Flow transport uses an ordered delay to avoid out of order reply promise stream messages

This commit is contained in:
Evan Tschannen 2021-07-27 12:01:32 -07:00
parent 26d886c600
commit 256a18e43b
7 changed files with 31 additions and 16 deletions

View File

@ -234,6 +234,8 @@ struct YieldMockNetwork final : INetwork, ReferenceCounted<YieldMockNetwork> {
Future<class Void> delay(double seconds, TaskPriority taskID) override { return nextTick.getFuture(); }
Future<class Void> orderedDelay(double seconds, TaskPriority taskID) override { return nextTick.getFuture(); }
Future<class Void> yield(TaskPriority taskID) override {
if (check_yield(taskID))
return delay(0, taskID);

View File

@ -922,9 +922,9 @@ ACTOR static void deliver(TransportData* self,
// We want to run the task at the right priority. If the priority is higher than the current priority (which is
// ReadSocket) we can just upgrade. Otherwise we'll context switch so that we don't block other tasks that might run
// with a higher priority. ReplyPromiseStream needs to guarentee that messages are recieved in the order they were
// sent, so even in the case of local delivery those messages need to skip this delay.
if (priority < TaskPriority::ReadSocket || (priority != TaskPriority::NoDeliverDelay && !inReadSocket)) {
wait(delay(0, priority));
// sent, so we are using orderedDelay.
if (priority < TaskPriority::ReadSocket || !inReadSocket) {
wait(orderedDelay(0, priority));
} else {
g_network->setCurrentTask(priority);
}

View File

@ -361,7 +361,7 @@ struct NetNotifiedQueueWithAcknowledgements final : NotifiedQueue<T>,
FlowTransport::transport().sendUnreliable(
SerializeSource<ErrorOr<AcknowledgementReply>>(
AcknowledgementReply(acknowledgements.bytesAcknowledged)),
acknowledgements.getEndpoint(TaskPriority::NoDeliverDelay),
acknowledgements.getEndpoint(TaskPriority::ReadSocket),
false);
}
}
@ -378,7 +378,7 @@ struct NetNotifiedQueueWithAcknowledgements final : NotifiedQueue<T>,
acknowledgements.bytesAcknowledged += res.expectedSize();
FlowTransport::transport().sendUnreliable(SerializeSource<ErrorOr<AcknowledgementReply>>(
AcknowledgementReply(acknowledgements.bytesAcknowledged)),
acknowledgements.getEndpoint(TaskPriority::NoDeliverDelay),
acknowledgements.getEndpoint(TaskPriority::ReadSocket),
false);
}
return res;
@ -389,13 +389,13 @@ struct NetNotifiedQueueWithAcknowledgements final : NotifiedQueue<T>,
// Notify the server that a client is not using this ReplyPromiseStream anymore
FlowTransport::transport().sendUnreliable(
SerializeSource<ErrorOr<AcknowledgementReply>>(operation_obsolete()),
acknowledgements.getEndpoint(TaskPriority::NoDeliverDelay),
acknowledgements.getEndpoint(TaskPriority::ReadSocket),
false);
}
if (isRemoteEndpoint() && !sentError && !acknowledgements.failures.isReady()) {
// The ReplyPromiseStream was cancelled before sending an error, so the storage server must have died
FlowTransport::transport().sendUnreliable(SerializeSource<ErrorOr<EnsureTable<T>>>(broken_promise()),
getEndpoint(TaskPriority::NoDeliverDelay),
getEndpoint(TaskPriority::ReadSocket),
false);
}
}
@ -406,9 +406,6 @@ struct NetNotifiedQueueWithAcknowledgements final : NotifiedQueue<T>,
template <class T>
class ReplyPromiseStream {
public:
// The endpoints of a ReplyPromiseStream must be initialized at Task::NoDeliverDelay, because a
// delay(0) in FlowTransport deliver can cause out of order delivery.
// stream.send( request )
// Unreliable at most once delivery: Delivers request unless there is a connection failure (zero or one times)
@ -416,7 +413,7 @@ public:
void send(U&& value) const {
if (queue->isRemoteEndpoint()) {
if (!queue->acknowledgements.getRawEndpoint().isValid()) {
value.acknowledgeToken = queue->acknowledgements.getEndpoint(TaskPriority::NoDeliverDelay).token;
value.acknowledgeToken = queue->acknowledgements.getEndpoint(TaskPriority::ReadSocket).token;
}
queue->acknowledgements.bytesSent += value.expectedSize();
FlowTransport::transport().sendUnreliable(
@ -477,7 +474,7 @@ public:
errors->delPromiseRef();
}
const Endpoint& getEndpoint() const { return queue->getEndpoint(TaskPriority::NoDeliverDelay); }
const Endpoint& getEndpoint() const { return queue->getEndpoint(TaskPriority::ReadSocket); }
bool operator==(const ReplyPromiseStream<T>& rhs) const { return queue == rhs.queue; }
bool isEmpty() const { return !queue->isReady(); }

