foundationdb/fdbclient/KeyBackedTypes.h

332 lines
13 KiB
C
Raw Normal View History

2017-05-26 04:48:44 +08:00
/*
* KeyBackedTypes.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
2017-05-26 04:48:44 +08:00
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
2017-05-26 04:48:44 +08:00
* http://www.apache.org/licenses/LICENSE-2.0
*
2017-05-26 04:48:44 +08:00
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <utility>
#include <vector>
#include "fdbclient/ReadYourWrites.h"
#include "fdbclient/Subspace.h"
2017-05-26 04:48:44 +08:00
#include "flow/genericactors.actor.h"
// Codec is a utility struct to convert a type to and from a Tuple. It is used by the template
// classes below like KeyBackedProperty and KeyBackedMap to convert key parts and values
// from various types to Value strings and back.
// New types can be supported either by writing a new specialization or adding these
// methods to the type so that the default specialization can be used:
// static T T::unpack(Tuple const &t)
// Tuple T::pack() const
// Since Codec is a struct, partial specialization can be used, such as the std::pair
// partial specialization below allowing any std::pair<T1,T2> where T1 and T2 are already
// supported by Codec.
template<typename T>
struct Codec {
static inline Tuple pack(T const &val) { return val.pack(); }
static inline T unpack(Tuple const &t) { return T::unpack(t); }
};
// If T is Tuple then conversion is simple.
template<> inline Tuple Codec<Tuple>::pack(Tuple const &val) { return val; }
template<> inline Tuple Codec<Tuple>::unpack(Tuple const &val) { return val; }
template<> inline Tuple Codec<int64_t>::pack(int64_t const &val) { return Tuple().append(val); }
template<> inline int64_t Codec<int64_t>::unpack(Tuple const &val) { return val.getInt(0); }
template<> inline Tuple Codec<bool>::pack(bool const &val) { return Tuple().append(val ? 1 : 0); }
template<> inline bool Codec<bool>::unpack(Tuple const &val) { return val.getInt(0) == 1; }
template<> inline Tuple Codec<Standalone<StringRef>>::pack(Standalone<StringRef> const &val) { return Tuple().append(val); }
template<> inline Standalone<StringRef> Codec<Standalone<StringRef>>::unpack(Tuple const &val) { return val.getString(0); }
template<> inline Tuple Codec<UID>::pack(UID const &val) { return Codec<Standalone<StringRef>>::pack(BinaryWriter::toValue<UID>(val, Unversioned())); }
template<> inline UID Codec<UID>::unpack(Tuple const &val) { return BinaryReader::fromStringRef<UID>(Codec<Standalone<StringRef>>::unpack(val), Unversioned()); }
// This is backward compatible with Codec<Standalone<StringRef>>
template<> inline Tuple Codec<std::string>::pack(std::string const &val) { return Tuple().append(StringRef(val)); }
template<> inline std::string Codec<std::string>::unpack(Tuple const &val) { return val.getString(0).toString(); }
2017-05-26 04:48:44 +08:00
// Partial specialization to cover all std::pairs as long as the component types are Codec compatible
template<typename First, typename Second>
struct Codec<std::pair<First, Second>> {
static Tuple pack(typename std::pair<First, Second> const &val) { return Tuple().append(Codec<First>::pack(val.first)).append(Codec<Second>::pack(val.second)); }
static std::pair<First, Second> unpack(Tuple const &t) {
ASSERT(t.size() == 2);
return {Codec<First>::unpack(t.subTuple(0, 1)), Codec<Second>::unpack(t.subTuple(1, 2))};
}
};
template<typename T>
struct Codec<std::vector<T>> {
static Tuple pack(typename std::vector<T> const &val) {
Tuple t;
for (T item : val) {
Tuple itemTuple = Codec<T>::pack(item);
// fdbclient doesn't support nested tuples yet. For now, flatten the tuple into StringRef
t.append(itemTuple.pack());
}
return t;
}
static std::vector<T> unpack(Tuple const &t) {
std::vector<T> v;
for (int i = 0; i < t.size(); i++) {
Tuple itemTuple = Tuple::unpack(t.getString(i));
v.push_back(Codec<T>::unpack(itemTuple));
}
return v;
}
};
2017-05-26 04:48:44 +08:00
template<> inline Tuple Codec<KeyRange>::pack(KeyRange const &val) { return Tuple().append(val.begin).append(val.end); }
template<> inline KeyRange Codec<KeyRange>::unpack(Tuple const &val) { return KeyRangeRef(val.getString(0), val.getString(1)); }
// Convenient read/write access to a single value of type T stored at key
// Even though 'this' is not actually mutated, methods that change the db key are not const.
