foundationdb/fdbserver/RestoreApplier.actor.cpp

817 lines
34 KiB
C++
Raw Normal View History

/*
* RestoreApplier.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This file defines the functions used by the RestoreApplier role.
// RestoreApplier role starts at restoreApplierCore actor
#include "fdbclient/NativeAPI.actor.h"
#include "fdbclient/SystemData.h"
#include "fdbclient/BackupAgent.actor.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbclient/MutationList.h"
#include "fdbclient/BackupContainer.h"
#include "fdbserver/RestoreCommon.actor.h"
#include "fdbserver/RestoreUtil.h"
#include "fdbserver/RestoreRoleCommon.actor.h"
#include "fdbserver/RestoreApplier.actor.h"
2019-08-02 08:00:13 +08:00
#include "flow/actorcompiler.h" // This must be the last #include.
ACTOR static Future<Void> handleSendMutationVectorRequest(RestoreSendVersionedMutationsRequest req,
2019-08-02 08:00:13 +08:00
Reference<RestoreApplierData> self);
ACTOR static Future<Void> handleSendMutationVectorRequestV2(RestoreSendVersionedMutationsRequest req,
Reference<RestoreApplierData> self);
2019-08-02 08:00:13 +08:00
ACTOR static Future<Void> handleApplyToDBRequest(RestoreVersionBatchRequest req, Reference<RestoreApplierData> self,
Database cx);
ACTOR Future<Void> restoreApplierCore(RestoreApplierInterface applierInterf, int nodeIndex, Database cx) {
2019-08-02 08:00:13 +08:00
state Reference<RestoreApplierData> self =
Reference<RestoreApplierData>(new RestoreApplierData(applierInterf.id(), nodeIndex));
state ActorCollection actors(false);
state Future<Void> exitRole = Never();
state double updateProcessStatsDelay = SERVER_KNOBS->FASTRESTORE_UPDATE_PROCESS_STATS_INTERVAL;
state Future<Void> updateProcessStatsTimer = delay(updateProcessStatsDelay);
actors.add(traceProcessMetrics(self, "Applier"));
loop {
state std::string requestTypeStr = "[Init]";
try {
choose {
2019-08-02 08:00:13 +08:00
when(RestoreSimpleRequest req = waitNext(applierInterf.heartbeat.getFuture())) {
requestTypeStr = "heartbeat";
actors.add(handleHeartbeat(req, applierInterf.id()));
}
when(RestoreSendVersionedMutationsRequest req =
2019-08-02 08:00:13 +08:00
waitNext(applierInterf.sendMutationVector.getFuture())) {
requestTypeStr = "sendMutationVector";
actors.add(handleSendMutationVectorRequestV2(req, self));
}
2019-08-02 08:00:13 +08:00
when(RestoreVersionBatchRequest req = waitNext(applierInterf.applyToDB.getFuture())) {
requestTypeStr = "applyToDB";
2019-08-02 08:00:13 +08:00
actors.add(handleApplyToDBRequest(req, self, cx));
}
2019-08-02 08:00:13 +08:00
when(RestoreVersionBatchRequest req = waitNext(applierInterf.initVersionBatch.getFuture())) {
requestTypeStr = "initVersionBatch";
actors.add(handleInitVersionBatchRequest(req, self));
}
when(RestoreFinishRequest req = waitNext(applierInterf.finishRestore.getFuture())) {
requestTypeStr = "finishRestore";
handleFinishRestoreRequest(req, self);
if (req.terminate) {
exitRole = Void();
}
}
when(wait(updateProcessStatsTimer)) {
updateProcessStats(self);
updateProcessStatsTimer = delay(updateProcessStatsDelay);
}
2019-08-02 08:00:13 +08:00
when(wait(exitRole)) {
TraceEvent("FastRestore").detail("RestoreApplierCore", "ExitRole").detail("NodeID", self->id());
break;
}
}
2019-08-02 08:00:13 +08:00
} catch (Error& e) {
TraceEvent(SevWarn, "FastRestore")
.detail("RestoreLoaderError", e.what())
.detail("RequestType", requestTypeStr);
break;
}
}
return Void();
}
// The actor may be invovked multiple times and executed async.
