2017-05-26 04:48:44 +08:00
/*
* IndexedSet . h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013 - 2018 Apple Inc . and the FoundationDB project authors
2018-02-22 02:25:11 +08:00
*
2017-05-26 04:48:44 +08:00
* Licensed under the Apache License , Version 2.0 ( the " License " ) ;
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
2018-02-22 02:25:11 +08:00
*
2017-05-26 04:48:44 +08:00
* http : //www.apache.org/licenses/LICENSE-2.0
2018-02-22 02:25:11 +08:00
*
2017-05-26 04:48:44 +08:00
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an " AS IS " BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
*/
# ifndef FLOW_INDEXEDSET_H
# define FLOW_INDEXEDSET_H
# pragma once
# include "Platform.h"
# include "FastAlloc.h"
# include "Trace.h"
# include "Error.h"
# include <deque>
# include <vector>
// IndexedSet<T, Metric> is similar to a std::set<T>, with the following additional features:
// - Each element in the set is associated with a value of type Metric
// - sumTo() and sumRange() can report the sum of the metric values associated with a
// contiguous range of elements in O(lg N) time
// - index() can be used to find an element having a given sumTo() in O(lg N) time
// - Search functions (find(), lower_bound(), etc) can accept a type comparable to T instead of T
// (e.g. StringRef when T is std::string or Standalone<StringRef>). This can save a lot of needless
// copying at query time for read-mostly sets with string keys.
// - iterators are not const; the responsibility of not changing the order lies with the caller
// - the size() function is missing; if the metric being used is a count sumTo(end()) will do instead
// A number of STL compatibility features are missing and should be added as needed.
// T must define operator <, which must define a total order. Unlike std::set,
// a user-defined predicate is not currently supported as a template parameter.
// Metric is required to have operators + and - and <, and behavior is undefined if
// the sum of metrics for all elements of a set overflows the Metric type.
// Map<Key,Value> is similar to a std::map<Key,Value>, except that it inherits the search key type
// flexibility of IndexedSet<>, uses MapPair<Key,Value> by default instead of pair<Key,Value>
// (use iterator->key instead of iterator->first), and uses FastAllocator for nodes.
template < class T >
class Future ;
class Void ;
template < class T , class Metric >
struct IndexedSet {
typedef T value_type ;
typedef T key_type ;
private : // Forward-declare IndexedSet::Node because Clang is much stricter about this ordering.
struct Node : FastAllocated < Node > {
2017-10-04 11:07:29 +08:00
// Here, and throughout all code that indirectly instantiates a Node, we rely on forwarding
// references so that we don't need to maintain the set of 2^arity lvalue and rvalue reference
// combinations, but still take advantage of move constructors when available (or required).
template < class T_ , class Metric_ >
Node ( T_ & & data , Metric_ & & m , Node * parent = 0 ) : data ( std : : forward < T_ > ( data ) ) , total ( std : : forward < Metric_ > ( m ) ) , parent ( parent ) , balance ( 0 ) {
2017-05-26 04:48:44 +08:00
child [ 0 ] = child [ 1 ] = NULL ;
}
~ Node ( ) {
delete child [ 0 ] ;
delete child [ 1 ] ;
}
T data ;
signed char balance ; // right height - left height
Metric total ; // this + child[0] + child[1]
Node * child [ 2 ] ; // left, right
Node * parent ;
} ;
public :
struct iterator {
typename IndexedSet : : Node * i ;
iterator ( ) : i ( 0 ) { } ;
iterator ( typename IndexedSet : : Node * n ) : i ( n ) { } ;
T & operator * ( ) { return i - > data ; } ;
T * operator - > ( ) { return & i - > data ; }
void operator + + ( ) ;
void decrementNonEnd ( ) ;
bool operator = = ( const iterator & r ) const { return i = = r . i ; }
bool operator ! = ( const iterator & r ) const { return i ! = r . i ; }
} ;
IndexedSet ( ) : root ( NULL ) { } ;
~ IndexedSet ( ) { delete root ; }
IndexedSet ( IndexedSet & & r ) noexcept ( true ) : root ( r . root ) { r . root = NULL ; }
IndexedSet & operator = ( IndexedSet & & r ) noexcept ( true ) { delete root ; root = r . root ; r . root = 0 ; return * this ; }
iterator begin ( ) const ;
iterator end ( ) const { return iterator ( ) ; }
iterator previous ( iterator i ) const ;
iterator lastItem ( ) const ;
bool empty ( ) const { return ! root ; }
void clear ( ) { delete root ; root = NULL ; }
void swap ( IndexedSet & r ) { std : : swap ( root , r . root ) ; }
// Place data in the set with the given metric. If an item equal to data is already in the set and,
// replaceExisting == true, it will be overwritten (and its metric will be replaced)
2017-10-04 11:07:29 +08:00
template < class T_ , class Metric_ >
iterator insert ( T_ & & data , Metric_ & & metric , bool replaceExisting = true ) ;
2017-05-26 04:48:44 +08:00
// Insert all items from data into set. All items will use metric. If an item equal to data is already in the set and,
// replaceExisting == true, it will be overwritten (and its metric will be replaced). returns the number of items inserted.
int insert ( const std : : vector < std : : pair < T , Metric > > & data , bool replaceExisting = true ) ;
// Increase the metric for the given item by the given amount. Inserts data into the set if it
// doesn't exist. Returns the new sum.
2017-10-04 11:07:29 +08:00
template < class T_ , class Metric_ >
Metric addMetric ( T_ & & data , Metric_ & & metric ) ;
2017-05-26 04:48:44 +08:00
// Remove the data item, if any, which is equal to key
template < class Key >
void erase ( const Key & key ) { erase ( find ( key ) ) ; }
// Erase the indicated item. No effect if item == end().