template <typename T>
class KeyBackedProperty {
public:
KeyBackedProperty(KeyRef key) : key(key) {}
Future<Optional<T>> get(Reference<ReadYourWritesTransaction> tr, bool snapshot = false) const {
return map(tr->get(key, snapshot), [](Optional<Value> const &val) -> Optional<T> {
if(val.present())
return Codec<T>::unpack(Tuple::unpack(val.get()));
return {};
});
}
// Get property's value or defaultValue if it doesn't exist
Future<T> getD(Reference<ReadYourWritesTransaction> tr, bool snapshot = false, T defaultValue = T()) const {
return map(get(tr, snapshot), [=](Optional<T> val) -> T { return val.present() ? val.get() : defaultValue; });
2017-05-26 04:48:44 +08:00
}
// Get property's value or throw error if it doesn't exist
Future<T> getOrThrow(Reference<ReadYourWritesTransaction> tr, bool snapshot = false, Error err = key_not_found()) const {
auto keyCopy = key;
auto backtrace = platform::get_backtrace();
return map(get(tr, snapshot), [=](Optional<T> val) -> T {
if (!val.present()) {
TraceEvent(SevInfo, "KeyBackedProperty_KeyNotFound")
.detail("Key", keyCopy)
.detail("Err", err.code())
.detail("ParentTrace", backtrace.c_str());
throw err;
}
return val.get();
});
}
2017-09-08 00:04:10 +08:00
Future<Optional<T>> get(Database cx, bool snapshot = false) const {
auto &copy = *this;
2017-09-08 00:04:10 +08:00
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
return copy.get(tr, snapshot);
});
}
Future<T> getD(Database cx, bool snapshot = false, T defaultValue = T()) const {
auto &copy = *this;
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
return copy.getD(tr, snapshot, defaultValue);
2017-09-08 00:04:10 +08:00
});
}
Future<T> getOrThrow(Database cx, bool snapshot = false, Error err = key_not_found()) const {
auto &copy = *this;
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
return copy.getOrThrow(tr, snapshot, err);
});
}
2017-05-26 04:48:44 +08:00
void set(Reference<ReadYourWritesTransaction> tr, T const &val) {
return tr->set(key, Codec<T>::pack(val).pack());
}
2017-09-09 07:09:18 +08:00
Future<Void> set(Database cx, T const &val) {
auto _key = key;
Value _val = Codec<T>::pack(val).pack();
2017-09-09 07:09:18 +08:00
return runRYWTransaction(cx, [_key, _val](Reference<ReadYourWritesTransaction> tr) {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
tr->set(_key, _val);
return Future<Void>(Void());
});
}
2017-05-26 04:48:44 +08:00
void clear(Reference<ReadYourWritesTransaction> tr) {
return tr->clear(key);
}
Key key;
};
// This is just like KeyBackedProperty but instead of using Codec for conversion to/from values it
// uses BinaryReader and BinaryWriter. This enables allows atomic ops with integer types, and also
// allows reading and writing of existing keys which use BinaryReader/Writer.
template <typename T>
class KeyBackedBinaryValue {
public:
KeyBackedBinaryValue(KeyRef key) : key(key) {}
Future<Optional<T>> get(Reference<ReadYourWritesTransaction> tr, bool snapshot = false) const {
return map(tr->get(key, snapshot), [](Optional<Value> const &val) -> Optional<T> {
if(val.present())
return BinaryReader::fromStringRef<T>(val.get(), Unversioned());
return {};
});
}
// Get property's value or defaultValue if it doesn't exist
Future<T> getD(Reference<ReadYourWritesTransaction> tr, bool snapshot = false, T defaultValue = T()) const {
return map(get(tr, false), [=](Optional<T> val) -> T { return val.present() ? val.get() : defaultValue; });
}
void set(Reference<ReadYourWritesTransaction> tr, T const &val) {
return tr->set(key, BinaryWriter::toValue<T>(val, Unversioned()));
}
void atomicOp(Reference<ReadYourWritesTransaction> tr, T const &val, MutationRef::Type type) {
return tr->atomicOp(key, BinaryWriter::toValue<T>(val, Unversioned()), type);
}
void clear(Reference<ReadYourWritesTransaction> tr) {
return tr->clear(key);
}
Key key;
};
// Convenient read/write access to a sorted map of KeyType to ValueType that has key as its prefix
// Even though 'this' is not actually mutated, methods that change db keys are not const.
template <typename _KeyType, typename _ValueType>
class KeyBackedMap {
public:
KeyBackedMap(KeyRef key) : space(key) {}
typedef _KeyType KeyType;
typedef _ValueType ValueType;
typedef std::pair<KeyType, ValueType> PairType;
typedef std::vector<PairType> PairsType;
// If end is not present one key past the end of the map is used.
