foundationdb/fdbserver/RestoreApplier.actor.h

185 lines
6.0 KiB
C
Raw Normal View History

/*
* RestoreApplier.actor.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This file declears RestoreApplier interface and actors
#pragma once
#if defined(NO_INTELLISENSE) && !defined(FDBSERVER_RESTORE_APPLIER_G_H)
#define FDBSERVER_RESTORE_APPLIER_G_H
#include "fdbserver/RestoreApplier.actor.g.h"
#elif !defined(FDBSERVER_RESTORE_APPLIER_H)
#define FDBSERVER_RESTORE_APPLIER_H
#include <sstream>
#include "flow/Stats.h"
#include "fdbclient/FDBTypes.h"
#include "fdbclient/CommitTransaction.h"
#include "fdbrpc/fdbrpc.h"
#include "fdbrpc/Locality.h"
#include "fdbserver/CoordinationInterface.h"
#include "fdbserver/RestoreUtil.h"
#include "fdbserver/RestoreRoleCommon.actor.h"
#include "fdbserver/RestoreWorkerInterface.h"
#include "flow/actorcompiler.h" // has to be last include
extern double transactionBatchSizeThreshold;
struct RestoreApplierData : RestoreRoleData, public ReferenceCounted<RestoreApplierData> {
// range2Applier is in master and loader node. Loader node uses this to determine which applier a mutation should be sent
std::map<Standalone<KeyRef>, UID> range2Applier; // KeyRef is the inclusive lower bound of the key range the applier (UID) is responsible for
std::map<Standalone<KeyRef>, int> keyOpsCount; // The number of operations per key which is used to determine the key-range boundary for appliers
int numSampledMutations; // The total number of mutations received from sampled data.
// For master applier to hold the lower bound of key ranges for each appliers
std::vector<Standalone<KeyRef>> keyRangeLowerBounds;
// TODO: This block of variables may be moved to RestoreRoleData
bool inProgressApplyToDB = false;
// Temporary data structure for parsing range and log files into (version, <K, V, mutationType>)
std::map<Version, Standalone<VectorRef<MutationRef>>> kvOps;
void addref() { return ReferenceCounted<RestoreApplierData>::addref(); }
void delref() { return ReferenceCounted<RestoreApplierData>::delref(); }
explicit RestoreApplierData(UID applierInterfID, int assignedIndex) {
nodeID = applierInterfID;
nodeIndex = assignedIndex;
role = RestoreRole::Applier;
}
~RestoreApplierData() {}
std::string describeNode() {
std::stringstream ss;
ss << "NodeID:" << nodeID.toString() << " nodeIndex:" << nodeIndex;
return ss.str();
}
void resetPerVersionBatch() {
RestoreRoleData::resetPerVersionBatch();
inProgressApplyToDB = false;
kvOps.clear();
}
void sanityCheckMutationOps() {
if (kvOps.empty())
return;
if ( isKVOpsSorted() ) {
printf("[CORRECT] KVOps is sorted by version\n");
} else {
printf("[ERROR]!!! KVOps is NOT sorted by version\n");
}
if ( allOpsAreKnown() ) {
printf("[CORRECT] KVOps all operations are known.\n");
} else {
printf("[ERROR]!!! KVOps has unknown mutation op. Exit...\n");
}
}
bool isKVOpsSorted() {
bool ret = true;
auto prev = kvOps.begin();
for ( auto it = kvOps.begin(); it != kvOps.end(); ++it ) {
if ( prev->first > it->first ) {
ret = false;
break;
}
prev = it;
}
return ret;
}
bool allOpsAreKnown() {
bool ret = true;
for ( auto it = kvOps.begin(); it != kvOps.end(); ++it ) {
for ( auto m = it->second.begin(); m != it->second.end(); ++m ) {
if ( m->type == MutationRef::SetValue || m->type == MutationRef::ClearRange
|| isAtomicOp((MutationRef::Type) m->type) )
continue;
else {
printf("[ERROR] Unknown mutation type:%d\n", m->type);
ret = false;
}
}
}
return ret;
}
std::vector<Standalone<KeyRef>> calculateAppliersKeyRanges(int numAppliers) {
ASSERT(numAppliers > 0);
std::vector<Standalone<KeyRef>> lowerBounds;
int numSampledMutations = 0;
for (auto &count : keyOpsCount) {
numSampledMutations += count.second;
}
//intervalLength = (numSampledMutations - remainder) / (numApplier - 1)
int intervalLength = std::max(numSampledMutations / numAppliers, 1); // minimal length is 1
int curCount = 0;
int curInterval = 0;
printf("[INFO] Node:%s calculateAppliersKeyRanges(): numSampledMutations:%d numAppliers:%d intervalLength:%d\n",
describeNode().c_str(),
numSampledMutations, numAppliers, intervalLength);
for (auto &count : keyOpsCount) {
if (curCount >= curInterval * intervalLength) {
printf("[INFO] Node:%s calculateAppliersKeyRanges(): Add a new key range [%d]:%s: curCount:%d\n",
describeNode().c_str(), curInterval, count.first.toString().c_str(), curCount);
lowerBounds.push_back(count.first); // The lower bound of the current key range
curInterval++;
}
curCount += count.second;
}
if ( lowerBounds.size() != numAppliers ) {
printf("[WARNING] calculateAppliersKeyRanges() WE MAY NOT USE ALL APPLIERS efficiently! num_keyRanges:%ld numAppliers:%d\n",
lowerBounds.size(), numAppliers);
printLowerBounds(lowerBounds);
}
//ASSERT(lowerBounds.size() <= numAppliers + 1); // We may have at most numAppliers + 1 key ranges
if ( lowerBounds.size() > numAppliers ) {
printf("[WARNING] Key ranges number:%ld > numAppliers:%d. Merge the last ones\n", lowerBounds.size(), numAppliers);
}
while ( lowerBounds.size() > numAppliers ) {
printf("[WARNING] Key ranges number:%ld > numAppliers:%d. Merge the last ones\n", lowerBounds.size(), numAppliers);
lowerBounds.pop_back();
}
return lowerBounds;
}
};
ACTOR Future<Void> restoreApplierCore(Reference<RestoreApplierData> self, RestoreApplierInterface applierInterf, Database cx);
#include "flow/unactorcompiler.h"
#endif