// SOMEDAY: Return ++item
void erase ( iterator item ) ;
// Erase all data items x for which begin<=x<end
template < class Key >
void erase ( const Key & begin , const Key & end ) { erase ( lower_bound ( begin ) , lower_bound ( end ) ) ; }
// Erase data items with a deferred (async) free process. The data structure has the items removed
// synchronously with the invocation of this method so any subsequent call will see this new state.
template < class Key >
Future < Void > eraseAsync ( const Key & begin , const Key & end ) ;
// Erase the items in the indicated range.
void erase ( iterator begin , iterator end ) ;
// Erase data items with a deferred (async) free process. The data structure has the items removed
// synchronously with the invocation of this method so any subsequent call will see this new state.
Future < Void > eraseAsync ( iterator begin , iterator end ) ;
// Returns the number of items equal to key (either 0 or 1)
template < class Key >
int count ( const Key & key ) const { return find ( key ) ! = end ( ) ; }
// Returns x such that key==*x, or end()
template < class Key >
iterator find ( const Key & key ) const ;
// Returns the smallest x such that *x>=key, or end()
template < class Key >
iterator lower_bound ( const Key & key ) const ;
// Returns the smallest x such that *x>key, or end()
template < class Key >
iterator upper_bound ( const Key & key ) const ;
// Returns the largest x such that *x<=key, or end()
template < class Key >
iterator lastLessOrEqual ( const Key & key ) const ;
// Returns smallest x such that sumTo(x+1) > metric, or end()
template < class M >
iterator index ( M const & metric ) const ;
// Return the metric inserted with item x
Metric getMetric ( iterator x ) const ;
// Return the sum of getMetric(x) for begin()<=x<to
Metric sumTo ( iterator to ) const ;
// Return the sum of getMetric(x) for begin<=x<end
Metric sumRange ( iterator begin , iterator end ) const { return sumTo ( end ) - sumTo ( begin ) ; }
// Return the sum of getMetric(x) for all x s.t. begin <= *x && *x < end
template < class Key >
Metric sumRange ( const Key & begin , const Key & end ) const { return sumRange ( lower_bound ( begin ) , lower_bound ( end ) ) ; }
// Return the amount of memory used by an entry in the IndexedSet
static int getElementBytes ( ) { return sizeof ( Node ) ; }
private :
// Copy operations unimplemented. SOMEDAY: Implement and make public.
IndexedSet ( const IndexedSet & ) ;
IndexedSet & operator = ( const IndexedSet & ) ;
Node * root ;
Metric eraseHalf ( Node * start , Node * end , int eraseDir , int & heightDelta , std : : vector < Node * > & toFree ) ;
void erase ( iterator begin , iterator end , std : : vector < Node * > & toFree ) ;
void replacePointer ( Node * oldNode , Node * newNode ) {
if ( oldNode - > parent )
oldNode - > parent - > child [ oldNode - > parent - > child [ 1 ] = = oldNode ] = newNode ;
else
root = newNode ;
if ( newNode )
newNode - > parent = oldNode - > parent ;
}
// direction 0 = left, 1 = right
template < int direction >
static void moveIterator ( Node * & i ) {
if ( i - > child [ 0 ^ direction ] ) {
i = i - > child [ 0 ^ direction ] ;
while ( i - > child [ 1 ^ direction ] )
i = i - > child [ 1 ^ direction ] ;
} else {
while ( i - > parent & & i - > parent - > child [ 0 ^ direction ] = = i )
i = i - > parent ;
i = i - > parent ;
}
}
public : // but testonly
std : : pair < int , int > testonly_assertBalanced ( Node * n = 0 , int d = 0 , bool a = true ) ;
} ;
class NoMetric {
public :
NoMetric ( ) { }
NoMetric ( int ) { } // NoMetric(1)
NoMetric operator + ( NoMetric const & ) const { return NoMetric ( ) ; }
NoMetric operator - ( NoMetric const & ) const { return NoMetric ( ) ; }
bool operator < ( NoMetric const & ) const { return false ; }
} ;
template < class Key , class Value >
class MapPair {
public :
Key key ;
Value value ;
2017-10-04 11:07:29 +08:00
template < class Key_ , class Value_ >
MapPair ( Key_ & & key , Value_ & & value ) : key ( std : : forward < Key_ > ( key ) ) , value ( std : : forward < Value_ > ( value ) ) { }
2017-05-26 04:48:44 +08:00
void operator = ( MapPair const & rhs ) { key = rhs . key ; value = rhs . value ; }
MapPair ( MapPair const & rhs ) : key ( rhs . key ) , value ( rhs . value ) { }
MapPair ( MapPair & & r ) noexcept ( true ) : key ( std : : move ( r . key ) ) , value ( std : : move ( r . value ) ) { }
void operator = ( MapPair & & r ) noexcept ( true ) { key = std : : move ( r . key ) ; value = std : : move ( r . value ) ; }
bool operator < ( MapPair < Key , Value > const & r ) const { return key < r . key ; }
bool operator = = ( MapPair < Key , Value > const & r ) const { return key = = r . key ; }
bool operator ! = ( MapPair < Key , Value > const & r ) const { return key ! = r . key ; }
//private: MapPair( const MapPair& );
} ;
template < class Key , class Value >
inline MapPair < typename std : : decay < Key > : : type , typename std : : decay < Value > : : type > mapPair ( Key & & key , Value & & value ) { return MapPair < typename std : : decay < Key > : : type , typename std : : decay < Value > : : type > ( std : : forward < Key > ( key ) , std : : forward < Value > ( value ) ) ; }
template < class Key , class Value , class CompatibleWithKey >
bool operator < ( MapPair < Key , Value > const & l , CompatibleWithKey const & r ) { return l . key < r ; }
template < class Key , class Value , class CompatibleWithKey >
