foundationdb/fdbserver/masterserver.actor.cpp

1226 lines
53 KiB
C++
Raw Normal View History

2017-05-26 04:48:44 +08:00
/*
* masterserver.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/actorcompiler.h"
#include "flow/ActorCollection.h"
#include "fdbrpc/PerfMetric.h"
#include "flow/Trace.h"
#include "fdbrpc/FailureMonitor.h"
#include "fdbclient/NativeAPI.h"
#include "fdbclient/SystemData.h"
#include "ConflictSet.h"
#include "flow/Notified.h"
#include "DataDistribution.h"
#include "Knobs.h"
#include <iterator>
#include "WaitFailure.h"
#include "WorkerInterface.h"
#include "Ratekeeper.h"
#include "ClusterRecruitmentInterface.h"
#include "ServerDBInfo.h"
#include "CoordinatedState.h"
#include "fdbserver/CoordinationInterface.h" // copy constructors for ServerCoordinators class
#include "fdbrpc/sim_validation.h"
#include "DBCoreState.h"
#include "LogSystem.h"
#include "LogSystemDiskQueueAdapter.h"
#include "IKeyValueStore.h"
#include "ApplyMetadataMutation.h"
#include "RecoveryState.h"
using std::vector;
using std::min;
using std::max;
struct ProxyVersionReplies {
std::map<uint64_t, GetCommitVersionReply> replies;
NotifiedVersion latestRequestNum;
ProxyVersionReplies(ProxyVersionReplies&& r) noexcept(true) : replies(std::move(r.replies)), latestRequestNum(std::move(r.latestRequestNum)) {}
void operator=(ProxyVersionReplies&& r) noexcept(true) { replies = std::move(r.replies); latestRequestNum = std::move(r.latestRequestNum); }
ProxyVersionReplies() : latestRequestNum(0) {}
};
struct MasterData : NonCopyable, ReferenceCounted<MasterData> {
UID dbgid;
AsyncTrigger registrationTrigger;
Version lastEpochEnd, // The last version in the old epoch not (to be) rolled back in this recovery
recoveryTransactionVersion; // The first version in this epoch
double lastCommitTime;
DBCoreState prevDBState;
// prevDBState is the coordinated state (contents of this->cstate) for the database as of the
// beginning of recovery. If our recovery succeeds, it will be the penultimate state in the consistent chain.
Optional<DBCoreState> myDBState;
// myDBState present only after recovery succeeds. It is the state that we wrote to this->cstate
// after recovering and is the final state in the consistent chain.
DatabaseConfiguration originalConfiguration;
DatabaseConfiguration configuration;
ServerCoordinators coordinators;
Reference< ILogSystem > logSystem;
Version version; // The last version assigned to a proxy by getVersion()
double lastVersionTime;
LogSystemDiskQueueAdapter* txnStateLogAdapter;
IKeyValueStore* txnStateStore;
int64_t memoryLimit;
vector< MasterProxyInterface > proxies;
vector< MasterProxyInterface > provisionalProxies;
vector< ResolverInterface > resolvers;
std::map<UID, ProxyVersionReplies> lastProxyVersionReplies;
Standalone<StringRef> dbName;
Standalone<StringRef> dbId;
MasterInterface myInterface;
ClusterControllerFullInterface clusterController; // If the cluster controller changes, this master will die, so this is immutable.
MovableCoordinatedState cstate1; // Stores serialized DBCoreState, this one kills previous tlog before recruiting new ones
MovableCoordinatedState cstate2; // Stores serialized DBCoreState, this one contains oldTlogs while we recover from them
MovableCoordinatedState cstate3; // Stores serialized DBCoreState, this is the final one
Reference<AsyncVar<ServerDBInfo>> dbInfo;
int64_t registrationCount; // Number of different MasterRegistrationRequests sent to clusterController
RecoveryState::RecoveryState recoveryState;
AsyncVar<Standalone<VectorRef<ResolverMoveRef>>> resolverChanges;
Version resolverChangesVersion;
std::set<UID> resolverNeedingChanges;
Promise<Void> fullyRecovered;
MasterData(
Reference<AsyncVar<ServerDBInfo>> const& dbInfo,
MasterInterface const& myInterface,
ServerCoordinators const& coordinators,
ClusterControllerFullInterface const& clusterController,
Standalone<StringRef> const& dbName,
Standalone<StringRef> const& dbId
)
: dbgid( myInterface.id() ),
myInterface(myInterface),
dbInfo(dbInfo),
cstate1(coordinators),
cstate2(coordinators),
cstate3(coordinators),
coordinators(coordinators),
clusterController(clusterController),
dbName( dbName ),
dbId( dbId ),
lastEpochEnd(invalidVersion),
recoveryTransactionVersion(invalidVersion),
lastCommitTime(0),
registrationCount(0),
version(invalidVersion),
lastVersionTime(0),
txnStateStore(0),
memoryLimit(2e9)
{
}
~MasterData() { if(txnStateStore) txnStateStore->close(); }
};
ACTOR Future<Void> writeTransitionMasterState( Reference<MasterData> self, bool skipTransition ) {
state DBCoreState newState;
self->logSystem->toCoreState( newState );
newState.recoveryCount = self->prevDBState.recoveryCount + 1;
ASSERT( newState.tLogs[0].tLogWriteAntiQuorum == self->configuration.tLogWriteAntiQuorum && newState.tLogs[0].tLogReplicationFactor == self->configuration.tLogReplicationFactor );
2017-05-26 04:48:44 +08:00
try {
Void _ = wait( self->cstate2.setExclusive( BinaryWriter::toValue(newState, IncludeVersion()) ) );
} catch (Error& e) {
TEST(true); // Master displaced during writeMasterState
throw;
}
if( !skipTransition ) {
Value rereadDBStateRaw = wait( self->cstate3.read() );
DBCoreState readState;
if( rereadDBStateRaw.size() )
readState = BinaryReader::fromStringRef<DBCoreState>(rereadDBStateRaw, IncludeVersion());
if( readState != newState ) {
TraceEvent("MasterTerminated", self->dbgid).detail("Reason", "CStateChanged");
TEST(true); // Coordinated state changed between writing and reading, master dying
throw worker_removed();
}
}
self->logSystem->coreStateWritten(newState);
self->myDBState = newState;
return Void();
}
ACTOR Future<Void> writeRecoveredMasterState( Reference<MasterData> self ) {
state DBCoreState newState = self->myDBState.get();
self->logSystem->toCoreState( newState );
ASSERT( newState.tLogs[0].tLogWriteAntiQuorum == self->configuration.tLogWriteAntiQuorum && newState.tLogs[0].tLogReplicationFactor == self->configuration.tLogReplicationFactor );
2017-05-26 04:48:44 +08:00
try {
Void _ = wait( self->cstate3.setExclusive( BinaryWriter::toValue(newState, IncludeVersion()) ) );
} catch (Error& e) {
TEST(true); // Master displaced during writeMasterState
throw;
}
self->logSystem->coreStateWritten(newState);
self->myDBState = newState;
return Void();
}
ACTOR Future<Void> newProxies( Reference<MasterData> self, Future< RecruitFromConfigurationReply > recruits ) {
self->proxies.clear();
RecruitFromConfigurationReply recr = wait( recruits );
state std::vector<WorkerInterface> workers = recr.proxies;
state vector<Future<MasterProxyInterface>> initializationReplies;
for( int i = 0; i < workers.size(); i++ ) {
InitializeMasterProxyRequest req;
req.master = self->myInterface;
req.recoveryCount = self->prevDBState.recoveryCount + 1;
req.recoveryTransactionVersion = self->recoveryTransactionVersion;
req.firstProxy = i == 0;
