foundationdb/fdbserver/DDTxnProcessor.actor.cpp

913 lines
34 KiB
C++
Raw Normal View History

2022-06-08 02:58:16 +08:00
/*
* DDTxnProcessor.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbserver/DDTxnProcessor.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbserver/DataDistribution.actor.h"
2022-09-22 01:56:22 +08:00
#include "fdbclient/DatabaseContext.h"
2022-06-08 02:58:16 +08:00
#include "flow/actorcompiler.h" // This must be the last #include.
FDB_DEFINE_BOOLEAN_PARAM(SkipDDModeCheck);
2022-06-08 02:58:16 +08:00
class DDTxnProcessorImpl {
friend class DDTxnProcessor;
ACTOR static Future<ServerWorkerInfos> getServerListAndProcessClasses(Database cx) {
state Transaction tr(cx);
state ServerWorkerInfos res;
loop {
try {
wait(store(res.servers, NativeAPI::getServerListAndProcessClasses(&tr)));
res.readVersion = tr.getReadVersion().get();
return res;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
// return {sourceServers, completeSources}
2022-06-14 02:27:50 +08:00
ACTOR static Future<IDDTxnProcessor::SourceServers> getSourceServersForRange(Database cx, KeyRangeRef keys) {
2022-06-08 02:58:16 +08:00
state std::set<UID> servers;
state std::vector<UID> completeSources;
state Transaction tr(cx);
loop {
servers.clear();
completeSources.clear();
2022-06-08 02:58:16 +08:00
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
2022-06-14 04:55:48 +08:00
tr.setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
2022-06-08 02:58:16 +08:00
try {
state RangeResult UIDtoTagMap = wait(tr.getRange(serverTagKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!UIDtoTagMap.more && UIDtoTagMap.size() < CLIENT_KNOBS->TOO_MANY);
RangeResult keyServersEntries = wait(tr.getRange(lastLessOrEqual(keyServersKey(keys.begin)),
firstGreaterOrEqual(keyServersKey(keys.end)),
SERVER_KNOBS->DD_QUEUE_MAX_KEY_SERVERS));
if (keyServersEntries.size() < SERVER_KNOBS->DD_QUEUE_MAX_KEY_SERVERS) {
for (int shard = 0; shard < keyServersEntries.size(); shard++) {
std::vector<UID> src, dest;
decodeKeyServersValue(UIDtoTagMap, keyServersEntries[shard].value, src, dest);
ASSERT(src.size());
for (int i = 0; i < src.size(); i++) {
servers.insert(src[i]);
}
if (shard == 0) {
completeSources = src;
} else {
for (int i = 0; i < completeSources.size(); i++) {
if (std::find(src.begin(), src.end(), completeSources[i]) == src.end()) {
swapAndPop(&completeSources, i--);
}
}
}
}
ASSERT(servers.size() > 0);
}
// If the size of keyServerEntries is large, then just assume we are using all storage servers
// Why the size can be large?
// When a shard is inflight and DD crashes, some destination servers may have already got the data.
// The new DD will treat the destination servers as source servers. So the size can be large.
else {
RangeResult serverList = wait(tr.getRange(serverListKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!serverList.more && serverList.size() < CLIENT_KNOBS->TOO_MANY);
for (auto s = serverList.begin(); s != serverList.end(); ++s)
servers.insert(decodeServerListValue(s->value).id());
ASSERT(servers.size() > 0);
}
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
2022-06-14 02:27:50 +08:00
return IDDTxnProcessor::SourceServers{ std::vector<UID>(servers.begin(), servers.end()), completeSources };
2022-06-08 02:58:16 +08:00
}
2022-07-12 02:16:17 +08:00
2022-09-14 00:28:41 +08:00
ACTOR static Future<std::vector<IDDTxnProcessor::DDRangeLocations>> getSourceServerInterfacesForRange(
2022-09-07 10:00:09 +08:00
Database cx,
KeyRangeRef range) {
2022-09-14 00:28:41 +08:00
state std::vector<IDDTxnProcessor::DDRangeLocations> res;
2022-09-07 10:00:09 +08:00
state Transaction tr(cx);
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
loop {
res.clear();
try {
state RangeResult shards = wait(krmGetRanges(&tr,
keyServersPrefix,
range,
SERVER_KNOBS->MOVE_SHARD_KRM_ROW_LIMIT,
