percentile(0.90), Averaged::True);
m.emplace_back("98% Latency (ms, averaged)", 1000 * latencies.percentile(0.98), Averaged::True);
m.emplace_back("Max Latency (ms, averaged)", 1000 * latencies.max(), Averaged::True);
m.emplace_back("Mean Row Read Latency (ms)", 1000 * readLatencies.mean(), Averaged::True);
m.emplace_back("Median Row Read Latency (ms, averaged)", 1000 * readLatencies.median(), Averaged::True);
m.emplace_back("Max Row Read Latency (ms, averaged)", 1000 * readLatencies.max(), Averaged::True);
m.emplace_back("Mean Total Read Latency (ms)", 1000 * fullReadLatencies.mean(), Averaged::True);
m.emplace_back(
"Median Total Read Latency (ms, averaged)", 1000 * fullReadLatencies.median(), Averaged::True);
m.emplace_back("Max Total Latency (ms, averaged)", 1000 * fullReadLatencies.max(), Averaged::True);
m.emplace_back("Mean GRV Latency (ms)", 1000 * GRVLatencies.mean(), Averaged::True);
m.emplace_back("Median GRV Latency (ms, averaged)", 1000 * GRVLatencies.median(), Averaged::True);
m.emplace_back("Max GRV Latency (ms, averaged)", 1000 * GRVLatencies.max(), Averaged::True);
m.emplace_back("Mean Commit Latency (ms)", 1000 * commitLatencies.mean(), Averaged::True);
m.emplace_back("Median Commit Latency (ms, averaged)", 1000 * commitLatencies.median(), Averaged::True);
m.emplace_back("Max Commit Latency (ms, averaged)", 1000 * commitLatencies.max(), Averaged::True);
}
}
Future<Void> start(Database const& cx) override { return _start(cx, this); }
ACTOR template <class Trans>
static Future<Void> readOp(Trans* tr, std::vector<int64_t> keys, ReadWriteWorkload* self, bool shouldRecord) {
if (!keys.size())
return Void();
if (!self->dependentReads) {
std::vector<Future<Void>> readers;
if (self->rangeReads) {
for (int op = 0; op < keys.size(); op++) {
++self->totalReadsMetric;
readers.push_back(self->logLatency(
tr->getRange(KeyRangeRef(self->keyForIndex(keys[op]), Key(strinc(self->keyForIndex(keys[op])))),
GetRangeLimits(-1, 80000)),
shouldRecord));
}
} else {
for (int op = 0; op < keys.size(); op++) {
++self->totalReadsMetric;
readers.push_back(self->logLatency(tr->get(self->keyForIndex(keys[op])), shouldRecord));
}
}
wait(waitForAll(readers));
} else {
state int op;
for (op = 0; op < keys.size(); op++) {
++self->totalReadsMetric;
wait(self->logLatency(tr->get(self->keyForIndex(keys[op])), shouldRecord));
}
}
return Void();
}
ACTOR static Future<Void> _start(Database cx, ReadWriteWorkload* self) {
// Read one record from the database to warm the cache of keyServers
state std::vector<int64_t> keys;
keys.push_back(deterministicRandom()->randomInt64(0, self->nodeCount));
@ -603,7 +507,7 @@ struct ReadWriteWorkload : KVWorkload {
std::vector<Future<Void>> clients;
if (self->enableReadLatencyLogging)
clients.push_back(tracePeriodically(self));
clients.push_back(self->tracePeriodically());
self->clientBegin = now();
for (int c = 0; c < self->actorCount; c++) {
@ -625,13 +529,6 @@ struct ReadWriteWorkload : KVWorkload {
return Void();
}
bool shouldRecord() { return shouldRecord(now()); }
bool shouldRecord(double checkTime) {
double timeSinceStart = checkTime - clientBegin;
return timeSinceStart >= metricsStart && timeSinceStart < (metricsStart + metricsDuration);
}
int64_t getRandomKey(uint64_t nodeCount) {
if (forceHotProbability && deterministicRandom()->random01() < forceHotProbability)
return deterministicRandom()->randomInt64(0, nodeCount * hotKeyFraction) /

View File

@ -0,0 +1,171 @@
/*