// No race condition as long as we do not wait or yield when operate the shared data.
// Multiple such actors can run on different fileIDs, because mutations in different files belong to different versions;
// Only one actor can process mutations from the same file
ACTOR static Future<Void> handleSendMutationVectorRequestV2(RestoreSendVersionedMutationsRequest req,
Reference<RestoreApplierData> self) {
state Reference<ApplierBatchData> batchData = self->batch[req.batchIndex];
// Assume: processedFileState[req.asset] will not be erased while the actor is active.
// Note: Insert new items into processedFileState will not invalidate the reference.
state NotifiedVersion& curFilePos = batchData->processedFileState[req.asset];
TraceEvent(SevDebug, "FastRestoreApplierPhaseReceiveMutations", self->id())
.detail("BatchIndex", req.batchIndex)
.detail("RestoreAsset", req.asset.toString())
.detail("ProcessedFileVersion", curFilePos.get())
.detail("Request", req.toString());
wait(curFilePos.whenAtLeast(req.prevVersion));
state bool isDuplicated = true;
if (curFilePos.get() == req.prevVersion) {
isDuplicated = false;
Version commitVersion = req.version;
uint16_t numVersionStampedKV = 0;
MutationsVec mutations(req.mutations);
// Sanity check: mutations in range file is in [beginVersion, endVersion);
// mutations in log file is in [beginVersion, endVersion], both inclusive.
ASSERT_WE_THINK(commitVersion >= req.asset.beginVersion);
// Loader sends the endVersion to ensure all useful versions are sent
ASSERT_WE_THINK((req.isRangeFile && commitVersion <= req.asset.endVersion) ||
(!req.isRangeFile && commitVersion <= req.asset.endVersion));
for (int mIndex = 0; mIndex < mutations.size(); mIndex++) {
MutationRef mutation = mutations[mIndex];
TraceEvent(SevFRMutationInfo, "FastRestoreApplierPhaseReceiveMutations")
.detail("ApplierNode", self->id())
.detail("RestoreAsset", req.asset.toString())
.detail("Version", commitVersion)
.detail("Index", mIndex)
.detail("MutationReceived", mutation.toString());
batchData->counters.receivedBytes += mutation.totalSize();
batchData->counters.receivedWeightedBytes += mutation.weightedTotalSize(); // atomicOp will be amplified
batchData->counters.receivedMutations += 1;
batchData->counters.receivedAtomicOps += isAtomicOp((MutationRef::Type) mutation.type) ? 1 : 0;
// Sanity check
if (g_network->isSimulated()) {
if (isRangeMutation(mutation)) {
ASSERT(mutation.param1 >= req.asset.range.begin &&
mutation.param2 <= req.asset.range.end); // Range mutation's right side is exclusive
} else {
ASSERT(mutation.param1 >= req.asset.range.begin && mutation.param1 < req.asset.range.end);
}
}
// Note: Log and range mutations may be delivered out of order. Can we handle it?