SERVER_KNOBS->MOVE_SHARD_KRM_BYTE_LIMIT));
ASSERT(!shards.empty());
state RangeResult UIDtoTagMap = wait(tr.getRange(serverTagKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!UIDtoTagMap.more && UIDtoTagMap.size() < CLIENT_KNOBS->TOO_MANY);
state int i = 0;
for (i = 0; i < shards.size() - 1; ++i) {
2022-09-07 10:00:09 +08:00
state std::vector<UID> src;
std::vector<UID> dest;
UID srcId, destId;
decodeKeyServersValue(UIDtoTagMap, shards[i].value, src, dest, srcId, destId);
2022-10-08 04:38:11 +08:00
std::vector<Future<Optional<Value>>> serverListEntries;
for (int j = 0; j < src.size(); ++j) {
serverListEntries.push_back(tr.get(serverListKeyFor(src[j])));
}
std::vector<Optional<Value>> serverListValues = wait(getAll(serverListEntries));
IDDTxnProcessor::DDRangeLocations current(KeyRangeRef(shards[i].key, shards[i + 1].key));
for (int j = 0; j < serverListValues.size(); ++j) {
if (!serverListValues[j].present()) {
2022-09-07 10:00:09 +08:00
TraceEvent(SevWarnAlways, "GetSourceServerInterfacesMissing")
.detail("StorageServer", src[j])
2022-10-08 04:38:11 +08:00
.detail("Range", KeyRangeRef(shards[i].key, shards[i + 1].key));
continue;
}
2022-10-08 04:38:11 +08:00
StorageServerInterface ssi = decodeServerListValue(serverListValues[j].get());
current.servers[ssi.locality.describeDcId()].push_back(ssi);
}
res.push_back(current);
}
break;
} catch (Error& e) {
2022-09-07 10:00:09 +08:00
TraceEvent(SevWarnAlways, "GetSourceServerInterfacesError").errorUnsuppressed(e).detail("Range", range);
wait(tr.onError(e));
}
}
return res;
}
2022-07-12 02:16:17 +08:00
// set the system key space
ACTOR static Future<Void> updateReplicaKeys(Database cx,
std::vector<Optional<Key>> primaryDcId,
std::vector<Optional<Key>> remoteDcIds,
DatabaseConfiguration configuration) {
state Transaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
RangeResult replicaKeys = wait(tr.getRange(datacenterReplicasKeys, CLIENT_KNOBS->TOO_MANY));
for (auto& kv : replicaKeys) {
auto dcId = decodeDatacenterReplicasKey(kv.key);
auto replicas = decodeDatacenterReplicasValue(kv.value);
if ((primaryDcId.size() && primaryDcId.at(0) == dcId) ||
(remoteDcIds.size() && remoteDcIds.at(0) == dcId && configuration.usableRegions > 1)) {
if (replicas > configuration.storageTeamSize) {
tr.set(kv.key, datacenterReplicasValue(configuration.storageTeamSize));
}
} else {
tr.clear(kv.key);
}
}
wait(tr.commit());
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
return Void();
}
ACTOR static Future<int> tryUpdateReplicasKeyForDc(Database cx, Optional<Key> dcId, int storageTeamSize) {
state Transaction tr(cx);
loop {
try {
Optional<Value> val = wait(tr.get(datacenterReplicasKeyFor(dcId)));
state int oldReplicas = val.present() ? decodeDatacenterReplicasValue(val.get()) : 0;
if (oldReplicas == storageTeamSize) {
return oldReplicas;
}
if (oldReplicas < storageTeamSize) {
tr.set(rebootWhenDurableKey, StringRef());
}
tr.set(datacenterReplicasKeyFor(dcId), datacenterReplicasValue(storageTeamSize));
wait(tr.commit());
return oldReplicas;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
// Read keyservers, return unique set of teams
ACTOR static Future<Reference<InitialDataDistribution>> getInitialDataDistribution(
Database cx,
UID distributorId,
MoveKeysLock moveKeysLock,
std::vector<Optional<Key>> remoteDcIds,
const DDEnabledState* ddEnabledState,
2022-10-19 00:49:07 +08:00
SkipDDModeCheck skipDDModeCheck) {
state Reference<InitialDataDistribution> result = makeReference<InitialDataDistribution>();
state Key beginKey = allKeys.begin;
state bool succeeded;
state Transaction tr(cx);
state std::map<UID, Optional<Key>> server_dc;
state std::map<std::vector<UID>, std::pair<std::vector<UID>, std::vector<UID>>> team_cache;
state std::vector<std::pair<StorageServerInterface, ProcessClass>> tss_servers;
state int numDataMoves = 0;
2022-10-19 00:49:07 +08:00