bool operator < ( CompatibleWithKey const & l , MapPair < Key , Value > const & r ) { return l < r . key ; }
template < class Key , class Value , class Pair = MapPair < Key , Value > , class Metric = NoMetric >
class Map {
public :
typedef typename IndexedSet < Pair , Metric > : : iterator iterator ;
Map ( ) { }
iterator begin ( ) const { return set . begin ( ) ; }
iterator end ( ) const { return set . end ( ) ; }
iterator lastItem ( ) const { return set . lastItem ( ) ; }
iterator previous ( iterator i ) const { return set . previous ( i ) ; }
bool empty ( ) const { return set . empty ( ) ; }
Value & operator [ ] ( const Key & key ) {
iterator i = set . insert ( Pair ( key , Value ( ) ) , Metric ( 1 ) , false ) ;
return i - > value ;
}
Value & get ( const Key & key , Metric m = Metric ( 1 ) ) {
iterator i = set . insert ( Pair ( key , Value ( ) ) , m , false ) ;
return i - > value ;
}
iterator insert ( const Pair & p , bool replaceExisting = true , Metric m = Metric ( 1 ) ) { return set . insert ( p , m , replaceExisting ) ; }
iterator insert ( Pair & & p , bool replaceExisting = true , Metric m = Metric ( 1 ) ) { return set . insert ( std : : move ( p ) , m , replaceExisting ) ; }
int insert ( const std : : vector < std : : pair < MapPair < Key , Value > , Metric > > & pairs , bool replaceExisting = true ) { return set . insert ( pairs , replaceExisting ) ; }
template < class KeyCompatible >
void erase ( KeyCompatible const & k ) { set . erase ( k ) ; }
void erase ( iterator b , iterator e ) { set . erase ( b , e ) ; }
void erase ( iterator x ) { set . erase ( x ) ; }
void clear ( ) { set . clear ( ) ; }
Metric size ( ) const {
static_assert ( ! std : : is_same < Metric , NoMetric > : : value , " size() on Map with NoMetric is not valid! " ) ;
return sumTo ( end ( ) ) ;
}
template < class KeyCompatible >
iterator find ( KeyCompatible const & k ) const { return set . find ( k ) ; }
template < class KeyCompatible >
iterator lower_bound ( KeyCompatible const & k ) const { return set . lower_bound ( k ) ; }
template < class KeyCompatible >
iterator upper_bound ( KeyCompatible const & k ) const { return set . upper_bound ( k ) ; }
template < class KeyCompatible >
iterator lastLessOrEqual ( KeyCompatible const & k ) const { return set . lastLessOrEqual ( k ) ; }
template < class M >
iterator index ( M const & metric ) const { return set . index ( metric ) ; }
Metric getMetric ( iterator x ) const { return set . getMetric ( x ) ; }
Metric sumTo ( iterator to ) const { return set . sumTo ( to ) ; }
Metric sumRange ( iterator begin , iterator end ) const { return set . sumRange ( begin , end ) ; }
template < class KeyCompatible >
Metric sumRange ( const KeyCompatible & begin , const KeyCompatible & end ) const { return set . sumRange ( begin , end ) ; }
static int getElementBytes ( ) { return IndexedSet < Pair , Metric > : : getElementBytes ( ) ; }
Map ( Map & & r ) noexcept ( true ) : set ( std : : move ( r . set ) ) { }
void operator = ( Map & & r ) noexcept ( true ) { set = std : : move ( r . set ) ; }
private :
Map ( Map < Key , Value , Pair > const & ) ; // unimplemented
void operator = ( Map < Key , Value , Pair > const & ) ; // unimplemented
IndexedSet < Pair , Metric > set ;
} ;
/////////////////////// implementation //////////////////////////
template < class T , class Metric >
void IndexedSet < T , Metric > : : iterator : : operator + + ( ) {
moveIterator < 1 > ( i ) ;
}
template < class T , class Metric >
void IndexedSet < T , Metric > : : iterator : : decrementNonEnd ( ) {
moveIterator < 0 > ( i ) ;
}
template < class Node >
void ISRotate ( Node * & oldRootRef , int d ) {
Node * oldRoot = oldRootRef ;
Node * newRoot = oldRoot - > child [ 1 - d ] ;
// metrics
auto orTotal = oldRoot - > total - newRoot - > total ;
if ( newRoot - > child [ d ] )
orTotal = orTotal + newRoot - > child [ d ] - > total ;
newRoot - > total = oldRoot - > total ;
oldRoot - > total = orTotal ;
//pointers
oldRoot - > child [ 1 - d ] = newRoot - > child [ d ] ;
if ( oldRoot - > child [ 1 - d ] ) oldRoot - > child [ 1 - d ] - > parent = oldRoot ;
newRoot - > child [ d ] = oldRoot ;
newRoot - > parent = oldRoot - > parent ;
oldRoot - > parent = newRoot ;
oldRootRef = newRoot ;
}
template < class Node >
void ISAdjustBalance ( Node * root , int d , int bal ) {
Node * n = root - > child [ d ] ;
Node * nn = n - > child [ 1 - d ] ;
if ( ! nn - > balance )
root - > balance = n - > balance = 0 ;
else if ( nn - > balance = = bal ) {
root - > balance = - bal ;
n - > balance = 0 ;
} else {
root - > balance = 0 ;
n - > balance = bal ;
}
nn - > balance = 0 ;
}
template < class Node >
int ISRebalance ( Node * & root ) {
// Pre: root is a tree having the BST, metric, and balance invariants but not (necessarily) the AVL invariant. root->child[0] and root->child[1] are AVL.
// Post: root is an AVL tree with the same nodes
// Returns: the change in height of root
// rebalance is O(1) if abs(root->balance)<=2, and probably O(log N) otherwise. (The rare "still unbalanced" recursion is hard to analyze)
//
// The documentation of this function will be referencing the following tree (where
// nodes A, C, E, and G represent subtrees of unspecified height). Thus for each node X,
// we know the value of balance(X), but not height(X).
//
// We will assume that balance(F) < 0 (so we will be rotating right).
// Trees that rotate to the left will perform analagous operations.