2017-12-15 05:54:01 +08:00
Future<PairsType> getRange(Reference<ReadYourWritesTransaction> tr, KeyType const &begin, Optional<KeyType> const &end, int limit, bool snapshot = false, bool reverse = false) const {
2017-05-26 04:48:44 +08:00
Subspace s = space; // 'this' could be invalid inside lambda
Key endKey = end.present() ? s.pack(Codec<KeyType>::pack(end.get())) : space.range().end;
2017-12-15 05:54:01 +08:00
return map(tr->getRange(KeyRangeRef(s.pack(Codec<KeyType>::pack(begin)), endKey), GetRangeLimits(limit), snapshot, reverse),
2017-05-26 04:48:44 +08:00
[s] (Standalone<RangeResultRef> const &kvs) -> PairsType {
PairsType results;
for(int i = 0; i < kvs.size(); ++i) {
KeyType key = Codec<KeyType>::unpack(s.unpack(kvs[i].key));
ValueType val = Codec<ValueType>::unpack(Tuple::unpack(kvs[i].value));
results.push_back(PairType(key, val));
}
return results;
});
}
Future<Optional<ValueType>> get(Reference<ReadYourWritesTransaction> tr, KeyType const &key, bool snapshot = false) const {
return map(tr->get(space.pack(Codec<KeyType>::pack(key)), snapshot), [](Optional<Value> const &val) -> Optional<ValueType> {
if(val.present())
return Codec<ValueType>::unpack(Tuple::unpack(val.get()));
return {};
});
}
// Returns a Property that can be get/set that represents key's entry in this this.
KeyBackedProperty<ValueType> getProperty(KeyType const &key) const {
return space.pack(Codec<KeyType>::pack(key));
}
// Returns the expectedSize of the set key
int set(Reference<ReadYourWritesTransaction> tr, KeyType const &key, ValueType const &val) {
Key k = space.pack(Codec<KeyType>::pack(key));
Value v = Codec<ValueType>::pack(val).pack();
tr->set(k, v);
return k.expectedSize() + v.expectedSize();
}
void erase(Reference<ReadYourWritesTransaction> tr, KeyType const &key) {
return tr->clear(space.pack(Codec<KeyType>::pack(key)));
}
void erase(Reference<ReadYourWritesTransaction> tr, KeyType const &begin, KeyType const &end) {
return tr->clear(KeyRangeRef(space.pack(Codec<KeyType>::pack(begin)), space.pack(Codec<KeyType>::pack(end))));
}
void clear(Reference<ReadYourWritesTransaction> tr) {
return tr->clear(space.range());
}
Subspace space;
};
template <typename _ValueType>
class KeyBackedSet {
public:
KeyBackedSet(KeyRef key) : space(key) {}
typedef _ValueType ValueType;
typedef std::vector<ValueType> Values;
// If end is not present one key past the end of the map is used.
Future<Values> getRange(Reference<ReadYourWritesTransaction> tr, ValueType const &begin, Optional<ValueType> const &end, int limit, bool snapshot = false) const {
Subspace s = space; // 'this' could be invalid inside lambda
Key endKey = end.present() ? s.pack(Codec<ValueType>::pack(end.get())) : space.range().end;
return map(tr->getRange(KeyRangeRef(s.pack(Codec<ValueType>::pack(begin)), endKey), GetRangeLimits(limit), snapshot),
[s] (Standalone<RangeResultRef> const &kvs) -> Values {
Values results;
for(int i = 0; i < kvs.size(); ++i) {
results.push_back(Codec<ValueType>::unpack(s.unpack(kvs[i].key)));
}
return results;
});
}
Future<bool> exists(Reference<ReadYourWritesTransaction> tr, ValueType const &val, bool snapshot = false) const {
return map(tr->get(space.pack(Codec<ValueType>::pack(val)), snapshot), [](Optional<Value> const &val) -> bool {
return val.present();
});
}
// Returns the expectedSize of the set key
int insert(Reference<ReadYourWritesTransaction> tr, ValueType const &val) {
Key k = space.pack(Codec<ValueType>::pack(val));
tr->set(k, StringRef());
return k.expectedSize();
}
void erase(Reference<ReadYourWritesTransaction> tr, ValueType const &val) {
return tr->clear(space.pack(Codec<ValueType>::pack(val)));
}
void erase(Reference<ReadYourWritesTransaction> tr, ValueType const &begin, ValueType const &end) {
return tr->clear(KeyRangeRef(space.pack(Codec<ValueType>::pack(begin)), space.pack(Codec<ValueType>::pack(end))));
}
void clear(Reference<ReadYourWritesTransaction> tr) {
return tr->clear(space.range());
}
Subspace space;
};