CODE_PROBE((bool)skipDDModeCheck, "DD Mode won't prevent read initial data distribution.");
// Get the server list in its own try/catch block since it modifies result. We don't want a subsequent failure
// causing entries to be duplicated
loop {
numDataMoves = 0;
server_dc.clear();
result->allServers.clear();
tss_servers.clear();
team_cache.clear();
succeeded = false;
try {
// Read healthyZone value which is later used to determine on/off of failure triggered DD
tr.setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::READ_LOCK_AWARE);
Optional<Value> val = wait(tr.get(healthyZoneKey));
if (val.present()) {
auto p = decodeHealthyZoneValue(val.get());
if (p.second > tr.getReadVersion().get() || p.first == ignoreSSFailuresZoneString) {
result->initHealthyZoneValue = Optional<Key>(p.first);
} else {
result->initHealthyZoneValue = Optional<Key>();
}
} else {
result->initHealthyZoneValue = Optional<Key>();
}
result->mode = 1;
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
Optional<Value> mode = wait(tr.get(dataDistributionModeKey));
if (mode.present()) {
BinaryReader rd(mode.get(), Unversioned());
rd >> result->mode;
}
if ((!skipDDModeCheck && !result->mode) || !ddEnabledState->isDDEnabled()) {
// DD can be disabled persistently (result->mode = 0) or transiently (isDDEnabled() = 0)
TraceEvent(SevDebug, "GetInitialDataDistribution_DisabledDD").log();
return result;
}
state Future<std::vector<ProcessData>> workers = getWorkers(&tr);
state Future<RangeResult> serverList = tr.getRange(serverListKeys, CLIENT_KNOBS->TOO_MANY);
wait(success(workers) && success(serverList));
ASSERT(!serverList.get().more && serverList.get().size() < CLIENT_KNOBS->TOO_MANY);
std::map<Optional<Standalone<StringRef>>, ProcessData> id_data;
for (int i = 0; i < workers.get().size(); i++)
id_data[workers.get()[i].locality.processId()] = workers.get()[i];
for (int i = 0; i < serverList.get().size(); i++) {
auto ssi = decodeServerListValue(serverList.get()[i].value);
if (!ssi.isTss()) {
result->allServers.emplace_back(ssi, id_data[ssi.locality.processId()].processClass);
server_dc[ssi.id()] = ssi.locality.dcId();
} else {
tss_servers.emplace_back(ssi, id_data[ssi.locality.processId()].processClass);
}
}
RangeResult dms = wait(tr.getRange(dataMoveKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!dms.more && dms.size() < CLIENT_KNOBS->TOO_MANY);
for (int i = 0; i < dms.size(); ++i) {
auto dataMove = std::make_shared<DataMove>(decodeDataMoveValue(dms[i].value), true);
const DataMoveMetaData& meta = dataMove->meta;
for (const UID& id : meta.src) {
auto& dc = server_dc[id];
if (std::find(remoteDcIds.begin(), remoteDcIds.end(), dc) != remoteDcIds.end()) {
dataMove->remoteSrc.push_back(id);
} else {
dataMove->primarySrc.push_back(id);
}
}
for (const UID& id : meta.dest) {
auto& dc = server_dc[id];
if (std::find(remoteDcIds.begin(), remoteDcIds.end(), dc) != remoteDcIds.end()) {
dataMove->remoteDest.push_back(id);
} else {
dataMove->primaryDest.push_back(id);
}
}
std::sort(dataMove->primarySrc.begin(), dataMove->primarySrc.end());
std::sort(dataMove->remoteSrc.begin(), dataMove->remoteSrc.end());
std::sort(dataMove->primaryDest.begin(), dataMove->primaryDest.end());
std::sort(dataMove->remoteDest.begin(), dataMove->remoteDest.end());
auto ranges = result->dataMoveMap.intersectingRanges(meta.range);
for (auto& r : ranges) {
ASSERT(!r.value()->valid);
}
result->dataMoveMap.insert(meta.range, std::move(dataMove));
++numDataMoves;
}
succeeded = true;
break;
} catch (Error& e) {
wait(tr.onError(e));
ASSERT(!succeeded); // We shouldn't be retrying if we have already started modifying result in this loop
TraceEvent("GetInitialTeamsRetry", distributorId).log();
}
}
// If keyServers is too large to read in a single transaction, then we will have to break this process up into