if (mutation.type == MutationRef::SetVersionstampedKey || mutation.type == MutationRef::SetVersionstampedValue) {
batchData->addVersionStampedKV(mutation, commitVersion, numVersionStampedKV);
numVersionStampedKV++;
} else {
batchData->addMutation(mutation, commitVersion);
}
}
curFilePos.set(req.version);
}
req.reply.send(RestoreCommonReply(self->id(), isDuplicated));
TraceEvent(SevDebug, "FastRestoreApplierPhaseReceiveMutationsDone", self->id())
.detail("BatchIndex", req.batchIndex)
.detail("RestoreAsset", req.asset.toString())
.detail("ProcessedFileVersion", curFilePos.get())
.detail("Request", req.toString());
return Void();
}
// Clear all ranges in input ranges
ACTOR static Future<Void> applyClearRangeMutations(Standalone<VectorRef<KeyRangeRef>> ranges, Database cx) {
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
loop {
try {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
for (auto& range : ranges) {
tr->clear(range);
}
wait(tr->commit());
break;
} catch (Error& e) {
wait(tr->onError(e));
}
}
return Void();
}
// Get keys in imcompleteStagingKeys and precompute the stagingKey which is stored in batchData->stagingKeys
ACTOR static Future<Void> getAndComputeStagingKeys(
std::map<Key, std::map<Key, StagingKey>::iterator> imcompleteStagingKeys, Database cx, UID applierID) {
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
state std::vector<std::pair<Key, Future<Optional<Value>>>> fKVs;
std::vector<Future<Optional<Value>>> fValues;
TraceEvent("FastRestoreApplierGetAndComputeStagingKeysStart", applierID)
.detail("GetKeys", imcompleteStagingKeys.size());
try {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
for (auto& key : imcompleteStagingKeys) {
fKVs.push_back(std::make_pair(key.first, tr->get(key.first)));
fValues.push_back(fKVs.back().second);
}
wait(waitForAll(fValues));
} catch (Error& e) {
TraceEvent(SevError, "FastRestoreApplierGetAndComputeStagingKeysUnhandledError")
.detail("GetKeys", imcompleteStagingKeys.size())
.detail("Error", e.what())
.detail("ErrorCode", e.code());
wait(tr->onError(e));
}
ASSERT(fKVs.size() == imcompleteStagingKeys.size());
// TODO: Optimize the performance by reducing map lookup: making getKey's future a field in the input map
for (auto& kv : fKVs) {
if (!kv.second.get().present()) {
TraceEvent(SevError, "FastRestoreApplierGetAndComputeStagingKeysUnhandledError")
.detail("ValueNotPresent", kv.first);
continue;
} else {
std::map<Key, StagingKey>::iterator iter = imcompleteStagingKeys[kv.first];
// The key's version ideally should be the most recently committed version.
// But as long as it is > 1 and less than the start version of the version batch, it is the same result.
MutationRef m(MutationRef::SetValue, kv.first, kv.second.get().get());
iter->second.add(m, (Version)1);
iter->second.precomputeResult();
}
}
TraceEvent("FastRestoreApplierGetAndComputeStagingKeysDone", applierID)
.detail("GetKeys", imcompleteStagingKeys.size());
return Void();
}
ACTOR static Future<Void> precomputeMutationsResult(Reference<ApplierBatchData> batchData, UID applierID,
int64_t batchIndex, Database cx) {
// Apply range mutations (i.e., clearRange) to database cx
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResult", applierID)
.detail("BatchIndex", batchIndex)
.detail("Step", "Applying clear range mutations to DB");
state std::vector<Future<Void>> fClearRanges;
std::vector<Standalone<VectorRef<KeyRangeRef>>> clearBuf;
clearBuf.push_back(Standalone<VectorRef<KeyRangeRef>>());
Standalone<VectorRef<KeyRangeRef>> clearRanges = clearBuf.back();
double curTxnSize = 0;
for (auto& rangeMutation : batchData->stagingKeyRanges) {
KeyRangeRef range(rangeMutation.mutation.param1, rangeMutation.mutation.param2);
clearRanges.push_back(clearRanges.arena(), range);
curTxnSize += range.expectedSize();
if (curTxnSize >= SERVER_KNOBS->FASTRESTORE_TXN_BATCH_MAX_BYTES) {
fClearRanges.push_back(applyClearRangeMutations(clearRanges, cx));
clearBuf.push_back(Standalone<VectorRef<KeyRangeRef>>());
clearRanges = clearBuf.back();
curTxnSize = 0;
}
}
if (curTxnSize > 0) {
fClearRanges.push_back(applyClearRangeMutations(clearRanges, cx));
}
// Apply range mutations (i.e., clearRange) to stagingKeyRanges
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResult", applierID)
.detail("BatchIndex", batchIndex)