//
// F
/ / / \
// B G
/ / / \
// A D
/ / / \
// C E
if ( ! root | | ( root - > balance > = - 1 & & root - > balance < = + 1 ) )
return 0 ;
int rebalanceDir = root - > balance < 0 ; // 1 if rotating right, 0 if rotating left
auto * n = root - > child [ 1 - rebalanceDir ] ; // Node B
int bal = rebalanceDir ? + 1 : - 1 ; // 1 if rotating right, -1 if rotating left
int rootBal = root - > balance ;
// Depending on the balance at B, we will be required to do one or two rotations.
// If balance(B) <= 0, then we do only one rotation (the second of the two).
//
// In a tree where balance(B) == +1, we are required to do both rotations.
// The result of the first rotation will be:
//
// F
/ / / \
// D G
/ / / \
// B E
/ / / \
// A C
//
bool doubleRotation = n - > balance = = bal ;
if ( doubleRotation ) {
int x = n - > child [ rebalanceDir ] - > balance ; // balance of Node D
ISRotate ( root - > child [ 1 - rebalanceDir ] , 1 - rebalanceDir ) ; // Rotate at Node B
// Change node pointed to by 'n' to prepare for the second rotation
// After this first rotation, Node D will be the left child of the root
n = root - > child [ 1 - rebalanceDir ] ;
// Compute the balance at the new root node D' of our rotation
// We know that height(A) == max(height(C), height(E)) because B had balance of +1
// If height(E) >= height(C), then height(E) == height(A) and balance(D') = -1
// Otherwise height(C) == height(E) + 1, and therefore balance(D') = -2
n - > balance = ( ( x = = - bal ) ? - 2 : - 1 ) * bal ;
// Compute the balance at the old root node B' of our rotation
// As stated above, height(A) == max(height(C), height(E))
// If height(C) >= height(E), then height(A) == height(C) and balance(B') = 0
// Otherwise height(A) == height(E) == height(C) + 1, and therefore balance(B') = -1
n - > child [ 1 - rebalanceDir ] - > balance = ( ( x = = bal ) ? - 1 : 0 ) * bal ;
}
// At this point, we perform the "second" rotation (which may actually be the first
// if the "first" rotation was not performed). The rotation that is performed is the
// same for both trees, but the result will be different depending on which tree we
// started with:
//
// If unrotated: If once rotated:
//
// B D
/ / / \ / \
// A F B F
/ / / \ / \ / \
// D G A C E G
/ / / \
// C E
//
// The documentation for this second rotation will be based on the unrotated original tree.
// Compute the balance at the new root node B'.
// balance(B') = 1 + max(height(D), height(G)) - height(A) = 1 + max(height(D) - height(A), height(G) - height(A))
// balance(B') = 1 + max(balance(B), height(G) - height(A))
//
// Now, we must find height(G) - height(A):
// If height(A) >= height(D) (i.e. balance(B) <= 0), then
// height(G) - height(A) = height(G) - height(B) + 1 = balance(F) + 1
//
// Otherwise, height(A) = height(D) - balance(B) = height(B) - 1 - balance(B), so
// height(G) - height(A) = height(G) - height(B) + 1 + balance(B) = balance(F) + 1 + balance(B)
//
// balance(B') = 1 + max(balance(B), balance(F) + 1 + max(balance(B), 0))
//
int nBal = n - > balance * bal ; // Direction corrected balance at Node B
int newRootBalance = bal * ( 1 + std : : max ( nBal , bal * root - > balance + 1 + std : : max ( nBal , 0 ) ) ) ;
// Compute the balance at the old root node F' (which becomes a child of the new root).
// balance(F') = height(G) - height(D)
//
// If height(D) >= height(A) (i.e. balance(B) >= 0), then height(D) = height(B) - 1, so
// balance(F') = height(G) - height(B) + 1 = balance(F) + 1
//
// Otherwise, height(D) = height(A) + balance(B) = height(B) - 1 + balance(B), so
// balance(F') = height(G) - height(B) + 1 - balance(B) = balance(F) + 1 - balance(B)
//
// balance(F') = balance(F) + 1 - min(balance(B), 0)
//
int newChildBalance = root - > balance + bal * ( 1 - std : : min ( nBal , 0 ) ) ;
ISRotate ( root , rebalanceDir ) ;
root - > balance = newRootBalance ;
root - > child [ rebalanceDir ] - > balance = newChildBalance ;
// If the original tree is very unbalanced, the unbalance may have been "pushed" down into this subtree, so recursively rebalance that if necessary.
int childHeightChange = ISRebalance ( root - > child [ rebalanceDir ] ) ;
root - > balance + = childHeightChange * bal ;
newRootBalance * = bal ;
// Compute the change in height at the root
// We will look at the single and double rotation cases separately
//
// If we did a single rotation, then height(A) >= height(D).
// As a result, height(A) >= height(G) + 1; otherwise the tree would be balanced and we wouldn't do any rotations.
//
// Then the original height of the tree is height(A) + 2,
// and the new height is max(height(D) + 2 + childHeightChange, height(A) + 1), so
//
// heightChange_single = max(height(D) + 2 + childHeightChange, height(A) + 1) - (height(A) + 2)
// heightChange_single = max(height(D) - height(A) + childHeightChange, -1)
// heightChange_single = max(balance(B) + childHeightChange, -1)
//
// If we did a double rotation, then height(D) = height(A) + 1 in the original tree.
// As a result, height(D) >= height(G) + 1; otherwise the tree would be balanced and we wouldn't do any rotations.
//
// Then the original height of the tree is height(D) + 2,
// and the new height is max(height(A), height(C), height(E), height(G)) + 2
//
// balance(B) == 1, so height(A) == max(height(C), height(E)).