* ReadWriteWorkload.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#if defined(NO_INTELLISENSE) && !defined(FDBSERVER_READWRITEWORKLOAD_ACTOR_G_H)
#define FDBSERVER_READWRITEWORKLOAD_ACTOR_G_H
#include "fdbserver/workloads/ReadWriteWorkload.actor.g.h"
#elif !defined(FDBSERVER_READWRITEWORKLOAD_ACTOR_H)
#define FDBSERVER_READWRITEWORKLOAD_ACTOR_H
#include "fdbserver/workloads/workloads.actor.h"
#include "flow/TDMetric.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
DESCR struct TransactionSuccessMetric {
int64_t totalLatency; // ns
int64_t startLatency; // ns
int64_t commitLatency; // ns
int64_t retries; // count
};
DESCR struct TransactionFailureMetric {
int64_t startLatency; // ns
int64_t errorCode; // flow error code
};
DESCR struct ReadMetric {
int64_t readLatency; // ns
};
// Common ReadWrite test settings
struct ReadWriteCommon : KVWorkload {
static constexpr int sampleSize = 10000;
friend struct ReadWriteCommonImpl;
// general test setting
Standalone<StringRef> descriptionString;
bool doSetup, cancelWorkersAtDuration;
double testDuration, transactionsPerSecond, warmingDelay, maxInsertRate, debugInterval, debugTime;
double metricsStart, metricsDuration;
std::vector<uint64_t> insertionCountsToMeasure; // measure the speed of sequential insertion when bulkSetup
// test log setting
bool enableReadLatencyLogging;
double periodicLoggingInterval;
// two type of transaction
int readsPerTransactionA, writesPerTransactionA;
int readsPerTransactionB, writesPerTransactionB;
std::string valueString;
double alpha; // probability for run TransactionA type
// transaction setting
bool useRYW;
// states of metric
Int64MetricHandle totalReadsMetric;
Int64MetricHandle totalRetriesMetric;
EventMetricHandle<TransactionSuccessMetric> transactionSuccessMetric;
EventMetricHandle<TransactionFailureMetric> transactionFailureMetric;
EventMetricHandle<ReadMetric> readMetric;
PerfIntCounter aTransactions, bTransactions, retries;
ContinuousSample<double> latencies, readLatencies, commitLatencies, GRVLatencies, fullReadLatencies;
double readLatencyTotal;
int readLatencyCount;
std::vector<PerfMetric> periodicMetrics;
std::vector<std::pair<uint64_t, double>> ratesAtKeyCounts; // sequential insertion speed
// other internal states
std::vector<Future<Void>> clients;
double loadTime, clientBegin;
explicit ReadWriteCommon(WorkloadContext const& wcx)
: KVWorkload(wcx), totalReadsMetric(LiteralStringRef("ReadWrite.TotalReads")),
totalRetriesMetric(LiteralStringRef("ReadWrite.TotalRetries")), aTransactions("A Transactions"),
bTransactions("B Transactions"), retries("Retries"), latencies(sampleSize), readLatencies(sampleSize),
commitLatencies(sampleSize), GRVLatencies(sampleSize), fullReadLatencies(sampleSize), readLatencyTotal(0),
readLatencyCount(0), loadTime(0.0), clientBegin(0) {
transactionSuccessMetric.init(LiteralStringRef("ReadWrite.SuccessfulTransaction"));
transactionFailureMetric.init(LiteralStringRef("ReadWrite.FailedTransaction"));
readMetric.init(LiteralStringRef("ReadWrite.Read"));
testDuration = getOption(options, LiteralStringRef("testDuration"), 10.0);
transactionsPerSecond = getOption(options, LiteralStringRef("transactionsPerSecond"), 5000.0) / clientCount;
double allowedLatency = getOption(options, LiteralStringRef("allowedLatency"), 0.250);
actorCount = ceil(transactionsPerSecond * allowedLatency);
actorCount = getOption(options, LiteralStringRef("actorCountPerTester"), actorCount);
readsPerTransactionA = getOption(options, LiteralStringRef("readsPerTransactionA"), 10);