View File

@ -858,13 +858,17 @@ public:
ASSERT(taskID >= TaskPriority::Min && taskID <= TaskPriority::Max);
return delay(seconds, taskID, currentProcess);
}
Future<class Void> delay(double seconds, TaskPriority taskID, ProcessInfo* machine) {
Future<class Void> orderedDelay(double seconds, TaskPriority taskID) override {
ASSERT(taskID >= TaskPriority::Min && taskID <= TaskPriority::Max);
return delay(seconds, taskID, currentProcess, true);
}
Future<class Void> delay(double seconds, TaskPriority taskID, ProcessInfo* machine, bool ordered = false) {
ASSERT(seconds >= -0.0001);
seconds = std::max(0.0, seconds);
Future<Void> f;
if (!currentProcess->rebooting && machine == currentProcess && !currentProcess->shutdownSignal.isSet() &&
FLOW_KNOBS->MAX_BUGGIFIED_DELAY > 0 &&
if (!ordered && !currentProcess->rebooting && machine == currentProcess &&
!currentProcess->shutdownSignal.isSet() && FLOW_KNOBS->MAX_BUGGIFIED_DELAY > 0 &&
deterministicRandom()->random01() < 0.25) { // FIXME: why doesnt this work when we are changing machines?
seconds += FLOW_KNOBS->MAX_BUGGIFIED_DELAY * pow(deterministicRandom()->random01(), 1000.0);
}

View File

@ -161,6 +161,7 @@ public:
double timer() override { return ::timer(); };
double timer_monotonic() override { return ::timer_monotonic(); };
Future<Void> delay(double seconds, TaskPriority taskId) override;
Future<Void> orderedDelay(double seconds, TaskPriority taskId) override;
Future<class Void> yield(TaskPriority taskID) override;
bool check_yield(TaskPriority taskId) override;
TaskPriority getCurrentTask() const override { return currentTaskID; }
@ -1750,6 +1751,11 @@ Future<Void> Net2::delay(double seconds, TaskPriority taskId) {
return t->promise.getFuture();
}
Future<Void> Net2::orderedDelay(double seconds, TaskPriority taskId) {
// The regular delay already provides the required ordering property
return delay(seconds, taskId);
}
void Net2::onMainThread(Promise<Void>&& signal, TaskPriority taskID) {
if (stopped)
return;

View File

@ -1087,6 +1087,9 @@ inline double now() {
inline Future<Void> delay(double seconds, TaskPriority taskID = TaskPriority::DefaultDelay) {
return g_network->delay(seconds, taskID);
}
inline Future<Void> orderedDelay(double seconds, TaskPriority taskID = TaskPriority::DefaultDelay) {
return g_network->orderedDelay(seconds, taskID);
}
inline Future<Void> delayUntil(double time, TaskPriority taskID = TaskPriority::DefaultDelay) {
return g_network->delay(std::max(0.0, time - g_network->now()), taskID);
}

View File

@ -45,7 +45,6 @@ enum class TaskPriority {
WriteSocket = 10000,
PollEIO = 9900,
DiskIOComplete = 9150,
NoDeliverDelay = 9100,
LoadBalancedEndpoint = 9000,
ReadSocket = 9000,
AcceptSocket = 8950,
@ -507,6 +506,10 @@ public:
virtual Future<class Void> delay(double seconds, TaskPriority taskID) = 0;
// The given future will be set after seconds have elapsed
virtual Future<class Void> orderedDelay(double seconds, TaskPriority taskID) = 0;
// The given future will be set after seconds have elapsed, delays with the same time and TaskPriority will be
// executed in the order they were issues
virtual Future<class Void> yield(TaskPriority taskID) = 0;
// The given future will be set immediately or after higher-priority tasks have executed