// Also, height(A) = height(D) - 1 >= height(G)
// Therefore the new height is height(A) + 2
//
// heightChange_double = height(A) + 2 - (height(D) + 2)
// heightChange_double = height(A) - height(D)
// heightChange_double = -1
//
int heightChange = doubleRotation ? - 1 : std : : max ( nBal + childHeightChange , - 1 ) ;
// If the root is still unbalanced, then it should at least be more balanced than before. Recursively rebalance the root until we get a balanced tree.
if ( root - > balance < - 1 | | root - > balance > + 1 ) {
ASSERT ( abs ( root - > balance ) < abs ( rootBal ) ) ;
heightChange + = ISRebalance ( root ) ;
}
return heightChange ;
}
template < class Node >
Node * ISCommonSubtreeRoot ( Node * first , Node * last ) {
// Finds the smallest common subtree of first and last and returns its root node
//Find the depth of first and last
int firstDepth = 0 , lastDepth = 0 ;
for ( auto f = first ; f ; f = f - > parent ) firstDepth + + ;
for ( auto f = last ; f ; f = f - > parent ) lastDepth + + ;
//Traverse up the tree from the deeper of first and last until f and l are at the same depth
auto f = first , l = last ;
for ( int i = firstDepth ; i > lastDepth ; i - - ) f = f - > parent ;
for ( int i = lastDepth ; i > firstDepth ; i - - ) l = l - > parent ;
//Traverse up from f and l simultaneously until we reach a common node
while ( f ! = l ) {
f = f - > parent ;
l = l - > parent ;
}
return f ;
}
template < class T , class Metric >
typename IndexedSet < T , Metric > : : iterator IndexedSet < T , Metric > : : begin ( ) const {
Node * x = root ;
while ( x & & x - > child [ 0 ] )
x = x - > child [ 0 ] ;
return x ;
}
template < class T , class Metric >
typename IndexedSet < T , Metric > : : iterator IndexedSet < T , Metric > : : previous ( typename IndexedSet < T , Metric > : : iterator i ) const {
if ( i = = end ( ) )
return lastItem ( ) ;
moveIterator < 0 > ( i . i ) ;
return i ;
}
template < class T , class Metric >
typename IndexedSet < T , Metric > : : iterator IndexedSet < T , Metric > : : lastItem ( ) const {
Node * x = root ;
while ( x & & x - > child [ 1 ] )
x = x - > child [ 1 ] ;
return x ;
}
2017-10-04 11:07:29 +08:00
template < class T , class Metric > template < class T_ , class Metric_ >
Metric IndexedSet < T , Metric > : : addMetric ( T_ & & data , Metric_ & & metric ) {
2017-05-26 04:48:44 +08:00
auto i = find ( data ) ;
if ( i = = end ( ) ) {
2017-10-04 11:07:29 +08:00
insert ( std : : forward < T_ > ( data ) , std : : forward < Metric_ > ( metric ) ) ;
2017-05-26 04:48:44 +08:00
return metric ;
} else {
Metric m = metric + getMetric ( i ) ;
2017-10-04 11:07:29 +08:00
insert ( std : : forward < T_ > ( data ) , m ) ;
2017-05-26 04:48:44 +08:00
return m ;
}
}
2017-10-04 11:07:29 +08:00
template < class T , class Metric > template < class T_ , class Metric_ >
typename IndexedSet < T , Metric > : : iterator IndexedSet < T , Metric > : : insert ( T_ & & data , Metric_ & & metric , bool replaceExisting ) {
2017-05-26 04:48:44 +08:00
if ( root = = NULL ) {
2017-10-04 11:07:29 +08:00
root = new Node ( std : : forward < T_ > ( data ) , std : : forward < Metric_ > ( metric ) ) ;
2017-05-26 04:48:44 +08:00
return root ;
}
Node * t = root ;
int d ; // direction
// traverse to find insert point
while ( true ) {
d = t - > data < data ;
if ( ! d & & ! ( data < t - > data ) ) { // t->data == data
Node * returnNode = t ;
if ( replaceExisting ) {
2017-10-12 08:35:10 +08:00
t - > data = std : : forward < T_ > ( data ) ;
2017-05-26 04:48:44 +08:00
Metric delta = t - > total ;
2017-10-12 08:40:48 +08:00
t - > total = std : : forward < Metric_ > ( metric ) ;
2017-05-26 04:48:44 +08:00
if ( t - > child [ 0 ] ) t - > total = t - > total + t - > child [ 0 ] - > total ;
if ( t - > child [ 1 ] ) t - > total = t - > total + t - > child [ 1 ] - > total ;
delta = t - > total - delta ;
while ( true ) {
t = t - > parent ;
if ( ! t ) break ;
t - > total = t - > total + delta ;
}
}
return returnNode ;
}
Node * nextT = t - > child [ d ] ;
if ( ! nextT ) break ;
t = nextT ;
}
2017-10-04 11:07:29 +08:00
Node * newNode = new Node ( std : : forward < T_ > ( data ) , std : : forward < Metric_ > ( metric ) , t ) ;
2017-05-26 04:48:44 +08:00
t - > child [ d ] = newNode ;
while ( true ) {
t - > balance + = d ? 1 : - 1 ;
t - > total = t - > total + metric ;
if ( t - > balance = = 0 )
break ;
if ( t - > balance ! = 1 & & t - > balance ! = - 1 ) {
Node * * parent = t - > parent ? & t - > parent - > child [ t - > parent - > child [ 1 ] = = t ] : & root ;
//assert( *parent == t );
Node * n = t - > child [ d ] ;
int bal = d ? 1 : - 1 ;
if ( n - > balance = = bal ) {
t - > balance = n - > balance = 0 ;
} else {
ISAdjustBalance ( t , d , bal ) ;
ISRotate ( t - > child [ d ] , d ) ;
}
ISRotate ( * parent , 1 - d ) ;
t = * parent ;
break ;
}
if ( ! t - > parent ) break ;
d = t - > parent - > child [ 1 ] = = t ;
t = t - > parent ;
}
while ( true ) {
t = t - > parent ;
if ( ! t ) break ;
t - > total = t - > total + metric ;
}
return newNode ;
}
template < class T , class Metric >
int IndexedSet < T , Metric > : : insert ( const std : : vector < std : : pair < T , Metric > > & dataVector , bool replaceExisting ) {
int num_inserted = 0 ;
Node * blockStart = NULL ;