writesPerTransactionA = getOption(options, LiteralStringRef("writesPerTransactionA"), 0);
readsPerTransactionB = getOption(options, LiteralStringRef("readsPerTransactionB"), 1);
writesPerTransactionB = getOption(options, LiteralStringRef("writesPerTransactionB"), 9);
alpha = getOption(options, LiteralStringRef("alpha"), 0.1);
valueString = std::string(maxValueBytes, '.');
if (nodePrefix > 0) {
keyBytes += 16;
}
metricsStart = getOption(options, LiteralStringRef("metricsStart"), 0.0);
metricsDuration = getOption(options, LiteralStringRef("metricsDuration"), testDuration);
if (getOption(options, LiteralStringRef("discardEdgeMeasurements"), true)) {
// discardEdgeMeasurements keeps the metrics from the middle 3/4 of the test
metricsStart += testDuration * 0.125;
metricsDuration *= 0.75;
}
warmingDelay = getOption(options, LiteralStringRef("warmingDelay"), 0.0);
maxInsertRate = getOption(options, LiteralStringRef("maxInsertRate"), 1e12);
debugInterval = getOption(options, LiteralStringRef("debugInterval"), 0.0);
debugTime = getOption(options, LiteralStringRef("debugTime"), 0.0);
enableReadLatencyLogging = getOption(options, LiteralStringRef("enableReadLatencyLogging"), false);
periodicLoggingInterval = getOption(options, LiteralStringRef("periodicLoggingInterval"), 5.0);
cancelWorkersAtDuration = getOption(options, LiteralStringRef("cancelWorkersAtDuration"), true);
useRYW = getOption(options, LiteralStringRef("useRYW"), false);
doSetup = getOption(options, LiteralStringRef("setup"), true);
// Validate that keyForIndex() is monotonic
for (int i = 0; i < 30; i++) {
int64_t a = deterministicRandom()->randomInt64(0, nodeCount);
int64_t b = deterministicRandom()->randomInt64(0, nodeCount);
if (a > b) {
std::swap(a, b);
}
ASSERT(a <= b);
ASSERT((keyForIndex(a, false) <= keyForIndex(b, false)));
}
std::vector<std::string> insertionCountsToMeasureString =
getOption(options, LiteralStringRef("insertionCountsToMeasure"), std::vector<std::string>());
for (int i = 0; i < insertionCountsToMeasureString.size(); i++) {
try {
uint64_t count = boost::lexical_cast<uint64_t>(insertionCountsToMeasureString[i]);
insertionCountsToMeasure.push_back(count);
} catch (...) {
}
}
}
Future<Void> tracePeriodically();
Future<Void> logLatency(Future<Optional<Value>> f, bool shouldRecord);
Future<Void> logLatency(Future<RangeResult> f, bool shouldRecord);
Future<Void> setup(Database const& cx) override;
Future<bool> check(Database const& cx) override;
void getMetrics(std::vector<PerfMetric>& m) override;
Standalone<KeyValueRef> operator()(uint64_t n);
bool shouldRecord(double checkTime = now());
Value randomValue();
};
#include "flow/unactorcompiler.h"
#endif // FDBSERVER_READWRITEWORKLOAD_ACTOR_H

View File

@ -0,0 +1,386 @@
/*
* ReadWrite.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <boost/lexical_cast.hpp>
#include <utility>
#include <vector>
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/workloads/BulkSetup.actor.h"
#include "fdbserver/workloads/ReadWriteWorkload.actor.h"
#include "fdbclient/ReadYourWrites.h"
#include "flow/TDMetric.actor.h"
#include "fdbclient/RunTransaction.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct SkewedReadWriteWorkload : ReadWriteCommon {
// server based hot traffic setting
int skewRound = 0; // skewDuration = ceil(testDuration / skewRound)
double hotServerFraction = 0, hotServerShardFraction = 1.0; // set > 0 to issue hot key based on shard map
