2021-01-26 05:44:55 +08:00
|
|
|
/*
|
|
|
|
* BenchEncrypt.cpp
|
|
|
|
*
|
|
|
|
* This source file is part of the FoundationDB open source project
|
|
|
|
*
|
2022-03-22 04:36:23 +08:00
|
|
|
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
|
2021-01-26 05:44:55 +08:00
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "benchmark/benchmark.h"
|
|
|
|
|
|
|
|
#include "flow/StreamCipher.h"
|
|
|
|
#include "flowbench/GlobalData.h"
|
|
|
|
|
|
|
|
static StreamCipher::IV getRandomIV() {
|
|
|
|
StreamCipher::IV iv;
|
2022-07-20 18:31:19 +08:00
|
|
|
deterministicRandom()->randomBytes(iv.data(), iv.size());
|
2021-01-26 05:44:55 +08:00
|
|
|
return iv;
|
|
|
|
}
|
|
|
|
|
Upgrade AES 128 GCM -> AES 256, StreamCipher code refactor (#6314)
* Upgrade AES 128 GCM -> AES 256, StreamCipher code refactor
Major changes proposed are:
1. Refactor StreamCipher code to enable instantiation of
multiple encryption keys. However, code still retains
a globalEncryption key semantics used in Backup file
encryption usecase.
2. Enhance StreamCipher to provide HMAC signature digest
generation. Further, the class implements HMAC encryption
key derivation function.
3. Upgrade StreamCipher to use AES 256 GCM mode from currently
supported AES 128 GCM mode.
Note: The code changes the encryption key size, however, the
feature is NOT currently in use, hence, should be OK.
3. Add EncryptionOps validation and benchmark toml supported
workload, it does the following:
a. Allow user to configure encrypt-decrypt of a fixed size
buffer or variable size buffer [100, 512K]
b. Allow user to configure number of interactions of the runs,
in each iteration: generate random data, derive an encryption
key using HMAC SHA256 method, encrypt data and
then decrypt data. It collects following metrics:
i) time taken to derive encryption key.
ii) time taken to encrypt the buffer.
iii) time taken to decrypt the buffer.
iv) total bytes encrypted and/or decrypted
c. Along with stats it basic basic validations on the encrypted
and decrypted buffer
d. On completion for test, records the above mentioned metrics
in trace files.
2022-02-01 09:52:44 +08:00
|
|
|
static inline Standalone<StringRef> encrypt(const StreamCipherKey* const key,
|
2021-01-26 05:44:55 +08:00
|
|
|
const StreamCipher::IV& iv,
|
|
|
|
unsigned char const* data,
|
|
|
|
size_t len) {
|
|
|
|
EncryptionStreamCipher encryptor(key, iv);
|
|
|
|
Arena arena;
|
|
|
|
auto encrypted = encryptor.encrypt(data, len, arena);
|
|
|
|
return Standalone<StringRef>(encrypted, arena);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bench_encrypt(benchmark::State& state) {
|
|
|
|
auto bytes = state.range(0);
|
|
|
|
auto chunks = state.range(1);
|
|
|
|
auto chunkSize = bytes / chunks;
|
Upgrade AES 128 GCM -> AES 256, StreamCipher code refactor (#6314)
* Upgrade AES 128 GCM -> AES 256, StreamCipher code refactor
Major changes proposed are:
1. Refactor StreamCipher code to enable instantiation of
multiple encryption keys. However, code still retains
a globalEncryption key semantics used in Backup file
encryption usecase.
2. Enhance StreamCipher to provide HMAC signature digest
generation. Further, the class implements HMAC encryption
key derivation function.
3. Upgrade StreamCipher to use AES 256 GCM mode from currently
supported AES 128 GCM mode.
Note: The code changes the encryption key size, however, the
feature is NOT currently in use, hence, should be OK.
