Merge pull request #2345 from zjuLcg/add-consistency-verification-in-mako-workload

Add consistency verification in mako workload
This commit is contained in:
Alex Miller 2020-01-24 17:07:49 -08:00 committed by GitHub
commit 6945a6ea01
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 224 additions and 28 deletions

View File

@ -3,8 +3,10 @@
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/workloads/BulkSetup.actor.h"
#include "fdbclient/ReadYourWrites.h"
#include "flow/actorcompiler.h"
#include "fdbclient/zipf.h"
#include "fdbrpc/crc32c.h"
#include "flow/actorcompiler.h"
enum {OP_GETREADVERSION, OP_GET, OP_GETRANGE, OP_SGET, OP_SGETRANGE, OP_UPDATE, OP_INSERT, OP_INSERTRANGE, OP_CLEAR, OP_SETCLEAR, OP_CLEARRANGE, OP_SETCLEARRANGE, OP_COMMIT, MAX_OP};
@ -12,9 +14,9 @@ enum {OP_COUNT, OP_RANGE};
constexpr int MAXKEYVALUESIZE = 1000;
constexpr int RANGELIMIT = 10000;
struct MakoWorkload : TestWorkload {
uint64_t rowCount, seqNumLen, sampleSize, actorCountPerClient, keyBytes, maxValueBytes, minValueBytes;
uint64_t rowCount, seqNumLen, sampleSize, actorCountPerClient, keyBytes, maxValueBytes, minValueBytes, csSize, csCount, csPartitionSize, csStepSizeInPartition;
double testDuration, loadTime, warmingDelay, maxInsertRate, transactionsPerSecond, allowedLatency, periodicLoggingInterval, zipfConstant;
bool enableLogging, commitGet, populateData, runBenchmark, preserveData, zipf;
bool enableLogging, commitGet, populateData, runBenchmark, preserveData, zipf, checksumVerification, doChecksumVerificationOnly;
PerfIntCounter xacts, retries, conflicts, commits, totalOps;
std::vector<PerfIntCounter> opCounters;
std::vector<uint64_t> insertionCountsToMeasure;
@ -26,9 +28,11 @@ struct MakoWorkload : TestWorkload {
std::vector<PerfMetric> periodicMetrics;
// store latency of each operation with sampling
std::vector<ContinuousSample<double>> opLatencies;
// prefix of keys populated, e.g. 'mako00000xxxxxxx'
const std::string KEYPREFIX = "mako";
const int KEYPREFIXLEN = KEYPREFIX.size();
// key used to store checkSum for given key range
std::vector<Key> csKeys;
// key prefix of for all generated keys
std::string keyPrefix;
int KEYPREFIXLEN;
const std::array<std::string, MAX_OP> opNames = {"GRV", "GET", "GETRANGE", "SGET", "SGETRANGE", "UPDATE", "INSERT", "INSERTRANGE", "CLEAR", "SETCLEAR", "CLEARRANGE", "SETCLEARRANGE", "COMMIT"};
MakoWorkload(WorkloadContext const& wcx)
: TestWorkload(wcx),
@ -58,6 +62,9 @@ struct MakoWorkload : TestWorkload {
// If true, record latency metrics per periodicLoggingInterval; For details, see tracePeriodically()
enableLogging = getOption(options, LiteralStringRef("enableLogging"), false);
periodicLoggingInterval = getOption( options, LiteralStringRef("periodicLoggingInterval"), 5.0 );
// All the generated keys will start with the specified prefix
keyPrefix = getOption( options, LiteralStringRef("keyPrefix"), LiteralStringRef("mako")).toString();
KEYPREFIXLEN = keyPrefix.size();
// If true, the workload will picking up keys which are zipfian distributed
zipf = getOption(options, LiteralStringRef("zipf"), false);
zipfConstant = getOption(options, LiteralStringRef("zipfConstant"), 0.99);