TraceEvent("ProxyReplies",self->dbgid).detail("workerID",workers[i].id());
initializationReplies.push_back( transformErrors( throwErrorOr( workers[i].masterProxy.getReplyUnlessFailedFor( req, SERVER_KNOBS->TLOG_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY ) ), master_recovery_failed() ) );
}
vector<MasterProxyInterface> newRecruits = wait( getAll( initializationReplies ) );
self->proxies = newRecruits;
return Void();
}
ACTOR Future<Void> newResolvers( Reference<MasterData> self, Future< RecruitFromConfigurationReply > recruits ) {
self->resolvers.clear();
RecruitFromConfigurationReply recr = wait( recruits );
state std::vector<WorkerInterface> workers = recr.resolvers;
state vector<Future<ResolverInterface>> initializationReplies;
for( int i = 0; i < workers.size(); i++ ) {
InitializeResolverRequest req;
req.recoveryCount = self->prevDBState.recoveryCount + 1;
req.proxyCount = recr.proxies.size();
req.resolverCount = recr.resolvers.size();
TraceEvent("ResolverReplies",self->dbgid).detail("workerID",workers[i].id());
initializationReplies.push_back( transformErrors( throwErrorOr( workers[i].resolver.getReplyUnlessFailedFor( req, SERVER_KNOBS->TLOG_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY ) ), master_recovery_failed() ) );
}
vector<ResolverInterface> newRecruits = wait( getAll( initializationReplies ) );
self->resolvers = newRecruits;
return Void();
}
ACTOR Future<Void> newTLogServers( Reference<MasterData> self, Future< RecruitFromConfigurationReply > recruits, Reference<ILogSystem> oldLogSystem ) {
RecruitFromConfigurationReply recr = wait( recruits );
Reference<ILogSystem> newLogSystem = wait( oldLogSystem->newEpoch( recr.tLogs, recr.remoteTLogs, recr.logRouters, self->configuration, self->prevDBState.recoveryCount + 1 ) );
2017-05-26 04:48:44 +08:00
self->logSystem = newLogSystem;
return Void();
}
ACTOR Future<Void> newSeedServers( Reference<MasterData> self, vector<StorageServerInterface>* servers ) {
// This is only necessary if the database is at version 0
servers->clear();
if (self->lastEpochEnd) return Void();
state std::map<Optional<Value>,Tag> dcId_tags;
state int8_t nextLocality = 0;
2017-05-26 04:48:44 +08:00
while( servers->size() < self->configuration.storageTeamSize ) {
try {
RecruitStorageRequest req;
req.criticalRecruitment = true;
for(auto s = servers->begin(); s != servers->end(); ++s)
req.excludeMachines.push_back(s->locality.zoneId());
TraceEvent("MasterRecruitingInitialStorageServer", self->dbgid)
.detail("ExcludingMachines", req.excludeMachines.size())
.detail("ExcludingDataCenters", req.excludeDCs.size());
state RecruitStorageReply candidateWorker = wait( brokenPromiseToNever( self->clusterController.recruitStorage.getReply( req ) ) );
2017-05-26 04:48:44 +08:00
TraceEvent("MasterRecruitingInitialStorageServer", self->dbgid)
.detail("CandidateWorker", candidateWorker.worker.locality.toString());
InitializeStorageRequest isr;
isr.seedTag = dcId_tags.count(candidateWorker.worker.locality.dcId()) ? dcId_tags[candidateWorker.worker.locality.dcId()] : Tag(nextLocality, 0);
2017-05-26 04:48:44 +08:00
isr.storeType = self->configuration.storageServerStoreType;
isr.reqId = g_random->randomUniqueID();
isr.interfaceId = g_random->randomUniqueID();
ErrorOr<StorageServerInterface> newServer = wait( candidateWorker.worker.storage.tryGetReply( isr ) );
if( newServer.isError() ) {
if( !newServer.isError( error_code_recruitment_failed ) && !newServer.isError( error_code_request_maybe_delivered ) )
throw newServer.getError();
TEST( true ); // masterserver initial storage recuitment loop failed to get new server
Void _ = wait( delay(SERVER_KNOBS->STORAGE_RECRUITMENT_DELAY) );
}
else {
if(!dcId_tags.count(candidateWorker.worker.locality.dcId())) {
dcId_tags[candidateWorker.worker.locality.dcId()] = Tag(nextLocality, 0);
nextLocality++;
}
Tag& tag = dcId_tags[candidateWorker.worker.locality.dcId()];
tag.id++;
2017-05-26 04:48:44 +08:00
servers->push_back( newServer.get() );
}
} catch ( Error &e ) {
if(e.code() != error_code_timed_out) {
throw;
}
}
}
TraceEvent("MasterRecruitedInitialStorageServers", self->dbgid)
.detail("TargetCount", self->configuration.storageTeamSize)
.detail("Servers", describe(*servers));
return Void();
}
Future<Void> waitProxyFailure( vector<MasterProxyInterface> const& proxies ) {
vector<Future<Void>> failed;
for(int i=0; i<proxies.size(); i++)
failed.push_back( waitFailureClient( proxies[i].waitFailure, SERVER_KNOBS->TLOG_TIMEOUT, -SERVER_KNOBS->TLOG_TIMEOUT/SERVER_KNOBS->SECONDS_BEFORE_NO_FAILURE_DELAY ) );
ASSERT( failed.size() >= 1 );
return tagError<Void>(quorum( failed, 1 ), master_proxy_failed());
}
Future<Void> waitResolverFailure( vector<ResolverInterface> const& resolvers ) {
vector<Future<Void>> failed;
for(int i=0; i<resolvers.size(); i++)
failed.push_back( waitFailureClient( resolvers[i].waitFailure, SERVER_KNOBS->TLOG_TIMEOUT, -SERVER_KNOBS->TLOG_TIMEOUT/SERVER_KNOBS->SECONDS_BEFORE_NO_FAILURE_DELAY ) );
ASSERT( failed.size() >= 1 );
return tagError<Void>(quorum( failed, 1 ), master_resolver_failed());
}
ACTOR Future<Void> masterTerminateOnConflict( Reference<MasterData> self, Future<Void> onConflict ) {
Void _ = wait( onConflict );
if (!self->fullyRecovered.isSet()) {
TraceEvent("MasterTerminated", self->dbgid).detail("Reason", "Conflict");
TEST(true); // Coordinated state conflict, master dying
throw worker_removed();
}
return Void();
}
ACTOR Future<Void> updateLogsValue( Reference<MasterData> self, Database cx ) {
state Transaction tr(cx);
loop {
try {
Optional<Standalone<StringRef>> value = wait( tr.get(logsKey) );
ASSERT(value.present());
std::vector<OptionalInterface<TLogInterface>> logConf;
2017-05-26 04:48:44 +08:00
auto logs = decodeLogsValue(value.get());
for(auto& log : self->logSystem->getLogSystemConfig().tLogs) {
for(auto& tl : log.tLogs) {
logConf.push_back(tl);
}
}
2017-05-26 04:48:44 +08:00
bool match = (logs.first.size() == logConf.size());
2017-05-26 04:48:44 +08:00
if(match) {
for(int i = 0; i < logs.first.size(); i++) {
if(logs.first[i].first != logConf[i].id()) {
2017-05-26 04:48:44 +08:00
match = false;
break;
}
}
}
if(!match) {
TEST(true); //old master attempted to change logsKey
return Void();
}
//FIXME: include remote logs in the log key
2017-05-26 04:48:44 +08:00
tr.set(logsKey, self->logSystem->getLogsValue());
Void _ = wait( tr.commit() );
return Void();
} catch( Error &e ) {
Void _ = wait( tr.onError(e) );
}
}
}
Future<Void> sendMasterRegistration( MasterData* self, LogSystemConfig const& logSystemConfig, vector<MasterProxyInterface> proxies, vector<ResolverInterface> resolvers, DBRecoveryCount recoveryCount, vector<UID> priorCommittedLogServers ) {
RegisterMasterRequest masterReq;
masterReq.dbName = self->dbName;
masterReq.id = self->myInterface.id();
masterReq.mi = self->myInterface.locality;
masterReq.logSystemConfig = logSystemConfig;