.detail("Step", "Applying clear range mutations to staging keys");
for (auto& rangeMutation : batchData->stagingKeyRanges) {
std::map<Key, StagingKey>::iterator lb = batchData->stagingKeys.lower_bound(rangeMutation.mutation.param1);
std::map<Key, StagingKey>::iterator ub = batchData->stagingKeys.upper_bound(rangeMutation.mutation.param2);
while (lb != ub) {
lb->second.add(rangeMutation.mutation, rangeMutation.version);
lb++;
}
}
wait(waitForAll(fClearRanges));
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResult", applierID)
.detail("BatchIndex", batchIndex)
.detail("Step", "Getting and computing staging keys");
// Get keys in stagingKeys which does not have a baseline key by reading database cx, and precompute the key's value
std::map<Key, std::map<Key, StagingKey>::iterator> imcompleteStagingKeys;
std::map<Key, StagingKey>::iterator stagingKeyIter = batchData->stagingKeys.begin();
for (; stagingKeyIter != batchData->stagingKeys.end(); stagingKeyIter++) {
if (!stagingKeyIter->second.hasBaseValue()) {
imcompleteStagingKeys.emplace(stagingKeyIter->first, stagingKeyIter);
}
}
Future<Void> fGetAndComputeKeys = getAndComputeStagingKeys(imcompleteStagingKeys, cx, applierID);
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResult", applierID)
.detail("BatchIndex", batchIndex)
.detail("Step", "Compute the other staging keys");
// Pre-compute pendingMutations to other keys in stagingKeys that has base value
for (stagingKeyIter = batchData->stagingKeys.begin(); stagingKeyIter != batchData->stagingKeys.end();
stagingKeyIter++) {
if (stagingKeyIter->second.hasBaseValue()) {
stagingKeyIter->second.precomputeResult();
}
}
TraceEvent("FastRestoreApplierGetAndComputeStagingKeysWaitOn", applierID);
wait(fGetAndComputeKeys);
// Sanity check all stagingKeys have been precomputed
ASSERT_WE_THINK(batchData->allKeysPrecomputed());
TraceEvent("FastRestoreApplerPhasePrecomputeMutationsResultDone", applierID).detail("BatchIndex", batchIndex);
return Void();
}
// Apply mutations in batchData->stagingKeys [begin, end).
ACTOR static Future<Void> applyStagingKeysBatch(std::map<Key, StagingKey>::iterator begin,
std::map<Key, StagingKey>::iterator end, Database cx,
FlowLock* applyStagingKeysBatchLock) {
wait(applyStagingKeysBatchLock->take(TaskPriority::RestoreApplierWriteDB));
state FlowLock::Releaser releaser(*applyStagingKeysBatchLock);
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
loop {
try {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
std::map<Key, StagingKey>::iterator iter = begin;
while (iter != end) {
if (iter->second.type == MutationRef::SetValue) {
tr->set(iter->second.key, iter->second.val);
} else if (iter->second.type == MutationRef::ClearRange) {
tr->clear(KeyRangeRef(iter->second.key, iter->second.val));
} else {
ASSERT(false);
}
iter++;
}
wait(tr->commit());
break;
} catch (Error& e) {
wait(tr->onError(e));
}
}
return Void();
}
// Apply mutations in stagingKeys in batches in parallel
ACTOR static Future<Void> applyStagingKeys(Reference<ApplierBatchData> batchData, UID applierID, int64_t batchIndex,
Database cx) {
std::map<Key, StagingKey>::iterator begin = batchData->stagingKeys.begin();
std::map<Key, StagingKey>::iterator cur = begin;
double txnSize = 0;
std::vector<Future<Void>> fBatches;
TraceEvent("FastRestoreApplerPhaseApplyStagingKeys", applierID).detail("BatchIndex", batchIndex);
while (cur != batchData->stagingKeys.end()) {
txnSize += cur->second.expectedMutationSize();
if (txnSize > SERVER_KNOBS->FASTRESTORE_TXN_BATCH_MAX_BYTES) {
fBatches.push_back(applyStagingKeysBatch(begin, cur, cx, &batchData->applyStagingKeysBatchLock));
begin = cur;
}
cur++;
}
fBatches.push_back(applyStagingKeysBatch(begin, cur, cx, &batchData->applyStagingKeysBatchLock));
wait(waitForAll(fBatches));
TraceEvent("FastRestoreApplerPhaseApplyStagingKeysDone", applierID).detail("BatchIndex", batchIndex);
return Void();
}
ACTOR Future<Void> applyToDBV2(UID applierID, int64_t batchIndex, Reference<ApplierBatchData> batchData, Database cx) {
TraceEvent("FastRestoreApplerPhaseApplyTxn", applierID).detail("BatchIndex", batchIndex);
wait(precomputeMutationsResult(batchData, applierID, batchIndex, cx));
wait(applyStagingKeys(batchData, applierID, batchIndex, cx));
return Void();
}
// The actor may be invovked multiple times and executed async.