@ -105,6 +112,22 @@ struct MakoWorkload : TestWorkload {
if (zipf){
zipfian_generator3(0, (int)rowCount-1, zipfConstant);
}
// Added for checksum verification
csSize = getOption(options, LiteralStringRef("csSize"), rowCount / 100);
ASSERT(csSize <= rowCount);
csCount = getOption(options, LiteralStringRef("csCount"), 0);
checksumVerification = (csCount != 0);
doChecksumVerificationOnly = getOption(options, LiteralStringRef("doChecksumVerificationOnly"), false);
if (doChecksumVerificationOnly)
ASSERT(checksumVerification); // csCount should be non-zero when you do checksum verification only
if (csCount) {
csPartitionSize = rowCount / csSize;
ASSERT(csCount <= csPartitionSize);
csStepSizeInPartition = csPartitionSize / csCount;
for (int i= 0; i < csCount; ++i) {
csKeys.emplace_back(format((keyPrefix + "_crc32c_%u_%u").c_str(), i, rowCount));
}
}
}
std::string description() override {
@ -114,22 +137,27 @@ struct MakoWorkload : TestWorkload {
}
Future<Void> setup(Database const& cx) override {
// use all the clients to populate data
if (populateData)
return _setup(cx, this);
return Void();
if (doChecksumVerificationOnly)
return Void();
return _setup(cx, this);
}
Future<Void> start(Database const& cx) override {
if (doChecksumVerificationOnly)
return Void();
return _start(cx, this);
}
Future<bool> check(Database const& cx) override {
return true;
if (!checksumVerification){
return true;
}
// verify checksum consistency
return dochecksumVerification(cx, this);
}
// disable the default timeout setting
double getCheckTimeout() {return std::numeric_limits<double>::max();}
double getCheckTimeout() override {return std::numeric_limits<double>::max();}
void getMetrics(std::vector<PerfMetric>& m) override {
// metrics of population process
@ -192,7 +220,7 @@ struct MakoWorkload : TestWorkload {
Key keyForIndex(uint64_t ind) {
Key result = makeString(keyBytes);
char* data = reinterpret_cast<char*>(mutateString(result));
format((KEYPREFIX + "%0*d").c_str(), seqNumLen, ind).copy(data, KEYPREFIXLEN + seqNumLen);
format((keyPrefix + "%0*d").c_str(), seqNumLen, ind).copy(data, KEYPREFIXLEN + seqNumLen);
for (int i = KEYPREFIXLEN + seqNumLen; i < keyBytes; ++i)
data[i] = 'x';
return result;
@ -207,6 +235,56 @@ struct MakoWorkload : TestWorkload {
}
return digits;
}
static void updateCSFlags(MakoWorkload* self, std::vector<bool>& flags, uint64_t startIdx, uint64_t endIdx){
// We deal with cases where rowCount % csCount != 0 and csPartitionSize % csSize != 0;
// In particular, all keys with index in range [csSize * csPartitionSize, rowCount) will not be used for checksum
// By the same way, for any i in range [0, csSize):
// keys with index in range [ i*csPartitionSize, i*csPartitionSize + csCount*csStepSizeInPartition) will not be used for checksum
uint64_t boundary = self->csSize * self->csPartitionSize;
if (startIdx >= boundary)
return;
else if (endIdx > boundary)
endIdx = boundary;
// If all checksums need to be updated, just return
if (std::all_of(flags.begin(), flags.end(), [](bool flag){return flag;}))
return;
if (startIdx + 1 == endIdx){
// single key case
startIdx = startIdx % self->csPartitionSize;