// multiple transactions. In that case, each iteration should begin where the previous left off
while (beginKey < allKeys.end) {
CODE_PROBE(beginKey > allKeys.begin, "Multi-transactional getInitialDataDistribution");
loop {
succeeded = false;
try {
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
wait(checkMoveKeysLockReadOnly(&tr, moveKeysLock, ddEnabledState));
state RangeResult UIDtoTagMap = wait(tr.getRange(serverTagKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!UIDtoTagMap.more && UIDtoTagMap.size() < CLIENT_KNOBS->TOO_MANY);
RangeResult keyServers = wait(krmGetRanges(&tr,
keyServersPrefix,
KeyRangeRef(beginKey, allKeys.end),
SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT,
SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT_BYTES));
succeeded = true;
std::vector<UID> src, dest, last;
UID srcId, destId;
// for each range
for (int i = 0; i < keyServers.size() - 1; i++) {
decodeKeyServersValue(UIDtoTagMap, keyServers[i].value, src, dest, srcId, destId);
DDShardInfo info(keyServers[i].key, srcId, destId);
if (remoteDcIds.size()) {
auto srcIter = team_cache.find(src);
if (srcIter == team_cache.end()) {
for (auto& id : src) {
auto& dc = server_dc[id];
if (std::find(remoteDcIds.begin(), remoteDcIds.end(), dc) != remoteDcIds.end()) {
info.remoteSrc.push_back(id);
} else {
info.primarySrc.push_back(id);
}
}
result->primaryTeams.insert(info.primarySrc);
result->remoteTeams.insert(info.remoteSrc);
team_cache[src] = std::make_pair(info.primarySrc, info.remoteSrc);
} else {
info.primarySrc = srcIter->second.first;
info.remoteSrc = srcIter->second.second;
}
if (dest.size()) {
info.hasDest = true;
auto destIter = team_cache.find(dest);
if (destIter == team_cache.end()) {
for (auto& id : dest) {
auto& dc = server_dc[id];
if (std::find(remoteDcIds.begin(), remoteDcIds.end(), dc) !=
remoteDcIds.end()) {
info.remoteDest.push_back(id);
} else {
info.primaryDest.push_back(id);
}
}
result->primaryTeams.insert(info.primaryDest);
result->remoteTeams.insert(info.remoteDest);
team_cache[dest] = std::make_pair(info.primaryDest, info.remoteDest);
} else {
info.primaryDest = destIter->second.first;
info.remoteDest = destIter->second.second;
}
}
} else {
info.primarySrc = src;
auto srcIter = team_cache.find(src);
if (srcIter == team_cache.end()) {
result->primaryTeams.insert(src);
team_cache[src] = std::pair<std::vector<UID>, std::vector<UID>>();
}
if (dest.size()) {
info.hasDest = true;
info.primaryDest = dest;
auto destIter = team_cache.find(dest);
if (destIter == team_cache.end()) {
result->primaryTeams.insert(dest);
team_cache[dest] = std::pair<std::vector<UID>, std::vector<UID>>();
}
}
}
result->shards.push_back(info);
}
ASSERT_GT(keyServers.size(), 0);
beginKey = keyServers.end()[-1].key;
break;
} catch (Error& e) {
TraceEvent("GetInitialTeamsKeyServersRetry", distributorId).error(e);
wait(tr.onError(e));
ASSERT(!succeeded); // We shouldn't be retrying if we have already started modifying result in this
// loop
}
}
tr.reset();
}
// a dummy shard at the end with no keys or servers makes life easier for trackInitialShards()
result->shards.push_back(DDShardInfo(allKeys.end));
if (SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA && numDataMoves > 0) {
for (int shard = 0; shard < result->shards.size() - 1; ++shard) {
const DDShardInfo& iShard = result->shards[shard];
KeyRangeRef keys = KeyRangeRef(iShard.key, result->shards[shard + 1].key);
result->dataMoveMap[keys.begin]->validateShard(iShard, keys);
}
}
// add tss to server list AFTER teams are built
for (auto& it : tss_servers) {
result->allServers.push_back(it);
}
return result;
}
2022-07-13 05:28:49 +08:00
ACTOR static Future<Void> waitForDataDistributionEnabled(Database cx, const DDEnabledState* ddEnabledState) {
state Transaction tr(cx);
loop {
wait(delay(SERVER_KNOBS->DD_ENABLED_CHECK_DELAY, TaskPriority::DataDistribution));
try {