// No race condition as long as we do not wait or yield when operate the shared data.
// Multiple such actors can run on different fileIDs, because mutations in different files belong to different versions;
// Only one actor can process mutations from the same file
ACTOR static Future<Void> handleSendMutationVectorRequest(RestoreSendVersionedMutationsRequest req,
2019-08-02 08:00:13 +08:00
Reference<RestoreApplierData> self) {
state Reference<ApplierBatchData> batchData = self->batch[req.batchIndex];
// Assume: processedFileState[req.asset] will not be erased while the actor is active.
// Note: Insert new items into processedFileState will not invalidate the reference.
state NotifiedVersion& curFilePos = batchData->processedFileState[req.asset];
TraceEvent(SevFRMutationInfo, "FastRestoreApplierPhaseReceiveMutations", self->id())
.detail("BatchIndex", req.batchIndex)
2019-12-20 08:50:39 +08:00
.detail("RestoreAsset", req.asset.toString())
.detail("ProcessedFileVersion", curFilePos.get())
2019-08-02 08:00:13 +08:00
.detail("Request", req.toString());
wait(curFilePos.whenAtLeast(req.prevVersion));
state bool isDuplicated = true;
if (curFilePos.get() == req.prevVersion) {
isDuplicated = false;
Version commitVersion = req.version;
MutationsVec mutations(req.mutations);
2019-12-21 11:25:33 +08:00
// Sanity check: mutations in range file is in [beginVersion, endVersion);
// mutations in log file is in [beginVersion, endVersion], both inclusive.
ASSERT_WE_THINK(commitVersion >= req.asset.beginVersion);
// Loader sends the endVersion to ensure all useful versions are sent
ASSERT_WE_THINK((req.isRangeFile && commitVersion <= req.asset.endVersion) ||
2019-12-21 14:00:36 +08:00
(!req.isRangeFile && commitVersion <= req.asset.endVersion));
2019-12-20 08:50:39 +08:00
if (batchData->kvOps.find(commitVersion) == batchData->kvOps.end()) {
batchData->kvOps.insert(std::make_pair(commitVersion, MutationsVec()));
}
for (int mIndex = 0; mIndex < mutations.size(); mIndex++) {
MutationRef mutation = mutations[mIndex];
TraceEvent(SevFRMutationInfo, "FastRestoreApplierPhaseReceiveMutations")
.detail("ApplierNode", self->id())
2019-12-20 08:50:39 +08:00
.detail("RestoreAsset", req.asset.toString())
.detail("Version", commitVersion)
.detail("Index", mIndex)
.detail("MutationReceived", mutation.toString());
batchData->counters.receivedBytes += mutation.totalSize();
batchData->counters.receivedWeightedBytes += mutation.weightedTotalSize(); // atomicOp will be amplified
batchData->counters.receivedMutations += 1;
batchData->counters.receivedAtomicOps += isAtomicOp((MutationRef::Type) mutation.type) ? 1 : 0;
2019-12-20 08:50:39 +08:00
// Sanity check
if (g_network->isSimulated()) {
if (isRangeMutation(mutation)) {
ASSERT(mutation.param1 >= req.asset.range.begin &&
mutation.param2 <= req.asset.range.end); // Range mutation's right side is exclusive
} else {
ASSERT(mutation.param1 >= req.asset.range.begin && mutation.param1 < req.asset.range.end);
}
}
batchData->kvOps[commitVersion].push_back_deep(batchData->kvOps[commitVersion].arena(), mutation);
2019-11-05 03:47:29 +08:00
// TODO: What if log file's mutations are delivered out-of-order (behind) the range file's mutations?!
}
curFilePos.set(req.version);
}
req.reply.send(RestoreCommonReply(self->id(), isDuplicated));
return Void();
}
// Progress and checkpoint for applying (atomic) mutations in transactions to DB
struct DBApplyProgress {
// Mutation state in the current uncommitted transaction
VersionedMutationsMap::iterator curItInCurTxn;
int curIndexInCurTxn;
// Save the starting point for current txn to handle (commit_unknown_result) error in txn commit
// startItInUncommittedTxn is starting iterator in the most recent uncommitted (and failed) txn
// startIndexInUncommittedTxn is start index in the most recent uncommitted (and failed) txn.