3. Add EncryptionOps validation and benchmark toml supported
workload, it does the following:
a. Allow user to configure encrypt-decrypt of a fixed size
buffer or variable size buffer [100, 512K]
b. Allow user to configure number of interactions of the runs,
in each iteration: generate random data, derive an encryption
key using HMAC SHA256 method, encrypt data and
then decrypt data. It collects following metrics:
i) time taken to derive encryption key.
ii) time taken to encrypt the buffer.
iii) time taken to decrypt the buffer.
iv) total bytes encrypted and/or decrypted
c. Along with stats it basic basic validations on the encrypted
and decrypted buffer
d. On completion for test, records the above mentioned metrics
in trace files.
2022-02-01 09:52:44 +08:00
|
|
|
StreamCipherKey::initializeGlobalRandomTestKey();
|
|
|
|
auto key = StreamCipherKey::getGlobalCipherKey();
|
2021-01-26 05:44:55 +08:00
|
|
|
auto iv = getRandomIV();
|
|
|
|
auto data = getKey(bytes);
|
|
|
|
while (state.KeepRunning()) {
|
|
|
|
for (int chunk = 0; chunk < chunks; ++chunk) {
|
|
|
|
benchmark::DoNotOptimize(encrypt(key, iv, data.begin() + chunk * chunkSize, chunkSize));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
state.SetBytesProcessed(bytes * static_cast<long>(state.iterations()));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bench_decrypt(benchmark::State& state) {
|
|
|
|
auto bytes = state.range(0);
|
|
|
|
auto chunks = state.range(1);
|
|
|
|
auto chunkSize = bytes / chunks;
|
Upgrade AES 128 GCM -> AES 256, StreamCipher code refactor (#6314)
* Upgrade AES 128 GCM -> AES 256, StreamCipher code refactor
Major changes proposed are:
1. Refactor StreamCipher code to enable instantiation of
multiple encryption keys. However, code still retains
a globalEncryption key semantics used in Backup file
encryption usecase.
2. Enhance StreamCipher to provide HMAC signature digest
generation. Further, the class implements HMAC encryption
key derivation function.
3. Upgrade StreamCipher to use AES 256 GCM mode from currently
supported AES 128 GCM mode.
Note: The code changes the encryption key size, however, the
feature is NOT currently in use, hence, should be OK.
3. Add EncryptionOps validation and benchmark toml supported
workload, it does the following:
a. Allow user to configure encrypt-decrypt of a fixed size
buffer or variable size buffer [100, 512K]
b. Allow user to configure number of interactions of the runs,
in each iteration: generate random data, derive an encryption
key using HMAC SHA256 method, encrypt data and
then decrypt data. It collects following metrics:
i) time taken to derive encryption key.
ii) time taken to encrypt the buffer.
iii) time taken to decrypt the buffer.
iv) total bytes encrypted and/or decrypted
c. Along with stats it basic basic validations on the encrypted
and decrypted buffer
d. On completion for test, records the above mentioned metrics
in trace files.
2022-02-01 09:52:44 +08:00
|
|
|
StreamCipherKey::initializeGlobalRandomTestKey();
|
|
|
|
auto key = StreamCipherKey::getGlobalCipherKey();
|
2021-01-26 05:44:55 +08:00
|
|
|
auto iv = getRandomIV();
|
|
|
|
auto data = getKey(bytes);
|
|
|
|
auto encrypted = encrypt(key, iv, data.begin(), data.size());
|
|
|
|
while (state.KeepRunning()) {
|
|
|
|
Arena arena;
|
|
|
|
DecryptionStreamCipher decryptor(key, iv);
|
|
|
|
for (int chunk = 0; chunk < chunks; ++chunk) {
|
|
|
|
benchmark::DoNotOptimize(
|
|
|
|
Standalone<StringRef>(decryptor.decrypt(encrypted.begin() + chunk * chunkSize, chunkSize, arena)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
state.SetBytesProcessed(bytes * static_cast<long>(state.iterations()));
|
|
|
|
}
|
|
|
|
|
|
|
|
BENCHMARK(bench_encrypt)->Ranges({ { 1 << 12, 1 << 20 }, { 1, 1 << 12 } });
|
|
|
|
BENCHMARK(bench_decrypt)->Ranges({ { 1 << 12, 1 << 20 }, { 1, 1 << 12 } });
|