Optional<Value> mode = wait(tr.get(dataDistributionModeKey));
if (!mode.present() && ddEnabledState->isDDEnabled()) {
TraceEvent("WaitForDDEnabledSucceeded").log();
return Void();
}
if (mode.present()) {
BinaryReader rd(mode.get(), Unversioned());
int m;
rd >> m;
TraceEvent(SevDebug, "WaitForDDEnabled")
.detail("Mode", m)
.detail("IsDDEnabled", ddEnabledState->isDDEnabled());
if (m && ddEnabledState->isDDEnabled()) {
TraceEvent("WaitForDDEnabledSucceeded").log();
return Void();
}
}
tr.reset();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<bool> isDataDistributionEnabled(Database cx, const DDEnabledState* ddEnabledState) {
state Transaction tr(cx);
loop {
try {
Optional<Value> mode = wait(tr.get(dataDistributionModeKey));
if (!mode.present() && ddEnabledState->isDDEnabled())
return true;
if (mode.present()) {
BinaryReader rd(mode.get(), Unversioned());
int m;
rd >> m;
if (m && ddEnabledState->isDDEnabled()) {
TraceEvent(SevDebug, "IsDDEnabledSucceeded")
.detail("Mode", m)
.detail("IsDDEnabled", ddEnabledState->isDDEnabled());
return true;
}
}
// SOMEDAY: Write a wrapper in MoveKeys.actor.h
Optional<Value> readVal = wait(tr.get(moveKeysLockOwnerKey));
UID currentOwner =
readVal.present() ? BinaryReader::fromStringRef<UID>(readVal.get(), Unversioned()) : UID();
if (ddEnabledState->isDDEnabled() && (currentOwner != dataDistributionModeLock)) {
TraceEvent(SevDebug, "IsDDEnabledSucceeded")
.detail("CurrentOwner", currentOwner)
.detail("DDModeLock", dataDistributionModeLock)
.detail("IsDDEnabled", ddEnabledState->isDDEnabled());
return true;
}
TraceEvent(SevDebug, "IsDDEnabledFailed")
.detail("CurrentOwner", currentOwner)
.detail("DDModeLock", dataDistributionModeLock)
.detail("IsDDEnabled", ddEnabledState->isDDEnabled());
return false;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Void> pollMoveKeysLock(Database cx, MoveKeysLock lock, const DDEnabledState* ddEnabledState) {
loop {
wait(delay(SERVER_KNOBS->MOVEKEYS_LOCK_POLLING_DELAY));
state Transaction tr(cx);
loop {
try {
wait(checkMoveKeysLockReadOnly(&tr, lock, ddEnabledState));
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
}
ACTOR static Future<Optional<Value>> readRebalanceDDIgnoreKey(Database cx) {
state Transaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
tr.setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
Optional<Value> res = wait(tr.get(rebalanceDDIgnoreKey));
return res;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Void> waitDDTeamInfoPrintSignal(Database cx) {
state ReadYourWritesTransaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
state Future<Void> watchFuture = tr.watch(triggerDDTeamInfoPrintKey);
wait(tr.commit());
wait(watchFuture);
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
};
2022-06-14 02:27:50 +08:00
Future<IDDTxnProcessor::SourceServers> DDTxnProcessor::getSourceServersForRange(const KeyRangeRef range) {
return DDTxnProcessorImpl::getSourceServersForRange(cx, range);
}
2022-09-14 00:28:41 +08:00
Future<std::vector<IDDTxnProcessor::DDRangeLocations>> DDTxnProcessor::getSourceServerInterfacesForRange(
const KeyRangeRef range) {
return DDTxnProcessorImpl::getSourceServerInterfacesForRange(cx, range);
}
Future<ServerWorkerInfos> DDTxnProcessor::getServerListAndProcessClasses() {
return DDTxnProcessorImpl::getServerListAndProcessClasses(cx);
}
Future<MoveKeysLock> DDTxnProcessor::takeMoveKeysLock(const UID& ddId) const {
return ::takeMoveKeysLock(cx, ddId);
}
Future<DatabaseConfiguration> DDTxnProcessor::getDatabaseConfiguration() const {
2022-07-09 07:34:55 +08:00
return ::getDatabaseConfiguration(cx);
2022-07-12 02:16:17 +08:00
}
Future<Void> DDTxnProcessor::updateReplicaKeys(const std::vector<Optional<Key>>& primaryIds,
const std::vector<Optional<Key>>& remoteIds,
const DatabaseConfiguration& configuration) const {