masterReq.proxies = proxies;
masterReq.resolvers = resolvers;
masterReq.recoveryCount = recoveryCount;
masterReq.configuration = self->configuration;
masterReq.registrationCount = ++self->registrationCount;
masterReq.priorCommittedLogServers = priorCommittedLogServers;
masterReq.recoveryState = self->recoveryState;
return brokenPromiseToNever( self->clusterController.registerMaster.getReply( masterReq ) );
}
ACTOR Future<Void> updateRegistration( Reference<MasterData> self, Reference<ILogSystem> logSystem ) {
state Database cx = openDBOnServer(self->dbInfo, TaskDefaultEndpoint, true, true);
state Future<Void> trigger = self->registrationTrigger.onTrigger();
state Future<Void> updateLogsKey;
loop {
Void _ = wait( trigger );
Void _ = wait( delay( .001 ) ); // Coalesce multiple changes
trigger = self->registrationTrigger.onTrigger();
TraceEvent("MasterUpdateRegistration", self->dbgid).detail("RecoveryCount", self->myDBState.present() ? self->myDBState.get().recoveryCount : self->prevDBState.recoveryCount).detail("logs", describe(logSystem->getLogSystemConfig().tLogs));
if (!self->myDBState.present()) {
//FIXME: prior committed tlogs should include
2017-05-26 04:48:44 +08:00
Void _ = wait(sendMasterRegistration(self.getPtr(), logSystem->getLogSystemConfig(), self->provisionalProxies, self->resolvers, self->prevDBState.recoveryCount, self->prevDBState.getPriorCommittedLogServers() ));
} else {
updateLogsKey = updateLogsValue(self, cx);
Void _ = wait( sendMasterRegistration( self.getPtr(), logSystem->getLogSystemConfig(), self->proxies, self->resolvers, self->myDBState.get().recoveryCount, vector<UID>() ) );
}
}
}
ACTOR Future<Standalone<CommitTransactionRef>> provisionalMaster( Reference<MasterData> parent, Future<Void> activate ) {
Void _ = wait(activate);
// Register a fake master proxy (to be provided right here) to make ourselves available to clients
parent->provisionalProxies = vector<MasterProxyInterface>(1);
parent->provisionalProxies[0].locality = parent->myInterface.locality;
state Future<Void> waitFailure = waitFailureServer(parent->provisionalProxies[0].waitFailure.getFuture());
parent->registrationTrigger.trigger();
auto lockedKey = parent->txnStateStore->readValue(databaseLockedKey).get();
state bool locked = lockedKey.present() && lockedKey.get().size();
// We respond to a minimal subset of the master proxy protocol. Our sole purpose is to receive a single write-only transaction
// which might repair our configuration, and return it.
loop choose {
when ( GetReadVersionRequest req = waitNext( parent->provisionalProxies[0].getConsistentReadVersion.getFuture() ) ) {
if ( req.flags & GetReadVersionRequest::FLAG_CAUSAL_READ_RISKY && parent->lastEpochEnd ) {
GetReadVersionReply rep;
rep.version = parent->lastEpochEnd;
rep.locked = locked;
req.reply.send( rep );
} else
req.reply.send(Never()); // We can't perform causally consistent reads without recovering
}
when ( CommitTransactionRequest req = waitNext( parent->provisionalProxies[0].commit.getFuture() ) ) {
req.reply.send(Never()); // don't reply (clients always get commit_unknown_result)
auto t = &req.transaction;
TraceEvent("PM_CTC", parent->dbgid).detail("Snapshot", t->read_snapshot).detail("Now", parent->lastEpochEnd);
if (t->read_snapshot == parent->lastEpochEnd && //< So no transactions can fall between the read snapshot and the recovery transaction this (might) be merged with
// vvv and also the changes we will make in the recovery transaction (most notably to lastEpochEndKey) BEFORE we merge initialConfChanges won't conflict
!std::any_of(t->read_conflict_ranges.begin(), t->read_conflict_ranges.end(), [](KeyRangeRef const& r){return r.contains(lastEpochEndKey);}))
{
for(auto m = t->mutations.begin(); m != t->mutations.end(); ++m) {
TraceEvent("PM_CTM", parent->dbgid).detail("MType", m->type).detail("Param1", printable(m->param1)).detail("Param2", printable(m->param2));
if (isMetadataMutation(*m)) {
// We keep the mutations and write conflict ranges from this transaction, but not its read conflict ranges
Standalone<CommitTransactionRef> out;
out.read_snapshot = invalidVersion;
out.mutations.append_deep(out.arena(), t->mutations.begin(), t->mutations.size());
out.write_conflict_ranges.append_deep(out.arena(), t->write_conflict_ranges.begin(), t->write_conflict_ranges.size());
return out;
}
}
}
}
when ( ReplyPromise<vector<StorageServerInterface>> req = waitNext( parent->provisionalProxies[0].getKeyServersLocations.getFuture() ) ) {
req.send(Never());
}
when ( Void _ = wait( waitFailure ) ) { throw worker_removed(); }
}
}
ACTOR Future<Void> recruitEverything( Reference<MasterData> self, vector<StorageServerInterface>* seedServers, Reference<ILogSystem> oldLogSystem ) {
if (!self->configuration.isValid()) {
RecoveryStatus::RecoveryStatus status;
if (self->configuration.initialized)
status = RecoveryStatus::configuration_invalid;
else if (!self->prevDBState.tLogs.size())
status = RecoveryStatus::configuration_never_created;
else
status = RecoveryStatus::configuration_missing;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", status)
.detail("Status", RecoveryStatus::names[status])
.trackLatest(format("%s/MasterRecoveryState", printable(self->dbName).c_str() ).c_str());
return Never();
} else
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::recruiting_transaction_servers)
.detail("Status", RecoveryStatus::names[RecoveryStatus::recruiting_transaction_servers])
.detail("RequiredTLogs", self->configuration.tLogReplicationFactor)
.detail("DesiredTLogs", self->configuration.getDesiredLogs())
.detail("RequiredProxies", 1)
.detail("DesiredProxies", self->configuration.getDesiredProxies())
.detail("RequiredResolvers", 1)
.detail("DesiredResolvers", self->configuration.getDesiredResolvers())
.detail("storeType", self->configuration.storageServerStoreType)
.trackLatest(format("%s/MasterRecoveryState", printable(self->dbName).c_str() ).c_str());
RecruitFromConfigurationReply recruits = wait(
brokenPromiseToNever( self->clusterController.recruitFromConfiguration.getReply(
RecruitFromConfigurationRequest( self->configuration ) ) ) );
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::initializing_transaction_servers)
.detail("Status", RecoveryStatus::names[RecoveryStatus::initializing_transaction_servers])
.detail("Proxies", recruits.proxies.size())
.detail("TLogs", recruits.tLogs.size())
.detail("Resolvers", recruits.resolvers.size())
.trackLatest(format("%s/MasterRecoveryState", printable(self->dbName).c_str() ).c_str());
// Actually, newSeedServers does both the recruiting and initialization of the seed servers; so if this is a brand new database we are sort of lying that we are
// past the recruitment phase. In a perfect world we would split that up so that the recruitment part happens above (in parallel with recruiting the transaction servers?).