// Note: Txns have different number of mutations
VersionedMutationsMap::iterator startItInUncommittedTxn;
int startIndexInUncommittedTxn;
// State to decide if a txn succeeds or not when txn error (commit_unknown_result) happens;
// curTxnId: The id of the current uncommitted txn, which monotonically increase for each successful transaction
// uncommittedTxnId: The id of the most recent succeeded txn. Used to recover the failed txn id in retry
// lastTxnHasError: Does the last txn has error. TODO: Only need to handle txn_commit_unknown error
Version curTxnId;
Version uncommittedTxnId;
bool lastTxnHasError;
// Decide when to commit a transaction. We buffer enough mutations in a txn before commit the txn
bool startNextVersion; // The next txn will include mutations in next version
int numAtomicOps; // Status counter
double txnBytes; // Decide when to commit a txn
double txnMutations; // Status counter
Reference<ApplierBatchData> batchData;
UID applierId;
DBApplyProgress() = default;
explicit DBApplyProgress(UID applierId, Reference<ApplierBatchData> batchData)
: applierId(applierId), batchData(batchData), curIndexInCurTxn(0), startIndexInUncommittedTxn(0), curTxnId(0),
uncommittedTxnId(0), lastTxnHasError(false), startNextVersion(false), numAtomicOps(0), txnBytes(0),
txnMutations(0) {
curItInCurTxn = batchData->kvOps.begin();
while (curItInCurTxn != batchData->kvOps.end() && curItInCurTxn->second.empty()) {
curItInCurTxn++;
}
startItInUncommittedTxn = curItInCurTxn;
}
// Has all mutations been committed?
bool isDone() { return curItInCurTxn == batchData->kvOps.end(); }
// Set cursor for next mutation
void nextMutation() {
curIndexInCurTxn++;
while (curItInCurTxn != batchData->kvOps.end() && curIndexInCurTxn >= curItInCurTxn->second.size()) {
curIndexInCurTxn = 0;
curItInCurTxn++;
startNextVersion = true;
}
}
// Setup for the next transaction; This should be done after nextMutation()
void nextTxn() {
txnBytes = 0;
txnMutations = 0;
numAtomicOps = 0;
lastTxnHasError = false;
startNextVersion = false;
curTxnId++;
startIndexInUncommittedTxn = curIndexInCurTxn;
startItInUncommittedTxn = curItInCurTxn;
uncommittedTxnId = curTxnId;
}
// Rollback to the starting point of the uncommitted-and-failed transaction to
// re-execute uncommitted txn
void rollback() {
TraceEvent(SevWarn, "FastRestoreApplyTxnError")
.detail("TxnStatusFailed", curTxnId)
.detail("ApplierApplyToDB", applierId)
.detail("UncommittedTxnId", uncommittedTxnId)
.detail("CurIteratorVersion", curItInCurTxn->first)
.detail("StartIteratorVersionInUncommittedTxn", startItInUncommittedTxn->first)
.detail("CurrentIndexInFailedTxn", curIndexInCurTxn)
.detail("StartIndexInUncommittedTxn", startIndexInUncommittedTxn)
.detail("NumIncludedAtomicOps", numAtomicOps);
curItInCurTxn = startItInUncommittedTxn;
curIndexInCurTxn = startIndexInUncommittedTxn;
curTxnId = uncommittedTxnId;
numAtomicOps = 0;
txnBytes = 0;
txnMutations = 0;
startNextVersion = false;
lastTxnHasError = false;
}
bool shouldCommit() {
return (!lastTxnHasError && (startNextVersion || txnBytes >= SERVER_KNOBS->FASTRESTORE_TXN_BATCH_MAX_BYTES ||
curItInCurTxn == batchData->kvOps.end()));
}
bool hasError() { return lastTxnHasError; }
void setTxnError(Error& e) {
TraceEvent(SevWarnAlways, "FastRestoreApplyTxnError")
.detail("TxnStatus", "?")