double hotServerReadFrac, hotServerWriteFrac; // hot many traffic goes to hot servers
double hotReadWriteServerOverlap; // the portion of intersection of write and hot server
// hot server state
typedef std::vector<std::pair<int64_t, int64_t>> IndexRangeVec;
// keyForIndex generate key from index. So for a shard range, recording the start and end is enough
std::vector<std::pair<UID, IndexRangeVec>> serverShards; // storage server and the shards it owns
std::map<UID, StorageServerInterface> serverInterfaces;
int hotServerCount = 0, currentHotRound = -1;
SkewedReadWriteWorkload(WorkloadContext const& wcx) : ReadWriteCommon(wcx) {
descriptionString = getOption(options, LiteralStringRef("description"), LiteralStringRef("SkewedReadWrite"));
hotServerFraction = getOption(options, "hotServerFraction"_sr, 0.2);
hotServerShardFraction = getOption(options, "hotServerShardFraction"_sr, 1.0);
hotReadWriteServerOverlap = getOption(options, "hotReadWriteServerOverlap"_sr, 0.0);
skewRound = getOption(options, "skewRound"_sr, 1);
hotServerReadFrac = getOption(options, "hotServerReadFrac"_sr, 0.8);
hotServerWriteFrac = getOption(options, "hotServerWriteFrac"_sr, 0.0);
ASSERT((hotServerReadFrac >= hotServerFraction || hotServerWriteFrac >= hotServerFraction) && skewRound > 0);
}
std::string description() const override { return descriptionString.toString(); }
Future<Void> start(Database const& cx) override { return _start(cx, this); }
void debugPrintServerShards() const {
std::cout << std::hex;
for (auto it : this->serverShards) {
std::cout << serverInterfaces.at(it.first).address().toString() << ": [";
for (auto p : it.second) {
std::cout << "[" << p.first << "," << p.second << "], ";
}
std::cout << "] \n";
}
}
// for each boundary except the last one in boundaries, found the first existed key generated from keyForIndex as
// beginIdx, found the last existed key generated from keyForIndex the endIdx.
ACTOR static Future<IndexRangeVec> convertKeyBoundaryToIndexShard(Database cx,
SkewedReadWriteWorkload* self,
Standalone<VectorRef<KeyRef>> boundaries) {
state IndexRangeVec res;
state int i = 0;
for (; i < boundaries.size() - 1; ++i) {
KeyRangeRef currentShard = KeyRangeRef(boundaries[i], boundaries[i + 1]);
// std::cout << currentShard.toString() << "\n";
std::vector<RangeResult> ranges = wait(runRYWTransaction(
cx, [currentShard](Reference<ReadYourWritesTransaction> tr) -> Future<std::vector<RangeResult>> {
std::vector<Future<RangeResult>> f;
f.push_back(tr->getRange(currentShard, 1, Snapshot::False, Reverse::False));
f.push_back(tr->getRange(currentShard, 1, Snapshot::False, Reverse::True));
return getAll(f);
}));
ASSERT(ranges[0].size() == 1 && ranges[1].size() == 1);
res.emplace_back(self->indexForKey(ranges[0][0].key), self->indexForKey(ranges[1][0].key));
}
ASSERT(res.size() == boundaries.size() - 1);
return res;
}
ACTOR static Future<Void> updateServerShards(Database cx, SkewedReadWriteWorkload* self) {
state Future<RangeResult> serverList =
runRYWTransaction(cx, [](Reference<ReadYourWritesTransaction> tr) -> Future<RangeResult> {
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
return tr->getRange(serverListKeys, CLIENT_KNOBS->TOO_MANY);
});
state RangeResult range =
wait(runRYWTransaction(cx, [](Reference<ReadYourWritesTransaction> tr) -> Future<RangeResult> {
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
return tr->getRange(serverKeysRange, CLIENT_KNOBS->TOO_MANY);
}));
wait(success(serverList));
// decode server interfaces