if ((startIdx < self->csCount * self->csStepSizeInPartition) && (startIdx % self->csStepSizeInPartition == 0)){
flags.at(startIdx / self->csStepSizeInPartition) = true;
}
}
else {
// key range case
uint64_t count = self->csCount;
uint64_t base = (startIdx / self->csPartitionSize) * self->csPartitionSize;
startIdx -= base;
endIdx -= base;
uint64_t startStepIdx = std::min(startIdx / self->csStepSizeInPartition, self->csCount - 1);
// if changed range size is more than one csPartitionSize, which means every checksum needs to be updated
if ((endIdx - startIdx) < self->csPartitionSize){
uint64_t endStepIdx;
if (endIdx > self->csPartitionSize){
endStepIdx = self->csCount + std::min((endIdx - 1 - self->csPartitionSize) / self->csStepSizeInPartition, self->csCount);
} else {
endStepIdx = std::min((endIdx - 1) / self->csStepSizeInPartition, self->csCount - 1);
}
// All the left boundary of csStep should be updated
// Also, check the startIdx whether it is the left boundary of a csStep
if (startIdx == self->csStepSizeInPartition * startStepIdx)
flags[startStepIdx] = true;
count = endStepIdx - startStepIdx;
}
for (int i = 1; i <= count; ++i){
flags[ (startStepIdx+i) % self->csCount] = true;
}
}
}
Standalone<KeyValueRef> operator()(uint64_t n) {
return KeyValueRef(keyForIndex(n), randomValue());
}
@ -232,17 +310,23 @@ struct MakoWorkload : TestWorkload {
}
}
ACTOR Future<Void> _setup(Database cx, MakoWorkload* self) {
// use all the clients to populate data
if (self->populateData) {
state Promise<double> loadTime;
state Promise<std::vector<std::pair<uint64_t, double>>> ratesAtKeyCounts;
state Promise<double> loadTime;
state Promise<std::vector<std::pair<uint64_t, double>>> ratesAtKeyCounts;
wait(bulkSetup(cx, self, self->rowCount, loadTime, self->insertionCountsToMeasure.empty(), self->warmingDelay,
self->maxInsertRate, self->insertionCountsToMeasure, ratesAtKeyCounts));
wait(bulkSetup(cx, self, self->rowCount, loadTime, self->insertionCountsToMeasure.empty(), self->warmingDelay,
self->maxInsertRate, self->insertionCountsToMeasure, ratesAtKeyCounts));
// This is the setup time
self->loadTime = loadTime.getFuture().get();
// This is the rates of importing keys
self->ratesAtKeyCounts = ratesAtKeyCounts.getFuture().get();
// This is the setup time
self->loadTime = loadTime.getFuture().get();
// This is the rates of importing keys
self->ratesAtKeyCounts = ratesAtKeyCounts.getFuture().get();
}
// Use one client to initialize checksums
if (self->checksumVerification && self->clientId == 0){
wait(generateChecksum(cx, self));
}
return Void();
}
@ -279,10 +363,12 @@ struct MakoWorkload : TestWorkload {
state bool doCommit;
state int i, count;
state uint64_t range, indBegin, indEnd, rangeLen;
state double lastTime = now();
state double commitStart;
state KeyRangeRef rkeyRangeRef;
state std::vector<int> perOpCount(MAX_OP, 0);
// flag at index-i indicates whether checksum-i need to be updated
state std::vector<bool> csChangedFlags(self->csCount, false);
state double lastTime = now();
state double commitStart;
TraceEvent("ClientStarting").detail("ActorIndex", actorIndex).detail("ClientIndex", self->clientId).detail("NumActors", self->actorCountPerClient);
@ -307,6 +393,16 @@ struct MakoWorkload : TestWorkload {