Void _ = wait( newProxies( self, recruits ) && newResolvers( self, recruits ) && newTLogServers( self, recruits, oldLogSystem ) && newSeedServers( self, seedServers ) );
return Void();
}
ACTOR Future<Void> rewriteMasterState( Reference<MasterData> self ) {
state DBCoreState newState = self->prevDBState;
newState.recoveryCount++;
try {
Void _ = wait( self->cstate1.setExclusive( BinaryWriter::toValue(newState, IncludeVersion()) ) );
} catch (Error& e) {
TEST(true); // Master displaced during rewriteMasterState
throw;
}
self->prevDBState = newState;
Value rereadDBStateRaw = wait( self->cstate2.read() );
DBCoreState readState;
if( rereadDBStateRaw.size() )
readState = BinaryReader::fromStringRef<DBCoreState>(rereadDBStateRaw, IncludeVersion());
if( readState != newState ) {
TraceEvent("MasterTerminated", self->dbgid).detail("Reason", "CStateChanged");
TEST(true); // Coordinated state changed between writing and reading, master dying
throw worker_removed();
}
return Void();
}
ACTOR Future<Void> readTransactionSystemState( Reference<MasterData> self, Reference<ILogSystem> oldLogSystem ) {
// Peek the txnStateTag in oldLogSystem and recover self->txnStateStore
// For now, we also obtain the recovery metadata that the log system obtained during the end_epoch process for comparison
// Sets self->lastEpochEnd and self->recoveryTransactionVersion
// Sets self->configuration to the configuration (FF/conf/ keys) at self->lastEpochEnd
// Recover transaction state store
if(self->txnStateStore) self->txnStateStore->close();
self->txnStateLogAdapter = openDiskQueueAdapter( oldLogSystem, txsTag );
self->txnStateStore = keyValueStoreLogSystem( self->txnStateLogAdapter, self->dbgid, self->memoryLimit, false );
// Recover version info
self->lastEpochEnd = oldLogSystem->getEnd() - 1;
if (self->lastEpochEnd == 0) {
2017-05-26 04:48:44 +08:00
self->recoveryTransactionVersion = 1;
} else {
2017-05-26 04:48:44 +08:00
self->recoveryTransactionVersion = self->lastEpochEnd + SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT;
if(BUGGIFY) {
self->recoveryTransactionVersion += g_random->randomInt64(0, SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT);
}
}
2017-05-26 04:48:44 +08:00
TraceEvent("MasterRecovering", self->dbgid).detail("lastEpochEnd", self->lastEpochEnd).detail("recoveryTransactionVersion", self->recoveryTransactionVersion);
Standalone<VectorRef<KeyValueRef>> rawConf = wait( self->txnStateStore->readRange( configKeys ) );
self->configuration.fromKeyValues( rawConf );
self->originalConfiguration = self->configuration;
TraceEvent("MasterRecoveredConfig", self->dbgid).detail("conf", self->configuration.toString()).trackLatest("RecoveredConfig");
//auto kvs = self->txnStateStore->readRange( systemKeys );
//for( auto & kv : kvs.get() )
// TraceEvent("MasterRecoveredTXS", self->dbgid).detail("K", printable(kv.key)).detail("V", printable(kv.value));
self->txnStateLogAdapter->setNextVersion( oldLogSystem->getEnd() ); //< FIXME: (1) the log adapter should do this automatically after recovery; (2) if we make KeyValueStoreMemory guarantee immediate reads, we should be able to get rid of the discardCommit() below and not need a writable log adapter
TraceEvent("RTSSComplete", self->dbgid);
return Void();
}
ACTOR Future<Void> sendInitialCommitToResolvers( Reference<MasterData> self ) {
state KeyRange txnKeys = allKeys;
state Sequence txnSequence = 0;
ASSERT(self->recoveryTransactionVersion);
state Standalone<VectorRef<KeyValueRef>> data = self->txnStateStore->readRange(txnKeys, BUGGIFY ? 3 : SERVER_KNOBS->DESIRED_TOTAL_BYTES, SERVER_KNOBS->DESIRED_TOTAL_BYTES).get();
state vector<Future<Void>> txnReplies;
state int64_t dataOutstanding = 0;
loop {
if(!data.size()) break;
((KeyRangeRef&)txnKeys) = KeyRangeRef( keyAfter(data.back().key, txnKeys.arena()), txnKeys.end );
Standalone<VectorRef<KeyValueRef>> nextData = self->txnStateStore->readRange(txnKeys, BUGGIFY ? 3 : SERVER_KNOBS->DESIRED_TOTAL_BYTES, SERVER_KNOBS->DESIRED_TOTAL_BYTES).get();
for(auto& r : self->proxies) {
TxnStateRequest req;
req.arena = data.arena();
req.data = data;
req.sequence = txnSequence;
req.last = !nextData.size();
txnReplies.push_back( brokenPromiseToNever( r.txnState.getReply( req ) ) );
dataOutstanding += data.arena().getSize();
}
data = nextData;
txnSequence++;
if(dataOutstanding > SERVER_KNOBS->MAX_TXS_SEND_MEMORY) {
Void _ = wait( waitForAll(txnReplies) );
txnReplies = vector<Future<Void>>();
dataOutstanding = 0;
}
Void _ = wait(yield());
}
Void _ = wait( waitForAll(txnReplies) );
vector<Future<ResolveTransactionBatchReply>> replies;
for(auto& r : self->resolvers) {
ResolveTransactionBatchRequest req;
req.prevVersion = -1;
req.version = self->lastEpochEnd;
req.lastReceivedVersion = -1;
replies.push_back( brokenPromiseToNever( r.resolve.getReply( req ) ) );
}
Void _ = wait(waitForAll(replies));
return Void();
}
ACTOR Future<Void> triggerUpdates( Reference<MasterData> self, Reference<ILogSystem> oldLogSystem ) {
loop {
Void _ = wait( oldLogSystem->onLogSystemConfigChange() || self->fullyRecovered.getFuture() );
if(self->fullyRecovered.isSet())
return Void();
self->registrationTrigger.trigger();
}
}
ACTOR Future<Void> discardCommit(IKeyValueStore* store, LogSystemDiskQueueAdapter* adapter) {
state Future<LogSystemDiskQueueAdapter::CommitMessage> fcm = adapter->getCommitMessage();
state Future<Void> committed = store->commit();
LogSystemDiskQueueAdapter::CommitMessage cm = wait(fcm);
ASSERT(!committed.isReady());
cm.acknowledge.send(Void());
ASSERT(committed.isReady());
return Void();
}
ACTOR Future<Void> recoverFrom( Reference<MasterData> self, Reference<ILogSystem> oldLogSystem, vector<StorageServerInterface>* seedServers, vector<Standalone<CommitTransactionRef>>* initialConfChanges ) {
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::reading_transaction_system_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::reading_transaction_system_state])
.trackLatest(format("%s/MasterRecoveryState", printable(self->dbName).c_str() ).c_str());
if(BUGGIFY)
Void _ = wait( delay(10.0) );
Void _ = wait( readTransactionSystemState( self, oldLogSystem ) );
for (auto& itr : *initialConfChanges) {
for(auto& m : itr.mutations) {
self->configuration.applyMutation( m );
}
}