Node * blockEnd = NULL ;
for ( int i = 0 ; i < dataVector . size ( ) ; + + i ) {
Metric metric = dataVector [ i ] . second ;
T data = std : : move ( dataVector [ i ] . first ) ;
int d = 1 ; // direction
if ( blockStart = = NULL | | ( blockEnd ! = NULL & & data > = blockEnd - > data ) ) {
blockEnd = NULL ;
if ( root = = NULL ) {
root = new Node ( std : : move ( data ) , metric ) ;
num_inserted + + ;
blockStart = root ;
continue ;
}
Node * t = root ;
// traverse to find insert point
bool foundNode = false ;
while ( true ) {
d = t - > data < data ;
if ( ! d )
blockEnd = t ;
if ( ! d & & ! ( data < t - > data ) ) { // t->data == data
Node * returnNode = t ;
if ( replaceExisting ) {
num_inserted + + ;
t - > data = std : : move ( data ) ;
Metric delta = t - > total ;
t - > total = metric ;
if ( t - > child [ 0 ] ) t - > total = t - > total + t - > child [ 0 ] - > total ;
if ( t - > child [ 1 ] ) t - > total = t - > total + t - > child [ 1 ] - > total ;
delta = t - > total - delta ;
while ( true ) {
t = t - > parent ;
if ( ! t ) break ;
t - > total = t - > total + delta ;
}
}
blockStart = returnNode ;
foundNode = true ;
break ;
}
Node * nextT = t - > child [ d ] ;
if ( ! nextT ) {
blockStart = t ;
break ;
}
t = nextT ;
}
if ( foundNode )
continue ;
}
Node * t = blockStart ;
while ( t - > child [ d ] ) {
t = t - > child [ d ] ;
d = 0 ;
}
Node * newNode = new Node ( std : : move ( data ) , metric , t ) ;
num_inserted + + ;
t - > child [ d ] = newNode ;
blockStart = newNode ;
while ( true ) {
t - > balance + = d ? 1 : - 1 ;
t - > total = t - > total + metric ;
if ( t - > balance = = 0 )
break ;
if ( t - > balance ! = 1 & & t - > balance ! = - 1 ) {
Node * * parent = t - > parent ? & t - > parent - > child [ t - > parent - > child [ 1 ] = = t ] : & root ;
//assert( *parent == t );
Node * n = t - > child [ d ] ;
int bal = d ? 1 : - 1 ;
if ( n - > balance = = bal ) {
t - > balance = n - > balance = 0 ;
} else {
ISAdjustBalance ( t , d , bal ) ;
ISRotate ( t - > child [ d ] , d ) ;
}
ISRotate ( * parent , 1 - d ) ;
t = * parent ;
break ;
}
if ( ! t - > parent ) break ;
d = t - > parent - > child [ 1 ] = = t ;
t = t - > parent ;
}
while ( true ) {
t = t - > parent ;
if ( ! t ) break ;
t - > total = t - > total + metric ;
}
}
return num_inserted ;
}
template < class T , class Metric >
Metric IndexedSet < T , Metric > : : eraseHalf ( Node * start , Node * end , int eraseDir , int & heightDelta , std : : vector < Node * > & toFree ) {
// Removes all nodes between start (inclusive) and end (exclusive) from the set, where start is equal to end or one of its descendants
// eraseDir 1 means erase the right half (nodes > at) of the left subtree of end. eraseDir 0 means the left half of the right subtree
// toFree is extended with the roots of completely removed subtrees
// heightDelta will be set to the change in height of the end node
// Returns the amount that should be subtracted from end node's metric value (and, by extension, the metric values of all ancestors of the end node).
//
// The end node may be left unbalanced (AVL invariant broken)
// The end node may be left with the incorrect metric total (the correct value is end->total = end->total + metricDelta)
// scare quotes in comments mean the values when eraseDir==1 (when eraseDir==0, "left" means right etc)
// metricDelta measures how much should be subtracted from the current node's metrics
Metric metricDelta = 0 ;
heightDelta = 0 ;
int fromDir = 1 - eraseDir ;
// Begin removing nodes at start continuing up until we get to end
while ( start ! = end ) {
start - > total = start - > total - metricDelta ;
IndexedSet < T , Metric > : : Node * parent = start - > parent ;
// Obtain the child pointer to start, which rebalance will update with the new root of the subtree currently rooted at start
IndexedSet < T , Metric > : : Node * & node = parent - > child [ parent - > child [ 1 ] = = start ] ;
int nextDir = parent - > child [ 1 ] = = start ;
if ( fromDir = = eraseDir ) {
// The "right" subtree has been half-erased, and the "left" subtree doesn't need to be (nor does node).
// But this node might be unbalanced by the shrinking "right" subtree. Rebalance and continue up.
heightDelta + = ISRebalance ( node ) ;
} else {
// The "left" subtree has been half-erased. `start' and its "right" subtree will be completely erased,
// leaving only the "left" subtree in its place (which is already AVL balanced).
heightDelta + = - 1 - std : : max < int > ( 0 , node - > balance * ( eraseDir ? + 1 : - 1 ) ) ;
metricDelta = metricDelta + start - > total ;
// If there is a surviving subtree of start, then connect it to start->parent
IndexedSet < T , Metric > : : Node * n = node - > child [ fromDir ] ;
node = n ; // This updates the appropriate child pointer of start->parent
if ( n ) {
metricDelta = metricDelta - n - > total ;
n - > parent = start - > parent ;
}
start - > child [ fromDir ] = NULL ;
toFree . push_back ( start ) ;
}
int dir = ( nextDir ? + 1 : - 1 ) ;
int oldBalance = parent - > balance ;
// The change in height from removing nodes should never increase our height
ASSERT ( heightDelta < = 0 ) ;
parent - > balance + = heightDelta * dir ;
// Compute the change in height of start's parent based on its change in balance.