// KeyRangeRef(min, maxPlusOne)
rkeyRangeRef = KeyRangeRef(rkey, rkey2);
// used for mako-level consistency check
if (self->checksumVerification){
if (i == OP_INSERT | i == OP_UPDATE | i == OP_CLEAR) {
updateCSFlags(self, csChangedFlags, indBegin, indBegin + 1);
}
else if (i == OP_CLEARRANGE) {
updateCSFlags(self, csChangedFlags, indBegin, indEnd);
}
}
if (i == OP_GETREADVERSION){
wait(logLatency(tr.getReadVersion(), &self->opLatencies[i]));
}
@ -343,6 +439,7 @@ struct MakoWorkload : TestWorkload {
} else if(i == OP_SETCLEAR){
randStr(reinterpret_cast<char*>(mutateString(rkey)) + self->KEYPREFIXLEN, self->keyBytes-self->KEYPREFIXLEN);
tr.set(rkey, rval);
wait(self->updateCSBeforeCommit(&tr, self, &csChangedFlags));
// commit the change and update metrics
commitStart = now();
wait(tr.commit());
@ -359,6 +456,7 @@ struct MakoWorkload : TestWorkload {
randStr(rkeyPtr + self->KEYPREFIXLEN, self->keyBytes-self->KEYPREFIXLEN);
state std::string scr_start_key;
state std::string scr_end_key;
state KeyRangeRef scr_key_range_ref;
for (int range_i = 0; range_i < range; ++range_i){
format("%0.*d", rangeLen, range_i).copy(rkeyPtr + self->keyBytes - rangeLen, rangeLen);
tr.set(rkey, self->randomValue());
@ -366,12 +464,14 @@ struct MakoWorkload : TestWorkload {
scr_start_key = rkey.toString();
}
scr_end_key = rkey.toString();
scr_key_range_ref = KeyRangeRef(KeyRef(scr_start_key), KeyRef(scr_end_key));
wait(self->updateCSBeforeCommit(&tr, self, &csChangedFlags));
commitStart = now();
wait(tr.commit());
self->opLatencies[OP_COMMIT].addSample(now() - commitStart);
++perOpCount[OP_COMMIT];
tr.reset();
tr.clear(KeyRangeRef(StringRef(scr_start_key), StringRef(scr_end_key)));
tr.clear(scr_key_range_ref);
doCommit = true;
}
++perOpCount[i];
@ -379,6 +479,7 @@ struct MakoWorkload : TestWorkload {
}
if (doCommit) {
wait(self->updateCSBeforeCommit(&tr, self, &csChangedFlags));
commitStart = now();
wait(tr.commit());
self->opLatencies[OP_COMMIT].addSample(now() - commitStart);
@ -408,13 +509,14 @@ struct MakoWorkload : TestWorkload {
ACTOR Future<Void> cleanup(Database cx, MakoWorkload* self){
// clear all data starts with 'mako' in the database
state std::string keyPrefix(self->KEYPREFIX);
state std::string keyPrefix(self->keyPrefix);
state ReadYourWritesTransaction tr(cx);
loop{
try {
tr.clear(prefixRange(keyPrefix));
wait(tr.commit());
TraceEvent("CleanUpMakoRelatedData").detail("KeyPrefix", self->keyPrefix);
break;
} catch (Error &e){
TraceEvent("FailedToCleanData").error(e);
@ -531,7 +633,7 @@ struct MakoWorkload : TestWorkload {
}
/* set range */
if (num > RANGELIMIT)
TraceEvent(SevError, "RangeExceedLimit").detail("RangeLimit", RANGELIMIT).detail("Range", num);
TraceEvent(SevError, "TestFailure").detail("Reason", "RangeExceedLimit").detail("RangeLimit", RANGELIMIT).detail("Range", num);
operations[op][OP_RANGE] = num;
}
}
@ -539,9 +641,103 @@ struct MakoWorkload : TestWorkload {
}
if (error) {
TraceEvent(SevError, "InvalidTransactionSpecification").detail("operations", operationsSpec);
TraceEvent(SevError, "TestFailure").detail("Reason", "InvalidTransactionSpecification").detail("operations", operationsSpec);