debug_checkMaxRestoredVersion( UID(), self->lastEpochEnd, "DBRecovery" );
// Ordinarily we pass through this loop once and recover. We go around the loop if recovery stalls for more than a second,
// a provisional master is initialized, and an "emergency transaction" is submitted that might change the configuration so that we can
// finish recovery.
state Future<Void> recruitments = recruitEverything( self, seedServers, oldLogSystem );
loop {
state Future<Standalone<CommitTransactionRef>> provisional = provisionalMaster(self, delay(1.0));
choose {
when (Void _ = wait( recruitments )) {
provisional.cancel();
break;
}
when (Standalone<CommitTransactionRef> _req = wait( provisional )) {
state Standalone<CommitTransactionRef> req = _req; // mutable
TEST(true); // Emergency transaction processing during recovery
TraceEvent("EmergencyTransaction", self->dbgid);
for (auto m = req.mutations.begin(); m != req.mutations.end(); ++m)
TraceEvent("EmergencyTransactionMutation", self->dbgid).detail("MType", m->type).detail("P1", printable(m->param1)).detail("P2", printable(m->param2));
DatabaseConfiguration oldConf = self->configuration;
self->configuration = self->originalConfiguration;
for(auto& m : req.mutations)
self->configuration.applyMutation( m );
initialConfChanges->clear();
initialConfChanges->push_back(req);
if(self->configuration != oldConf) { //confChange does not trigger when including servers
recruitments = recruitEverything( self, seedServers, oldLogSystem );
}
}
}
provisional.cancel();
}
return Void();
}
ACTOR Future<Void> getVersion(Reference<MasterData> self, GetCommitVersionRequest req) {
state std::map<UID, ProxyVersionReplies>::iterator proxyItr = self->lastProxyVersionReplies.find(req.requestingProxy); // lastProxyVersionReplies never changes
if (proxyItr == self->lastProxyVersionReplies.end()) {
// Request from invalid proxy (e.g. from duplicate recruitment request)
req.reply.send(Never());
return Void();
}
TEST(proxyItr->second.latestRequestNum.get() < req.requestNum - 1); // Commit version request queued up
Void _ = wait(proxyItr->second.latestRequestNum.whenAtLeast(req.requestNum-1));
auto itr = proxyItr->second.replies.find(req.requestNum);
if (itr != proxyItr->second.replies.end()) {
TEST(true); // Duplicate request for sequence
req.reply.send(itr->second);
}
else if(req.requestNum <= proxyItr->second.latestRequestNum.get()) {
TEST(true); // Old request for previously acknowledged sequence - may be impossible with current FlowTransport implementation
ASSERT( req.requestNum < proxyItr->second.latestRequestNum.get() ); // The latest request can never be acknowledged
req.reply.send(Never());
}
else {
GetCommitVersionReply rep;
if(self->version == invalidVersion) {
self->lastVersionTime = now();
self->version = self->recoveryTransactionVersion;
rep.prevVersion = self->lastEpochEnd;
}
else {
double t1 = now();
if(BUGGIFY) {
t1 = self->lastVersionTime;
}
rep.prevVersion = self->version;
self->version += std::max(1, std::min(SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS, int(SERVER_KNOBS->VERSIONS_PER_SECOND*(t1-self->lastVersionTime))));
TEST( self->version - rep.prevVersion == 1 ); // Minimum possible version gap
TEST( self->version - rep.prevVersion == SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS ); // Maximum possible version gap
self->lastVersionTime = t1;
if(self->resolverNeedingChanges.count(req.requestingProxy)) {
rep.resolverChanges = self->resolverChanges.get();
rep.resolverChangesVersion = self->resolverChangesVersion;
self->resolverNeedingChanges.erase(req.requestingProxy);
if(self->resolverNeedingChanges.empty())
self->resolverChanges.set(Standalone<VectorRef<ResolverMoveRef>>());
}
}
rep.version = self->version;
rep.requestNum = req.requestNum;
proxyItr->second.replies.erase(proxyItr->second.replies.begin(), proxyItr->second.replies.upper_bound(req.mostRecentProcessedRequestNum));
proxyItr->second.replies[req.requestNum] = rep;
ASSERT(rep.prevVersion >= 0);
req.reply.send(rep);
ASSERT(proxyItr->second.latestRequestNum.get() == req.requestNum - 1);
proxyItr->second.latestRequestNum.set(req.requestNum);
}
return Void();
}
ACTOR Future<Void> provideVersions(Reference<MasterData> self) {
state ActorCollection versionActors(false);
for (auto& p : self->proxies)
self->lastProxyVersionReplies[p.id()] = ProxyVersionReplies();
loop {
choose {
when(GetCommitVersionRequest req = waitNext(self->myInterface.getCommitVersion.getFuture())) {
versionActors.add(getVersion(self, req));
}
when(Void _ = wait(versionActors.getResult())) { }
}
}
}
std::pair<KeyRangeRef, bool> findRange( CoalescedKeyRangeMap<int>& key_resolver, Standalone<VectorRef<ResolverMoveRef>>& movedRanges, int src, int dest ) {
auto ranges = key_resolver.ranges();
auto prev = ranges.begin();
auto it = ranges.begin();
++it;
if(it==ranges.end()) {
if(ranges.begin().value() != src || std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(ranges.begin()->range(), dest)) != movedRanges.end())
throw operation_failed();
return std::make_pair(ranges.begin().range(), true);
}
std::set<int> borders;
//If possible expand an existing boundary between the two resolvers
for(; it != ranges.end(); ++it) {
if(it->value() == src && prev->value() == dest && std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(it->range(), dest)) == movedRanges.end()) {
return std::make_pair(it->range(), true);
}
if(it->value() == dest && prev->value() == src && std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(prev->range(), dest)) == movedRanges.end()) {
return std::make_pair(prev->range(), false);
}
if(it->value() == dest)
borders.insert(prev->value());
if(prev->value() == dest)
borders.insert(it->value());
++prev;
}
prev = ranges.begin();
it = ranges.begin();
++it;
//If possible create a new boundry which doesn't exist yet
for(; it != ranges.end(); ++it) {
if(it->value() == src && !borders.count(prev->value()) && std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(it->range(), dest)) == movedRanges.end()) {
return std::make_pair(it->range(), true);
}
if(prev->value() == src && !borders.count(it->value()) && std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(prev->range(), dest)) == movedRanges.end()) {
return std::make_pair(prev->range(), false);
}
++prev;
}