self->serverInterfaces.clear();
for (int i = 0; i < serverList.get().size(); i++) {
auto ssi = decodeServerListValue(serverList.get()[i].value);
self->serverInterfaces.emplace(ssi.id(), ssi);
}
// clear self->serverShards
self->serverShards.clear();
// leftEdge < workloadBegin < workloadEnd
Key workloadBegin = self->keyForIndex(0), workloadEnd = self->keyForIndex(self->nodeCount);
Key leftEdge(allKeys.begin);
std::vector<UID> leftServer; // left server owns the range [leftEdge, workloadBegin)
KeyRangeRef workloadRange(workloadBegin, workloadEnd);
state std::map<Key, std::vector<UID>> beginServers; // begin index to server ID
for (auto kv = range.begin(); kv != range.end(); kv++) {
if (serverHasKey(kv->value)) {
auto [id, key] = serverKeysDecodeServerBegin(kv->key);
if (workloadRange.contains(key)) {
beginServers[key].push_back(id);
} else if (workloadBegin > key && key > leftEdge) { // update left boundary
leftEdge = key;
leftServer.clear();
}
if (key == leftEdge) {
leftServer.push_back(id);
}
}
}
ASSERT(beginServers.size() == 0 || beginServers.begin()->first >= workloadBegin);
// handle the left boundary
if (beginServers.size() == 0 || beginServers.begin()->first > workloadBegin) {
beginServers[workloadBegin] = leftServer;
}
Standalone<VectorRef<KeyRef>> keyBegins;
for (auto p = beginServers.begin(); p != beginServers.end(); ++p) {
keyBegins.push_back(keyBegins.arena(), p->first);
}
// deep count because wait below will destruct workloadEnd
keyBegins.push_back_deep(keyBegins.arena(), workloadEnd);
IndexRangeVec indexShards = wait(convertKeyBoundaryToIndexShard(cx, self, keyBegins));
ASSERT(beginServers.size() == indexShards.size());
// sort shard begin idx
// build self->serverShards, starting from the left shard
std::map<UID, IndexRangeVec> serverShards;
int i = 0;
for (auto p = beginServers.begin(); p != beginServers.end(); ++p) {
for (int j = 0; j < p->second.size(); ++j) {
serverShards[p->second[j]].emplace_back(indexShards[i]);
}
++i;
}
// self->serverShards is ordered by UID
for (auto it : serverShards) {
self->serverShards.emplace_back(it);
}
// if (self->clientId == 0) {
// self->debugPrintServerShards();
// }
return Void();
}
ACTOR template <class Trans>
Future<Void> readOp(Trans* tr, std::vector<int64_t> keys, SkewedReadWriteWorkload* self, bool shouldRecord) {
if (!keys.size())
return Void();
std::vector<Future<Void>> readers;
for (int op = 0; op < keys.size(); op++) {
++self->totalReadsMetric;
readers.push_back(self->logLatency(tr->get(self->keyForIndex(keys[op])), shouldRecord));
}
wait(waitForAll(readers));
return Void();
}
void startReadWriteClients(Database cx, std::vector<Future<Void>>& clients) {
clientBegin = now();
for (int c = 0; c < actorCount; c++) {
Future<Void> worker;
if (useRYW)
worker =
randomReadWriteClient<ReadYourWritesTransaction>(cx, this, actorCount / transactionsPerSecond, c);
else
worker = randomReadWriteClient<Transaction>(cx, this, actorCount / transactionsPerSecond, c);
clients.push_back(worker);
}
}
ACTOR static Future<Void> _start(Database cx, SkewedReadWriteWorkload* self) {
state std::vector<Future<Void>> clients;
if (self->enableReadLatencyLogging)
clients.push_back(self->tracePeriodically());
wait(updateServerShards(cx, self));
for (self->currentHotRound = 0; self->currentHotRound < self->skewRound; ++self->currentHotRound) {
self->setHotServers();
self->startReadWriteClients(cx, clients);
wait(timeout(waitForAll(clients), self->testDuration / self->skewRound, Void()));