}
}
ACTOR static Future<uint32_t> calcCheckSum(ReadYourWritesTransaction* tr, MakoWorkload* self, int csIndex){
state uint32_t result = 0;
state int i;
state Key csKey;
for( i = 0; i < self->csSize; ++i){
int idx = csIndex * self->csStepSizeInPartition + i * self->csPartitionSize;
csKey = self->keyForIndex(idx);
Optional<Value> temp = wait(tr->get(csKey));
if (temp.present()){
Value val = temp.get();
result = crc32c_append(result, val.begin(), val.size());
} else {
// If the key does not exists, we just use the key itself not the value to calculate checkSum
result = crc32c_append(result, csKey.begin(), csKey.size());
}
}
return result;
}
ACTOR static Future<bool> dochecksumVerification(Database cx, MakoWorkload* self) {
state ReadYourWritesTransaction tr(cx);
state int csIdx;
state Value csValue;
loop {
try {
tr.setOption(FDBTransactionOptions::READ_LOCK_AWARE);
for (csIdx = 0; csIdx < self->csCount; ++csIdx) {
Optional<Value> temp = wait(tr.get(self->csKeys[csIdx]));
if (!temp.present()){
TraceEvent(SevError, "TestFailure").detail("Reason", "NoExistingChecksum").detail("missedChecksumIndex", csIdx);
return false;
} else {
csValue = temp.get();
ASSERT(csValue.size() == sizeof(uint32_t));
uint32_t calculatedCS = wait(calcCheckSum(&tr, self, csIdx));
uint32_t existingCS = *(reinterpret_cast<const uint32_t*>(csValue.begin()));
if (existingCS != calculatedCS){
TraceEvent(SevError, "TestFailure").detail("Reason", "ChecksumVerificationFailure").detail("ChecksumIndex", csIdx).detail("ExistingChecksum", existingCS).detail("CurrentChecksum", calculatedCS);
return false;
}
TraceEvent("ChecksumVerificationPass").detail("ChecksumIndex", csIdx).detail("ChecksumValue", existingCS);
}
}
return true;
} catch(Error& e) {
TraceEvent("FailedToCalculateChecksum").detail("ChecksumIndex", csIdx).error(e);
wait(tr.onError(e));
}
}
}
ACTOR static Future<Void> generateChecksum(Database cx, MakoWorkload* self) {
state ReadYourWritesTransaction tr(cx);
state int csIdx;
loop {
try {
for (csIdx = 0; csIdx < self->csCount; ++csIdx) {
Optional<Value> temp = wait(tr.get(self->csKeys[csIdx]));
if (temp.present())
TraceEvent("DuplicatePopulationOnSamePrefix").detail("KeyPrefix", self->keyPrefix);
wait(self->updateCheckSum(&tr, self, csIdx));
}
wait(tr.commit());
break;
} catch (Error &e) {
TraceEvent("FailedToGenerateChecksumForPopulatedData").error(e);
wait(tr.onError(e));
}
}
return Void();
}
ACTOR static Future<Void> updateCheckSum(ReadYourWritesTransaction* tr, MakoWorkload* self, int csIdx){
state uint32_t csVal = wait(calcCheckSum(tr, self, csIdx));
TraceEvent("UpdateCheckSum").detail("ChecksumIndex", csIdx).detail("Checksum", csVal);
tr->set(self->csKeys[csIdx], ValueRef(reinterpret_cast<const uint8_t*>(&csVal), sizeof(uint32_t)));
return Void();
}
ACTOR static Future<Void> updateCSBeforeCommit(ReadYourWritesTransaction* tr, MakoWorkload* self, std::vector<bool>* flags){
if (!self->checksumVerification)
return Void();
state int csIdx;
for (csIdx = 0; csIdx < self->csCount; ++csIdx){
if ((*flags)[csIdx]){
wait(updateCheckSum(tr, self, csIdx));
(*flags)[csIdx] = false;
}
}
return Void();
}
};
WorkloadFactory<MakoWorkload> MakoloadFactory("Mako");