it = ranges.begin();
for(; it != ranges.end(); ++it) {
if(it->value() == src && std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(it->range(), dest)) == movedRanges.end()) {
return std::make_pair(it->range(), true);
}
}
throw operation_failed(); //we are already attempting to move all of the data one resolver is assigned, so do not move anything
}
ACTOR Future<Void> resolutionBalancing(Reference<MasterData> self) {
state CoalescedKeyRangeMap<int> key_resolver;
key_resolver.insert(allKeys, 0);
loop {
Void _ = wait(delay(SERVER_KNOBS->MIN_BALANCE_TIME, TaskResolutionMetrics));
while(self->resolverChanges.get().size())
Void _ = wait(self->resolverChanges.onChange());
state std::vector<Future<int64_t>> futures;
for (auto& p : self->resolvers)
futures.push_back(brokenPromiseToNever(p.metrics.getReply(ResolutionMetricsRequest(), TaskResolutionMetrics)));
Void _ = wait( waitForAll(futures) );
state IndexedSet<std::pair<int64_t, int>, NoMetric> metrics;
int64_t total = 0;
for (int i = 0; i < futures.size(); i++) {
total += futures[i].get();
metrics.insert(std::make_pair(futures[i].get(), i), NoMetric());
//TraceEvent("ResolverMetric").detail("i", i).detail("metric", futures[i].get());
}
if( metrics.lastItem()->first - metrics.begin()->first > SERVER_KNOBS->MIN_BALANCE_DIFFERENCE ) {
try {
state int src = metrics.lastItem()->second;
state int dest = metrics.begin()->second;
state int64_t amount = std::min( metrics.lastItem()->first - total/self->resolvers.size(), total/self->resolvers.size() - metrics.begin()->first ) / 2;
state Standalone<VectorRef<ResolverMoveRef>> movedRanges;
loop {
state std::pair<KeyRangeRef, bool> range = findRange( key_resolver, movedRanges, src, dest );
ResolutionSplitRequest req;
req.front = range.second;
req.offset = amount;
req.range = range.first;
ResolutionSplitReply split = wait( brokenPromiseToNever(self->resolvers[metrics.lastItem()->second].split.getReply(req, TaskResolutionMetrics)) );
KeyRangeRef moveRange = range.second ? KeyRangeRef( range.first.begin, split.key ) : KeyRangeRef( split.key, range.first.end );
movedRanges.push_back_deep(movedRanges.arena(), ResolverMoveRef(moveRange, dest));
TraceEvent("MovingResolutionRange").detail("src", src).detail("dest", dest).detail("amount", amount).detail("startRange", printable(range.first)).detail("moveRange", printable(moveRange)).detail("used", split.used).detail("KeyResolverRanges", key_resolver.size());
amount -= split.used;
if(moveRange != range.first || amount <= 0 )
break;
}
for(auto& it : movedRanges)
key_resolver.insert(it.range, it.dest);
//for(auto& it : key_resolver.ranges())
// TraceEvent("KeyResolver").detail("range", printable(it.range())).detail("value", it.value());
self->resolverChangesVersion = self->version + 1;
for (auto& p : self->proxies)
self->resolverNeedingChanges.insert(p.id());
self->resolverChanges.set(movedRanges);
} catch( Error&e ) {
if(e.code() != error_code_operation_failed)
throw;
}
}
}
}
static std::set<int> const& normalMasterErrors() {
static std::set<int> s;
if (s.empty()) {
s.insert( error_code_tlog_stopped );
s.insert( error_code_master_tlog_failed );
s.insert( error_code_master_proxy_failed );
s.insert( error_code_master_resolver_failed );
s.insert( error_code_recruitment_failed );
s.insert( error_code_no_more_servers );
s.insert( error_code_master_recovery_failed );
s.insert( error_code_coordinated_state_conflict );
s.insert( error_code_movekeys_conflict );
s.insert( error_code_master_max_versions_in_flight );
s.insert( error_code_worker_removed );
s.insert( error_code_new_coordinators_timed_out );
}
return s;
}
ACTOR Future<Void> changeCoordinators( Reference<MasterData> self, bool skippedTransition ) {
Void _ = wait( self->fullyRecovered.getFuture() );
loop {
ChangeCoordinatorsRequest req = waitNext( self->myInterface.changeCoordinators.getFuture() );
state ChangeCoordinatorsRequest changeCoordinatorsRequest = req;
try {
if( skippedTransition ) {
Void _ = wait( self->cstate2.move( ClusterConnectionString( changeCoordinatorsRequest.newConnectionString.toString() ) ) );
} else {
Void _ = wait( self->cstate3.move( ClusterConnectionString( changeCoordinatorsRequest.newConnectionString.toString() ) ) );
}
}
catch(Error &e) {
if(e.code() != error_code_actor_cancelled)
changeCoordinatorsRequest.reply.sendError(e);
throw;
}
throw internal_error();
}
}
ACTOR Future<Void> rejoinRequestHandler( Reference<MasterData> self ) {
loop {
TLogRejoinRequest req = waitNext( self->myInterface.tlogRejoin.getFuture() );
req.reply.send(true);
}
}
ACTOR Future<Void> trackTlogRecovery( Reference<MasterData> self, Reference<AsyncVar<Reference<ILogSystem>>> oldLogSystems, bool skipTransition ) {
state Future<Void> rejoinRequests = Never();
loop {
DBCoreState coreState;
self->logSystem->toCoreState( coreState );
if( !self->fullyRecovered.isSet() && !coreState.oldTLogData.size() ) {
2017-05-26 04:48:44 +08:00
if( !skipTransition ) {
Void _ = wait( writeRecoveredMasterState(self) );
self->registrationTrigger.trigger();
}
TraceEvent("MasterFullyRecovered", self->dbgid);
oldLogSystems->get()->stopRejoins();
rejoinRequests = rejoinRequestHandler(self);
self->fullyRecovered.send(Void());
}
Void _ = wait( self->logSystem->onCoreStateChanged() );
}
}
ACTOR Future<Void> masterCore( Reference<MasterData> self, PromiseStream<Future<Void>> addActor )
{
state TraceInterval recoveryInterval("MasterRecovery");
addActor.send( waitFailureServer(self->myInterface.waitFailure.getFuture()) );
TraceEvent( recoveryInterval.begin(), self->dbgid );
self->recoveryState = RecoveryState::READING_CSTATE;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::reading_coordinated_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::reading_coordinated_state])
.trackLatest(format("%s/MasterRecoveryState", printable(self->dbName).c_str() ).c_str());
Value prevDBStateRaw = wait( self->cstate1.read() );
addActor.send( masterTerminateOnConflict( self, self->cstate1.onConflict() ) );
if( prevDBStateRaw.size() )
self->prevDBState = BinaryReader::fromStringRef<DBCoreState>(prevDBStateRaw, IncludeVersion());
self->recoveryState = RecoveryState::LOCKING_CSTATE;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::locking_coordinated_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::locking_coordinated_state])