// Because we can only be (possibly) shrinking one subtree of parent:
// If we were originally heavier on the shrunken size (oldBalance * dir > 0), then the change in height is at most abs(oldBalance) == oldBalance * dir.
// If we were lighter on the shrunken side, then height cannot change.
int maxHeightChange = std : : max ( oldBalance * dir , 0 ) ;
int balanceChange = ( oldBalance - parent - > balance ) * dir ;
heightDelta = - std : : min ( maxHeightChange , balanceChange ) ;
start = parent ;
fromDir = nextDir ;
}
return metricDelta ;
}
template < class T , class Metric >
void IndexedSet < T , Metric > : : erase ( typename IndexedSet < T , Metric > : : iterator begin , typename IndexedSet < T , Metric > : : iterator end , std : : vector < Node * > & toFree ) {
// Removes all nodes in the set between first and last, inclusive.
// toFree is extended with the roots of completely removed subtrees.
ASSERT ( ! end . i | | ( begin . i & & * begin < = * end ) ) ;
if ( begin = = end )
return ;
IndexedSet < T , Metric > : : Node * first = begin . i ;
IndexedSet < T , Metric > : : Node * last = previous ( end ) . i ;
IndexedSet < T , Metric > : : Node * subRoot = ISCommonSubtreeRoot ( first , last ) ;
Metric metricDelta = 0 ;
int leftHeightDelta = 0 ;
int rightHeightDelta = 0 ;
// Erase all matching nodes that descend from subRoot, by first erasing descendants of subRoot->child[0] and then erasing the descendants of subRoot->child[1]
// subRoot is not removed from the tree at this time
metricDelta = metricDelta + eraseHalf ( first , subRoot , 1 , leftHeightDelta , toFree ) ;
metricDelta = metricDelta + eraseHalf ( last , subRoot , 0 , rightHeightDelta , toFree ) ;
// Change in the height of subRoot due to past activity, before subRoot is rebalanced. subRoot->balance already reflects changes in height to its children.
int heightDelta = leftHeightDelta + rightHeightDelta ;
// Rebalance and update metrics for all nodes from subRoot up to the root
for ( auto p = subRoot ; p ! = NULL ; p = p - > parent ) {
p - > total = p - > total - metricDelta ;
auto & pc = p - > parent ? p - > parent - > child [ p - > parent - > child [ 1 ] = = p ] : root ;
heightDelta + = ISRebalance ( pc ) ;
p = pc ;
// Update the balance and compute heightDelta for p->parent
if ( p - > parent ) {
int oldb = p - > parent - > balance ;
int dir = ( p - > parent - > child [ 1 ] = = p ? + 1 : - 1 ) ;
p - > parent - > balance + = heightDelta * dir ;
heightDelta = ( std : : max ( p - > parent - > balance * dir , 0 ) - std : : max ( oldb * dir , 0 ) ) ;
}
}
// Erase the subRoot using the single node erase implementation
erase ( IndexedSet < T , Metric > : : iterator ( subRoot ) ) ;
}
template < class T , class Metric >
void IndexedSet < T , Metric > : : erase ( iterator toErase ) {
Node * rebalanceNode ;
int rebalanceDir ;
{
// Find the node to erase
Node * t = toErase . i ;
if ( ! t ) return ;
if ( ! t - > child [ 0 ] | | ! t - > child [ 1 ] ) {
Metric tMetric = t - > total ;
if ( t - > child [ 0 ] ) tMetric = tMetric - t - > child [ 0 ] - > total ;
if ( t - > child [ 1 ] ) tMetric = tMetric - t - > child [ 1 ] - > total ;
for ( Node * p = t - > parent ; p ; p = p - > parent )
p - > total = p - > total - tMetric ;
rebalanceNode = t - > parent ;
if ( rebalanceNode ) rebalanceDir = rebalanceNode - > child [ 1 ] = = t ;
int d = ! t - > child [ 0 ] ; // Only one child, on this side (or no children!)
replacePointer ( t , t - > child [ d ] ) ;
t - > child [ d ] = 0 ;
delete t ;
} else { // Remove node with two children
Node * predecessor = t - > child [ 0 ] ;
while ( predecessor - > child [ 1 ] )
predecessor = predecessor - > child [ 1 ] ;
rebalanceNode = predecessor - > parent ;
if ( rebalanceNode = = t ) rebalanceNode = predecessor ;
if ( rebalanceNode ) rebalanceDir = rebalanceNode - > child [ 1 ] = = predecessor ;
Metric tMetric = t - > total - t - > child [ 0 ] - > total - t - > child [ 1 ] - > total ;
if ( predecessor - > child [ 0 ] ) predecessor - > total = predecessor - > total - predecessor - > child [ 0 ] - > total ;
for ( Node * p = predecessor - > parent ; p ! = t ; p = p - > parent )
p - > total = p - > total - predecessor - > total ;
for ( Node * p = t - > parent ; p ; p = p - > parent )
p - > total = p - > total - tMetric ;
// Replace t with predecessor
replacePointer ( predecessor , predecessor - > child [ 0 ] ) ;
replacePointer ( t , predecessor ) ;
predecessor - > balance = t - > balance ;
for ( int i = 0 ; i < 2 ; i + + ) {
Node * c = predecessor - > child [ i ] = t - > child [ i ] ;
if ( c ) {
c - > parent = predecessor ;
predecessor - > total = predecessor - > total + c - > total ;
t - > child [ i ] = 0 ;
}
}
delete t ;
}
}
if ( ! rebalanceNode ) return ;
while ( true ) {
rebalanceNode - > balance + = rebalanceDir ? - 1 : + 1 ;
if ( rebalanceNode - > balance < - 1 | | rebalanceNode - > balance > + 1 ) {