clients.clear();
wait(delay(5.0) >> updateServerShards(cx, self));
}
return Void();
}
// calculate hot server count
void setHotServers() {
hotServerCount = ceil(hotServerFraction * serverShards.size());
std::cout << "Choose " << hotServerCount << "/" << serverShards.size() << "/" << serverInterfaces.size()
<< " hot servers: [";
int begin = currentHotRound * hotServerCount;
for (int i = 0; i < hotServerCount; ++i) {
int idx = (begin + i) % serverShards.size();
std::cout << serverInterfaces.at(serverShards[idx].first).address().toString() << ",";
}
std::cout << "]\n";
}
int64_t getRandomKeyFromHotServer(bool hotServerRead = true) {
ASSERT(hotServerCount > 0);
int begin = currentHotRound * hotServerCount;
if (!hotServerRead) {
begin += hotServerCount * (1.0 - hotReadWriteServerOverlap); // calculate non-overlap part offset
}
int idx = deterministicRandom()->randomInt(begin, begin + hotServerCount) % serverShards.size();
int shardMax = std::min(serverShards[idx].second.size(),
(size_t)ceil(serverShards[idx].second.size() * hotServerShardFraction));
int shardIdx = deterministicRandom()->randomInt(0, shardMax);
return deterministicRandom()->randomInt64(serverShards[idx].second[shardIdx].first,
serverShards[idx].second[shardIdx].second + 1);
}
int64_t getRandomKey(uint64_t nodeCount, bool hotServerRead = true) {
auto random = deterministicRandom()->random01();
if (hotServerFraction > 0) {
if ((hotServerRead && random < hotServerReadFrac) || (!hotServerRead && random < hotServerWriteFrac)) {
return getRandomKeyFromHotServer(hotServerRead);
}
}
return deterministicRandom()->randomInt64(0, nodeCount);
}
ACTOR template <class Trans>
Future<Void> randomReadWriteClient(Database cx, SkewedReadWriteWorkload* self, double delay, int clientIndex) {
state double startTime = now();
state double lastTime = now();
state double GRVStartTime;
state UID debugID;
loop {
wait(poisson(&lastTime, delay));
state double tstart = now();
state bool aTransaction = deterministicRandom()->random01() > self->alpha;
state std::vector<int64_t> keys;
state std::vector<Value> values;
state std::vector<KeyRange> extra_ranges;
int reads = aTransaction ? self->readsPerTransactionA : self->readsPerTransactionB;
state int writes = aTransaction ? self->writesPerTransactionA : self->writesPerTransactionB;
for (int op = 0; op < reads; op++)
keys.push_back(self->getRandomKey(self->nodeCount));
values.reserve(writes);
for (int op = 0; op < writes; op++)
values.push_back(self->randomValue());
state Trans tr(cx);
if (tstart - self->clientBegin > self->debugTime &&
tstart - self->clientBegin <= self->debugTime + self->debugInterval) {
debugID = deterministicRandom()->randomUniqueID();
tr.debugTransaction(debugID);
g_traceBatch.addEvent("TransactionDebug", debugID.first(), "ReadWrite.randomReadWriteClient.Before");
} else {
debugID = UID();
}
self->transactionSuccessMetric->retries = 0;
self->transactionSuccessMetric->commitLatency = -1;
loop {
try {
GRVStartTime = now();
self->transactionFailureMetric->startLatency = -1;
double grvLatency = now() - GRVStartTime;
self->transactionSuccessMetric->startLatency = grvLatency * 1e9;
self->transactionFailureMetric->startLatency = grvLatency * 1e9;
if (self->shouldRecord())
self->GRVLatencies.addSample(grvLatency);
state double readStart = now();
wait(self->readOp(&tr, keys, self, self->shouldRecord()));
double readLatency = now() - readStart;
if (self->shouldRecord())
self->fullReadLatencies.addSample(readLatency);
if (!writes)