.detail("TLogs", self->prevDBState.tLogs.size())
.detail("MyRecoveryCount", self->prevDBState.recoveryCount+2)
.detail("StateSize", prevDBStateRaw.size())
.trackLatest(format("%s/MasterRecoveryState", printable(self->dbName).c_str() ).c_str());
state Reference<AsyncVar<Reference<ILogSystem>>> oldLogSystems( new AsyncVar<Reference<ILogSystem>> );
state Future<Void> recoverAndEndEpoch = ILogSystem::recoverAndEndEpoch(oldLogSystems, self->dbgid, self->prevDBState, self->myInterface.tlogRejoin.getFuture(), self->myInterface.locality);
Void _ = wait( rewriteMasterState( self ) || recoverAndEndEpoch );
self->recoveryState = RecoveryState::RECRUITING;
addActor.send( masterTerminateOnConflict( self, self->cstate2.onConflict() ) );
state vector<StorageServerInterface> seedServers;
state vector<Standalone<CommitTransactionRef>> initialConfChanges;
state Future<Void> logChanges;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::locking_old_transaction_servers)
.detail("Status", RecoveryStatus::names[RecoveryStatus::locking_old_transaction_servers])
.trackLatest(format("%s/MasterRecoveryState", printable(self->dbName).c_str() ).c_str());
loop {
Reference<ILogSystem> oldLogSystem = oldLogSystems->get();
if(oldLogSystem) logChanges = triggerUpdates(self, oldLogSystem);
state Future<Void> reg = oldLogSystem ? updateRegistration(self, oldLogSystem) : Never();
self->registrationTrigger.trigger();
choose {
when (Void _ = wait( oldLogSystem ? recoverFrom(self, oldLogSystem, &seedServers, &initialConfChanges) : Never() )) { reg.cancel(); break; }
when (Void _ = wait( oldLogSystems->onChange() )) {}
when (Void _ = wait( reg )) { throw internal_error(); }
when (Void _ = wait( recoverAndEndEpoch )) {}
}
}
recoverAndEndEpoch.cancel();
ASSERT( self->proxies.size() <= self->configuration.getDesiredProxies() );
ASSERT( self->resolvers.size() <= self->configuration.getDesiredResolvers() );
self->recoveryState = RecoveryState::RECOVERY_TRANSACTION;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::recovery_transaction)
.detail("Status", RecoveryStatus::names[RecoveryStatus::recovery_transaction])
.trackLatest(format("%s/MasterRecoveryState", printable(self->dbName).c_str() ).c_str());
// Recovery transaction
state bool debugResult = debug_checkMinRestoredVersion( UID(), self->lastEpochEnd, "DBRecovery", SevWarn );
CommitTransactionRequest recoveryCommitRequest;
recoveryCommitRequest.isLockAware = true;
CommitTransactionRef &tr = recoveryCommitRequest.transaction;
int mmApplied = 0; // The number of mutations in tr.mutations that have been applied to the txnStateStore so far
if (self->lastEpochEnd != 0) {
// This transaction sets \xff/lastEpochEnd, which the shard servers can use to roll back speculatively
// processed semi-committed transactions from the previous epoch.
// It also guarantees the shard servers and tlog servers eventually get versions in the new epoch, which
// clients might rely on.
// This transaction is by itself in a batch (has its own version number), which simplifies storage servers slightly (they assume there are no modifications to serverKeys in the same batch)
// The proxy also expects the lastEpochEndKey mutation to be first in the transaction
BinaryWriter bw(Unversioned());
tr.set(recoveryCommitRequest.arena, lastEpochEndKey, (bw << self->lastEpochEnd).toStringRef());
} else {
// Recruit and seed initial shard servers
// This transaction must be the very first one in the database (version 1)
seedShardServers(recoveryCommitRequest.arena, tr, seedServers);
}
// initialConfChanges have not been conflict checked against any earlier writes in the recovery transaction, so do this as early as possible in the recovery transaction
// but see above comments as to why it can't be absolutely first. Theoretically emergency transactions should conflict check against the lastEpochEndKey.
for (auto& itr : initialConfChanges) {
tr.mutations.append_deep(recoveryCommitRequest.arena, itr.mutations.begin(), itr.mutations.size());
tr.write_conflict_ranges.append_deep(recoveryCommitRequest.arena, itr.write_conflict_ranges.begin(), itr.write_conflict_ranges.size());
}
tr.set(recoveryCommitRequest.arena, backupVersionKey, backupVersionValue);
tr.set(recoveryCommitRequest.arena, coordinatorsKey, self->coordinators.ccf->getConnectionString().toString());
tr.set(recoveryCommitRequest.arena, logsKey, self->logSystem->getLogsValue());
//FIXME: upgrade code for 4.4, remove for 4.5
tr.clear(recoveryCommitRequest.arena, KeyRangeRef(LiteralStringRef("\xff/status/"), LiteralStringRef("\xff/status0")));
tr.clear(recoveryCommitRequest.arena, KeyRangeRef(LiteralStringRef("\xff/backupstatus/"), LiteralStringRef("\xff/backupstatus0")));
tr.clear(recoveryCommitRequest.arena, KeyRangeRef(LiteralStringRef("\xff/backup-agent/"), LiteralStringRef("\xff/backup-agent0")));
tr.clear(recoveryCommitRequest.arena, KeyRangeRef(LiteralStringRef("\xff/db-backup-agent/"), LiteralStringRef("\xff/db-backup-agent0")));
tr.clear(recoveryCommitRequest.arena, KeyRangeRef(LiteralStringRef("\xff/cplog/"), LiteralStringRef("\xff/cplog0")));
tr.clear(recoveryCommitRequest.arena, KeyRangeRef(LiteralStringRef("\xff/bklog/"), LiteralStringRef("\xff/bklog0")));
applyMetadataMutations(self->dbgid, recoveryCommitRequest.arena, tr.mutations.slice(mmApplied, tr.mutations.size()), self->txnStateStore, NULL, NULL);
mmApplied = tr.mutations.size();
tr.read_snapshot = self->recoveryTransactionVersion; // lastEpochEnd would make more sense, but isn't in the initial window of the resolver(s)
TraceEvent("MasterRecoveryCommit", self->dbgid);
state Future<ErrorOr<CommitID>> recoveryCommit = self->proxies[0].commit.tryGetReply(recoveryCommitRequest);
state Future<Void> tlogFailure = self->logSystem->onError();
state Future<Void> resolverFailure = waitResolverFailure( self->resolvers );
state Future<Void> proxyFailure = waitProxyFailure( self->proxies );
state Future<Void> providingVersions = provideVersions(self);
addActor.send( reportErrors(updateRegistration(self, self->logSystem), "updateRegistration", self->dbgid) );
self->registrationTrigger.trigger();
Void _ = wait(discardCommit(self->txnStateStore, self->txnStateLogAdapter));
// Wait for the recovery transaction to complete.