Node * * parent = rebalanceNode - > parent ? & rebalanceNode - > parent - > child [ rebalanceNode - > parent - > child [ 1 ] = = rebalanceNode ] : & root ;
Node * n = rebalanceNode - > child [ 1 - rebalanceDir ] ;
int bal = rebalanceDir ? + 1 : - 1 ;
if ( n - > balance = = - bal ) {
rebalanceNode - > balance = n - > balance = 0 ;
ISRotate ( * parent , rebalanceDir ) ;
} else if ( n - > balance = = bal ) {
ISAdjustBalance ( rebalanceNode , 1 - rebalanceDir , - bal ) ;
ISRotate ( rebalanceNode - > child [ 1 - rebalanceDir ] , 1 - rebalanceDir ) ;
ISRotate ( * parent , rebalanceDir ) ;
} else { // n->balance == 0
rebalanceNode - > balance = - bal ;
n - > balance = bal ;
ISRotate ( * parent , rebalanceDir ) ;
break ;
}
rebalanceNode = * parent ;
} else if ( rebalanceNode - > balance ) // +/- 1, we are done
break ;
if ( ! rebalanceNode - > parent ) break ;
rebalanceDir = rebalanceNode - > parent - > child [ 1 ] = = rebalanceNode ;
rebalanceNode = rebalanceNode - > parent ;
}
}
// Returns x such that key==*x, or end()
template < class T , class Metric >
template < class Key >
typename IndexedSet < T , Metric > : : iterator IndexedSet < T , Metric > : : find ( const Key & key ) const {
Node * t = root ;
while ( t ) {
int d = t - > data < key ;
if ( ! d & & ! ( key < t - > data ) ) // t->data == key
return iterator ( t ) ;
t = t - > child [ d ] ;
}
return end ( ) ;
}
// Returns the smallest x such that *x>=key, or end()
template < class T , class Metric >
template < class Key >
typename IndexedSet < T , Metric > : : iterator IndexedSet < T , Metric > : : lower_bound ( const Key & key ) const {
Node * t = root ;
if ( ! t ) return iterator ( ) ;
while ( true ) {
Node * n = t - > child [ t - > data < key ] ;
if ( ! n ) break ;
t = n ;
}
if ( t - > data < key )
moveIterator < 1 > ( t ) ;
return iterator ( t ) ;
}
// Returns the smallest x such that *x>key, or end()
template < class T , class Metric >
template < class Key >
typename IndexedSet < T , Metric > : : iterator IndexedSet < T , Metric > : : upper_bound ( const Key & key ) const {
Node * t = root ;
if ( ! t ) return iterator ( ) ;
while ( true ) {
Node * n = t - > child [ ! ( key < t - > data ) ] ;
if ( ! n ) break ;
t = n ;
}
if ( ! ( key < t - > data ) )
moveIterator < 1 > ( t ) ;
return iterator ( t ) ;
}
template < class T , class Metric >
template < class Key >
typename IndexedSet < T , Metric > : : iterator IndexedSet < T , Metric > : : lastLessOrEqual ( const Key & key ) const {
iterator i = upper_bound ( key ) ;
if ( i = = begin ( ) ) return end ( ) ;
return previous ( i ) ;
}
// Returns first x such that metric < sum(begin(), x+1), or end()
template < class T , class Metric >
template < class M >
typename IndexedSet < T , Metric > : : iterator IndexedSet < T , Metric > : : index ( M const & metric ) const
{
M m = metric ;
Node * t = root ;
while ( t ) {
if ( t - > child [ 0 ] & & m < t - > child [ 0 ] - > total )
t = t - > child [ 0 ] ;
else {
m = m - t - > total ;
if ( t - > child [ 1 ] )
m = m + t - > child [ 1 ] - > total ;
if ( m < M ( ) )
return iterator ( t ) ;
t = t - > child [ 1 ] ;
}
}
return end ( ) ;
}
template < class T , class Metric >
Metric IndexedSet < T , Metric > : : getMetric ( typename IndexedSet < T , Metric > : : iterator x ) const {
Metric m = x . i - > total ;
for ( int i = 0 ; i < 2 ; i + + )
if ( x . i - > child [ i ] )
m = m - x . i - > child [ i ] - > total ;
return m ;
}
template < class T , class Metric >
Metric IndexedSet < T , Metric > : : sumTo ( typename IndexedSet < T , Metric > : : iterator end ) const {
if ( ! end . i )
return root ? root - > total : Metric ( ) ;
Metric m = end . i - > child [ 0 ] ? end . i - > child [ 0 ] - > total : Metric ( ) ;
for ( Node * p = end . i ; p - > parent ; p = p - > parent ) {
if ( p - > parent - > child [ 1 ] = = p ) {
m = m - p - > total ;
m = m + p - > parent - > total ;
}
}
return m ;
}
# include "flow.h"
# include "IndexedSet.actor.h"
template < class T , class Metric >
void IndexedSet < T , Metric > : : erase ( typename IndexedSet < T , Metric > : : iterator begin , typename IndexedSet < T , Metric > : : iterator end ) {
std : : vector < IndexedSet < T , Metric > : : Node * > toFree ;
erase ( begin , end , toFree ) ;
ISFreeNodes ( toFree , true ) ;
}
template < class T , class Metric >
template < class Key >
Future < Void > IndexedSet < T , Metric > : : eraseAsync ( const Key & begin , const Key & end ) {
return eraseAsync ( lower_bound ( begin ) , lower_bound ( end ) ) ;
}
template < class T , class Metric >
Future < Void > IndexedSet < T , Metric > : : eraseAsync ( typename IndexedSet < T , Metric > : : iterator begin , typename IndexedSet < T , Metric > : : iterator end ) {
std : : vector < IndexedSet < T , Metric > : : Node * > toFree ;
erase ( begin , end , toFree ) ;
return uncancellable ( ISFreeNodes ( toFree , false ) ) ;
}
# endif