return DDTxnProcessorImpl::updateReplicaKeys(cx, primaryIds, remoteIds, configuration);
}
Future<Reference<InitialDataDistribution>> DDTxnProcessor::getInitialDataDistribution(
const UID& distributorId,
const MoveKeysLock& moveKeysLock,
const std::vector<Optional<Key>>& remoteDcIds,
const DDEnabledState* ddEnabledState,
SkipDDModeCheck skipDDModeCheck) {
return DDTxnProcessorImpl::getInitialDataDistribution(
2022-10-19 00:49:07 +08:00
cx, distributorId, moveKeysLock, remoteDcIds, ddEnabledState, skipDDModeCheck);
2022-07-13 05:28:49 +08:00
}
Future<Void> DDTxnProcessor::waitForDataDistributionEnabled(const DDEnabledState* ddEnabledState) const {
return DDTxnProcessorImpl::waitForDataDistributionEnabled(cx, ddEnabledState);
}
Future<bool> DDTxnProcessor::isDataDistributionEnabled(const DDEnabledState* ddEnabledState) const {
return DDTxnProcessorImpl::isDataDistributionEnabled(cx, ddEnabledState);
}
Future<Void> DDTxnProcessor::pollMoveKeysLock(const MoveKeysLock& lock, const DDEnabledState* ddEnabledState) const {
return DDTxnProcessorImpl::pollMoveKeysLock(cx, lock, ddEnabledState);
2022-09-22 01:56:22 +08:00
}
Future<std::pair<Optional<StorageMetrics>, int>> DDTxnProcessor::waitStorageMetrics(
const KeyRange& keys,
const StorageMetrics& min,
const StorageMetrics& max,
const StorageMetrics& permittedError,
int shardLimit,
int expectedShardCount) const {
return cx->waitStorageMetrics(keys, min, max, permittedError, shardLimit, expectedShardCount);
}
Future<Standalone<VectorRef<KeyRef>>> DDTxnProcessor::splitStorageMetrics(const KeyRange& keys,
const StorageMetrics& limit,
const StorageMetrics& estimated,
const Optional<int>& minSplitBytes) const {
return cx->splitStorageMetrics(keys, limit, estimated, minSplitBytes);
}
Future<Standalone<VectorRef<ReadHotRangeWithMetrics>>> DDTxnProcessor::getReadHotRanges(const KeyRange& keys) const {
return cx->getReadHotRanges(keys);
}
2022-09-24 05:49:46 +08:00
2022-09-22 01:56:22 +08:00
Future<HealthMetrics> DDTxnProcessor::getHealthMetrics(bool detailed) const {
return cx->getHealthMetrics(detailed);
}
Future<Optional<Value>> DDTxnProcessor::readRebalanceDDIgnoreKey() const {
return DDTxnProcessorImpl::readRebalanceDDIgnoreKey(cx);
2022-09-22 01:56:22 +08:00
}
Future<int> DDTxnProcessor::tryUpdateReplicasKeyForDc(const Optional<Key>& dcId, const int& storageTeamSize) const {
return DDTxnProcessorImpl::tryUpdateReplicasKeyForDc(cx, dcId, storageTeamSize);
}
Future<Void> DDTxnProcessor::waitDDTeamInfoPrintSignal() const {
return DDTxnProcessorImpl::waitDDTeamInfoPrintSignal(cx);
}
2022-10-03 13:07:42 +08:00
2022-10-05 05:57:04 +08:00
Future<std::vector<ProcessData>> DDTxnProcessor::getWorkers() const {
return ::getWorkers(cx);
}
Future<Void> DDTxnProcessor::rawStartMovement(MoveKeysParams& params,
std::map<UID, StorageServerInterface>& tssMapping) {
return ::rawStartMovement(cx, params, tssMapping);
}
Future<Void> DDTxnProcessor::rawFinishMovement(MoveKeysParams& params,
const std::map<UID, StorageServerInterface>& tssMapping) {
return ::rawFinishMovement(cx, params, tssMapping);
}
struct DDMockTxnProcessorImpl {
ACTOR static Future<Void> moveKeys(DDMockTxnProcessor* self, MoveKeysParams params) {
2022-10-18 07:43:32 +08:00
state std::map<UID, StorageServerInterface> tssMapping;
self->rawStartMovement(params, tssMapping);
ASSERT(tssMapping.empty());
if (BUGGIFY_WITH_PROB(0.5)) {
wait(delayJittered(5.0));
}
2022-10-18 07:43:32 +08:00
self->rawFinishMovement(params, tssMapping);
if (!params.dataMovementComplete.isSet())
params.dataMovementComplete.send(Void());
return Void();
}
};
Future<ServerWorkerInfos> DDMockTxnProcessor::getServerListAndProcessClasses() {
ServerWorkerInfos res;
for (auto& [_, mss] : mgs->allServers) {
res.servers.emplace_back(mss.ssi, ProcessClass(ProcessClass::StorageClass, ProcessClass::DBSource));
}
// FIXME(xwang): possible generate version from time?