break;
for (int op = 0; op < writes; op++)
tr.set(self->keyForIndex(self->getRandomKey(self->nodeCount, false), false), values[op]);
state double commitStart = now();
wait(tr.commit());
double commitLatency = now() - commitStart;
self->transactionSuccessMetric->commitLatency = commitLatency * 1e9;
if (self->shouldRecord())
self->commitLatencies.addSample(commitLatency);
break;
} catch (Error& e) {
self->transactionFailureMetric->errorCode = e.code();
self->transactionFailureMetric->log();
wait(tr.onError(e));
++self->transactionSuccessMetric->retries;
++self->totalRetriesMetric;
if (self->shouldRecord())
++self->retries;
}
}
if (debugID != UID())
g_traceBatch.addEvent("TransactionDebug", debugID.first(), "ReadWrite.randomReadWriteClient.After");
tr = Trans();
double transactionLatency = now() - tstart;
self->transactionSuccessMetric->totalLatency = transactionLatency * 1e9;
self->transactionSuccessMetric->log();
if (self->shouldRecord()) {
if (aTransaction)
++self->aTransactions;
else
++self->bTransactions;
self->latencies.addSample(transactionLatency);
}
}
}
};
WorkloadFactory<SkewedReadWriteWorkload> SkewedReadWriteWorkloadFactory("SkewedReadWrite");
TEST_CASE("/KVWorkload/methods/ParseKeyForIndex") {
auto wk = SkewedReadWriteWorkload(WorkloadContext());
for (int i = 0; i < 1000; ++i) {
auto idx = deterministicRandom()->randomInt64(0, wk.nodeCount);
Key k = wk.keyForIndex(idx);
auto parse = wk.indexForKey(k);
// std::cout << parse << " " << idx << "\n";
ASSERT(parse == idx);
}
for (int i = 0; i < 1000; ++i) {
auto idx = deterministicRandom()->randomInt64(0, wk.nodeCount);
Key k = wk.keyForIndex(idx, true);
auto parse = wk.indexForKey(k, true);
ASSERT(parse == idx);
}
return Void();
}

View File

@ -131,6 +131,8 @@ struct KVWorkload : TestWorkload {
Key getRandomKey(bool absent) const;
Key keyForIndex(uint64_t index) const;
Key keyForIndex(uint64_t index, bool absent) const;
// the reverse process of keyForIndex() without division. Set absent=true to ignore the last byte in Key
int64_t indexForKey(const KeyRef& key, bool absent = false) const;
};
struct IWorkloadFactory : ReferenceCounted<IWorkloadFactory> {

View File

@ -634,6 +634,8 @@ public:
check = nullptr;
}
size_t remainingBytes() const { return end - begin; };
protected:
_Reader(const char* begin, const char* end) : begin(begin), end(end) {}
_Reader(const char* begin, const char* end, const Arena& arena) : begin(begin), end(end), m_pool(arena) {}

View File

@ -211,6 +211,7 @@ if(WITH_PYTHON)
add_fdb_test(TEST_FILES rare/LargeApiCorrectnessStatus.toml)
add_fdb_test(TEST_FILES rare/RYWDisable.toml)
add_fdb_test(TEST_FILES rare/RandomReadWriteTest.toml)
add_fdb_test(TEST_FILES rare/ReadSkewReadWrite.toml)
add_fdb_test(TEST_FILES rare/SpecificUnitTests.toml)
add_fdb_test(TEST_FILES rare/SwizzledLargeApiCorrectness.toml)
add_fdb_test(TEST_FILES rare/RedwoodCorrectnessBTree.toml)

View File

@ -0,0 +1,24 @@
[[test]]
testTitle = 'SkewedReadWriteTest'
connectionFailuresDisableDuration = 100000
# waitForQuiescenceBegin= false
# waitForQuiescenceEnd=false
clearAfterTest = true
runSetup = true # false
timeout = 3600.0
[[test.workload]]
testName = 'SkewedReadWrite'
transactionsPerSecond = 100
testDuration = 40.0
skewRound = 1
nodeCount = 3000 # 30000000
valueBytes = 100
readsPerTransactionA = 8
writesPerTransactionA = 0
alpha = 0
discardEdgeMeasurements = false
hotServerFraction = 0.2
hotServerReadFrac = 0.8
# hotServerShardFraction = 0.3
warmingDelay = 180.0