// SOMEDAY: For faster recovery, do this and setDBState asynchronously and don't wait for them
// unless we want to change TLogs
Void _ = wait((success(recoveryCommit) && sendInitialCommitToResolvers(self)) || tlogFailure || resolverFailure || proxyFailure );
if(recoveryCommit.isReady() && recoveryCommit.get().isError()) {
TEST(true); // Master recovery failed because of the initial commit failed
throw master_recovery_failed();
}
ASSERT( self->recoveryTransactionVersion != 0 );
self->recoveryState = RecoveryState::WRITING_CSTATE;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::writing_coordinated_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::writing_coordinated_state])
.detail("TLogList", self->logSystem->describe())
.trackLatest(format("%s/MasterRecoveryState", printable(self->dbName).c_str() ).c_str());
// Multiple masters prevent conflicts between themselves via CoordinatedState (self->cstate)
// 1. If SetMaster succeeds, then by CS's contract, these "new" Tlogs are the immediate
// successors of the "old" ones we are replacing
// 2. logSystem->recoverAndEndEpoch ensured that a co-quorum of the "old" tLogs were stopped at
// versions <= self->lastEpochEnd, so no versions > self->lastEpochEnd could be (fully) committed to them.
// 3. No other master will attempt to commit anything to our "new" Tlogs
// because it didn't recruit them
// 4. Therefore, no full commit can come between self->lastEpochEnd and the first commit
// we made to the new Tlogs (self->recoveryTransactionVersion), and only our own semi-commits can come between our
// first commit and the next new TLogs
DBCoreState coreState;
self->logSystem->toCoreState( coreState );
state bool skipTransition = !coreState.oldTLogData.size();
2017-05-26 04:48:44 +08:00
debug_advanceMaxCommittedVersion(UID(), self->recoveryTransactionVersion);
Void _ = wait( writeTransitionMasterState( self, skipTransition ) );
debug_advanceMinCommittedVersion(UID(), self->recoveryTransactionVersion);
if( !skipTransition )
addActor.send( masterTerminateOnConflict( self, self->cstate3.onConflict() ) );
if( debugResult )
TraceEvent(SevError, "DBRecoveryDurabilityError");
TraceEvent("MasterCommittedTLogs", self->dbgid).detail("TLogs", self->logSystem->describe()).detail("RecoveryCount", self->myDBState.get().recoveryCount).detail("RecoveryTransactionVersion", self->recoveryTransactionVersion);
TraceEvent(recoveryInterval.end(), self->dbgid).detail("RecoveryTransactionVersion", self->recoveryTransactionVersion);
self->recoveryState = RecoveryState::FULLY_RECOVERED;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::fully_recovered)
.detail("Status", RecoveryStatus::names[RecoveryStatus::fully_recovered])
.detail("storeType", self->configuration.storageServerStoreType)
.trackLatest(format("%s/MasterRecoveryState", printable(self->dbName).c_str() ).c_str());
// Now that recovery is complete, we register ourselves with the cluster controller, so that the client and server information
// it hands out can be updated
self->registrationTrigger.trigger();
// Now that the master is recovered we can start auxiliary services that happen to run here
{
PromiseStream< std::pair<UID, Optional<StorageServerInterface>> > ddStorageServerChanges;
state double lastLimited = 0;
addActor.send( reportErrorsExcept( dataDistribution( self->dbInfo, self->myInterface, self->configuration, ddStorageServerChanges, self->logSystem, self->recoveryTransactionVersion, &lastLimited ), "DataDistribution", self->dbgid, &normalMasterErrors() ) );
addActor.send( reportErrors( rateKeeper( self->dbInfo, ddStorageServerChanges, self->myInterface.getRateInfo.getFuture(), self->dbName, self->configuration, &lastLimited ), "Ratekeeper", self->dbgid) );
}
if( self->resolvers.size() > 1 )
addActor.send( resolutionBalancing(self) );
addActor.send( changeCoordinators(self, skipTransition) );
addActor.send( trackTlogRecovery(self, oldLogSystems, skipTransition) );
loop choose {
when( Void _ = wait( tlogFailure ) ) { throw internal_error(); }
when( Void _ = wait( proxyFailure ) ) { throw internal_error(); }
when( Void _ = wait( resolverFailure ) ) { throw internal_error(); }
when (Void _ = wait(providingVersions)) { throw internal_error(); }
}
}
ACTOR Future<Void> masterServer( MasterInterface mi, Reference<AsyncVar<ServerDBInfo>> db, ServerCoordinators coordinators, LifetimeToken lifetime )
{
state PromiseStream<Future<Void>> addActor;
state Future<Void> collection = actorCollection( addActor.getFuture() );
state Future<Void> onDBChange = Void();
state Reference<MasterData> self( new MasterData( db, mi, coordinators, db->get().clusterInterface, db->get().dbName, LiteralStringRef("") ) );
TEST( !lifetime.isStillValid( db->get().masterLifetime, mi.id()==db->get().master.id() ) ); // Master born doomed
TraceEvent("MasterLifetime", self->dbgid).detail("LifetimeToken", lifetime.toString());
try {
state Future<Void> core = masterCore( self, addActor );
loop choose {
when (Void _ = wait( core )) { break; }
when (Void _ = wait( onDBChange )) {
onDBChange = db->onChange();
if (!lifetime.isStillValid( db->get().masterLifetime, mi.id()==db->get().master.id() )) {
TraceEvent("MasterTerminated", mi.id()).detail("Reason", "LifetimeToken").detail("MyToken", lifetime.toString()).detail("CurrentToken", db->get().masterLifetime.toString());
TEST(true); // Master replaced, dying
if (BUGGIFY) Void _ = wait( delay(5) );
throw worker_removed();
}
}
when (Void _ = wait(collection) ) { ASSERT(false); throw internal_error(); }
}
} catch (Error& e) {
TEST(e.code() == error_code_master_tlog_failed); // Master: terminated because of a tLog failure
TEST(e.code() == error_code_master_proxy_failed); // Master: terminated because of a proxy failure
TEST(e.code() == error_code_master_resolver_failed); // Master: terminated because of a resolver failure
if (normalMasterErrors().count(e.code()))
{
TraceEvent("MasterTerminated", mi.id()).error(e);
return Void();
}
throw;
}
return Void();
}