res.readVersion = 0;
return res;
}
2022-09-14 15:17:00 +08:00
std::pair<std::set<std::vector<UID>>, std::set<std::vector<UID>>> getAllTeamsInRegion(
const std::vector<DDShardInfo>& shards) {
std::set<std::vector<UID>> primary, remote;
for (auto& info : shards) {
if (!info.primarySrc.empty())
primary.emplace(info.primarySrc);
if (!info.primaryDest.empty())
primary.emplace(info.primaryDest);
if (!info.remoteSrc.empty())
remote.emplace(info.remoteSrc);
if (!info.remoteDest.empty())
remote.emplace(info.remoteDest);
}
2022-09-14 15:17:00 +08:00
return { primary, remote };
}
inline void transformTeamsToServerIds(std::vector<ShardsAffectedByTeamFailure::Team>& teams,
std::vector<UID>& primaryIds,
std::vector<UID>& remoteIds) {
std::set<UID> primary, remote;
for (auto& team : teams) {
team.primary ? primary.insert(team.servers.begin(), team.servers.end())
: remote.insert(team.servers.begin(), team.servers.end());
}
primaryIds = std::vector<UID>(primary.begin(), primary.end());
remoteIds = std::vector<UID>(remote.begin(), remote.end());
}
// reconstruct DDShardInfos from shardMapping
std::vector<DDShardInfo> DDMockTxnProcessor::getDDShardInfos() const {
std::vector<DDShardInfo> res;
res.reserve(mgs->shardMapping->getNumberOfShards());
auto allRange = mgs->shardMapping->getAllRanges();
ASSERT(allRange.end().begin() == allKeys.end);
for (auto it = allRange.begin(); it != allRange.end(); ++it) {
// FIXME: now just use anonymousShardId
KeyRangeRef curRange = it->range();
DDShardInfo info(curRange.begin);
auto teams = mgs->shardMapping->getTeamsForFirstShard(curRange);
if (!teams.first.empty() && !teams.second.empty()) {
CODE_PROBE(true, "Mock InitialDataDistribution In-Flight shard");
info.hasDest = true;
info.destId = anonymousShardId;
info.srcId = anonymousShardId;
transformTeamsToServerIds(teams.second, info.primarySrc, info.remoteSrc);
transformTeamsToServerIds(teams.first, info.primaryDest, info.remoteDest);
} else if (!teams.first.empty()) {
CODE_PROBE(true, "Mock InitialDataDistribution Static shard");
info.srcId = anonymousShardId;
transformTeamsToServerIds(teams.first, info.primarySrc, info.remoteSrc);
} else {
ASSERT(false);
}
res.push_back(std::move(info));
}
res.emplace_back(allKeys.end);
return res;
}
Future<Reference<InitialDataDistribution>> DDMockTxnProcessor::getInitialDataDistribution(
const UID& distributorId,
const MoveKeysLock& moveKeysLock,
const std::vector<Optional<Key>>& remoteDcIds,
const DDEnabledState* ddEnabledState,
SkipDDModeCheck skipDDModeCheck) {
// FIXME: now we just ignore ddEnabledState and moveKeysLock, will fix it in the future
Reference<InitialDataDistribution> res = makeReference<InitialDataDistribution>();
res->mode = 1;
res->allServers = getServerListAndProcessClasses().get().servers;
res->shards = getDDShardInfos();
2022-09-14 15:17:00 +08:00
std::tie(res->primaryTeams, res->remoteTeams) = getAllTeamsInRegion(res->shards);
return res;
}
2022-08-31 01:59:14 +08:00
Future<Void> DDMockTxnProcessor::removeKeysFromFailedServer(const UID& serverID,
const std::vector<UID>& teamForDroppedRange,
const MoveKeysLock& lock,
const DDEnabledState* ddEnabledState) const {
// This function only takes effect when user exclude failed IP:PORT in the fdbcli. In the first version , the mock
// class wont support this.
UNREACHABLE();
2022-08-31 01:59:14 +08:00
}
Future<Void> DDMockTxnProcessor::removeStorageServer(const UID& serverID,
const Optional<UID>& tssPairID,
const MoveKeysLock& lock,
const DDEnabledState* ddEnabledState) const {
ASSERT(mgs->allShardsRemovedFromServer(serverID));
2022-08-31 01:59:14 +08:00
mgs->allServers.erase(serverID);
return Void();
}
void DDMockTxnProcessor::setupMockGlobalState(Reference<InitialDataDistribution> initData) {
for (auto& [ssi, pInfo] : initData->allServers) {
mgs->addStorageServer(ssi);
}
mgs->shardMapping->setCheckMode(ShardsAffectedByTeamFailure::CheckMode::ForceNoCheck);
for (int i = 0; i < initData->shards.size() - 1; ++i) {
// insert to keyServers
auto& shardInfo = initData->shards[i];
ASSERT(shardInfo.remoteSrc.empty() && shardInfo.remoteDest.empty());
uint64_t shardBytes =
deterministicRandom()->randomInt(SERVER_KNOBS->MIN_SHARD_BYTES, SERVER_KNOBS->MAX_SHARD_BYTES);
KeyRangeRef keys(shardInfo.key, initData->shards[i + 1].key);
mgs->shardMapping->assignRangeToTeams(keys, { { shardInfo.primarySrc, true } });
if (shardInfo.hasDest) {
mgs->shardMapping->moveShard(keys, { { shardInfo.primaryDest, true } });
}
// insert to serverKeys
for (auto& id : shardInfo.primarySrc) {
mgs->allServers[id].serverKeys.insert(keys, { MockShardStatus::COMPLETED, shardBytes });
}
for (auto& id : shardInfo.primaryDest) {
mgs->allServers[id].serverKeys.insert(keys, { MockShardStatus::INFLIGHT, shardBytes });
}
}
mgs->shardMapping->setCheckMode(ShardsAffectedByTeamFailure::CheckMode::Normal);
}
Future<Void> DDMockTxnProcessor::moveKeys(const MoveKeysParams& params) {
// Not support location metadata yet
ASSERT(!SERVER_KNOBS->SHARD_ENCODE_LOCATION_METADATA);
return DDMockTxnProcessorImpl::moveKeys(this, params);
2022-09-29 05:24:46 +08:00
}
// FIXME: finish implementation
Future<HealthMetrics> DDMockTxnProcessor::getHealthMetrics(bool detailed) const {
return Future<HealthMetrics>();
}
Future<Standalone<VectorRef<KeyRef>>> DDMockTxnProcessor::splitStorageMetrics(
const KeyRange& keys,
const StorageMetrics& limit,
const StorageMetrics& estimated,
const Optional<int>& minSplitBytes) const {
return mgs->splitStorageMetrics(keys, limit, estimated, minSplitBytes);
2022-09-29 05:24:46 +08:00
}
Future<std::pair<Optional<StorageMetrics>, int>> DDMockTxnProcessor::waitStorageMetrics(
const KeyRange& keys,
const StorageMetrics& min,
const StorageMetrics& max,
const StorageMetrics& permittedError,
int shardLimit,
int expectedShardCount) const {
return mgs->waitStorageMetrics(keys, min, max, permittedError, shardLimit, expectedShardCount);
2022-09-29 05:24:46 +08:00
}
2022-10-05 05:57:04 +08:00
// FIXME: finish implementation
Future<std::vector<ProcessData>> DDMockTxnProcessor::getWorkers() const {
return Future<std::vector<ProcessData>>();
}
2022-10-18 07:43:32 +08:00
void DDMockTxnProcessor::rawStartMovement(MoveKeysParams& params, std::map<UID, StorageServerInterface>& tssMapping) {
FlowLock::Releaser releaser(*params.startMoveKeysParallelismLock);
2022-10-18 05:42:04 +08:00
// Add wait(take) would always return immediately because there wont be parallel rawStart or rawFinish in mock
// world due to the fact the following *mock* transaction code will always finish without coroutine switch.
ASSERT(params.startMoveKeysParallelismLock->take().isReady());
std::vector<ShardsAffectedByTeamFailure::Team> destTeams;
destTeams.emplace_back(params.destinationTeam, true);
mgs->shardMapping->moveShard(params.keys, destTeams);
for (auto& id : params.destinationTeam) {
2022-10-14 08:20:12 +08:00
mgs->allServers.at(id).setShardStatus(params.keys, MockShardStatus::INFLIGHT, mgs->restrictSize);
}
}
2022-10-18 07:43:32 +08:00
void DDMockTxnProcessor::rawFinishMovement(MoveKeysParams& params,
const std::map<UID, StorageServerInterface>& tssMapping) {
FlowLock::Releaser releaser(*params.finishMoveKeysParallelismLock);
2022-10-18 05:42:04 +08:00
// Add wait(take) would always return immediately because there wont be parallel rawStart or rawFinish in mock
// world due to the fact the following *mock* transaction code will always finish without coroutine switch.
ASSERT(params.finishMoveKeysParallelismLock->take().isReady());
// get source and dest teams
auto [destTeams, srcTeams] = mgs->shardMapping->getTeamsForFirstShard(params.keys);
ASSERT_EQ(destTeams.size(), 0);
if (destTeams.front() != ShardsAffectedByTeamFailure::Team{ params.destinationTeam, true }) {
TraceEvent(SevError, "MockRawFinishMovementError")
.detail("Reason", "InconsistentDestinations")
.detail("ShardMappingDest", describe(destTeams.front().servers))
.detail("ParamDest", describe(params.destinationTeam));
ASSERT(false); // This shouldn't happen because the overlapped key range movement won't be executed in parallel
}
for (auto& id : params.destinationTeam) {
2022-10-14 08:20:12 +08:00
mgs->allServers.at(id).setShardStatus(params.keys, MockShardStatus::COMPLETED, mgs->restrictSize);
}
ASSERT_EQ(srcTeams.size(), 0);
for (auto& id : srcTeams.front().servers) {
mgs->allServers.at(id).removeShard(params.keys);
}
mgs->shardMapping->finishMove(params.keys);
}