.detail("ApplierApplyToDB", applierId)
.detail("TxnId", curTxnId)
.detail("StartIndexInCurrentTxn", curIndexInCurTxn)
.detail("Version", curItInCurTxn->first)
.error(e, true);
lastTxnHasError = true;
}
MutationRef getCurrentMutation() {
ASSERT_WE_THINK(curIndexInCurTxn < curItInCurTxn->second.size());
return curItInCurTxn->second[curIndexInCurTxn];
}
};
ACTOR Future<Void> applyToDB(UID applierID, int64_t batchIndex, Reference<ApplierBatchData> batchData, Database cx) {
// state variables must be defined at the start of actor to be initialized in the actor constructor
state std::string typeStr = "";
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
state DBApplyProgress progress(applierID, batchData);
TraceEvent("FastRestoreApplerPhaseApplyTxn", applierID)
.detail("BatchIndex", batchIndex)
.detail("FromVersion", batchData->kvOps.empty() ? -1 : batchData->kvOps.begin()->first)
.detail("EndVersion", batchData->kvOps.empty() ? -1 : batchData->kvOps.rbegin()->first);
// Assume the process will not crash when it apply mutations to DB. The reply message can be lost though
if (batchData->kvOps.empty()) {
TraceEvent("FastRestoreApplerPhaseApplyTxnDone", applierID)
.detail("BatchIndex", batchIndex)
.detail("Reason", "NoMutationAtVersions");
return Void();
}
ASSERT_WE_THINK(batchData->kvOps.size());
2019-08-02 08:00:13 +08:00
batchData->sanityCheckMutationOps();
if (progress.isDone()) {
TraceEvent("FastRestoreApplerPhaseApplyTxnDone", applierID)
.detail("BatchIndex", batchIndex)
.detail("Reason", "NoMutationAtVersions");
return Void();
}
// Sanity check the restoreApplierKeys, which should be empty at this point
loop {
try {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
Key begin = restoreApplierKeyFor(applierID, batchIndex, 0);
Key end = restoreApplierKeyFor(applierID, batchIndex, std::numeric_limits<int64_t>::max());
Standalone<RangeResultRef> txnIds = wait(tr->getRange(KeyRangeRef(begin, end), CLIENT_KNOBS->TOO_MANY));
if (txnIds.size() > 0) {
TraceEvent(SevError, "FastRestoreApplyTxnStateNotClean").detail("TxnIds", txnIds.size());
for (auto& kv : txnIds) {
UID id;
int64_t index;
Version txnId;
std::tie(id, index, txnId) = decodeRestoreApplierKey(kv.key);
TraceEvent(SevError, "FastRestoreApplyTxnStateNotClean")
.detail("Applier", id)
.detail("BatchIndex", index)
.detail("ResidueTxnID", txnId);
}
}
break;
} catch (Error& e) {
wait(tr->onError(e));
}
}
loop { // Transaction retry loop
try {
// Check if the transaction succeeds
if (progress.hasError()) {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
Optional<Value> txnSucceeded =
wait(tr->get(restoreApplierKeyFor(applierID, batchIndex, progress.curTxnId)));
if (!txnSucceeded.present()) {
progress.rollback();
continue;
} else {
TraceEvent(SevWarn, "FastRestoreApplyTxnError")
.detail("TxnStatusSucceeded", progress.curTxnId)
.detail("ApplierApplyToDB", applierID)
.detail("CurIteratorVersion", progress.curItInCurTxn->first)
.detail("CurrentIteratorMutations", progress.curItInCurTxn->second.size())
.detail("CurrentIndexInSucceedTxn", progress.curIndexInCurTxn)
.detail("NumIncludedAtomicOps", progress.numAtomicOps);
// Txn succeeded and exectue the same logic when txn succeeds
}
} else { // !lastTxnHasError: accumulate mutations in a txn
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
TraceEvent(SevFRMutationInfo, "FastRestore_ApplierTxn")
.detail("ApplierApplyToDB", applierID)
.detail("TxnId", progress.curTxnId)
.detail("CurrentIndexInCurrentTxn", progress.curIndexInCurTxn)
.detail("CurrentIteratorMutations", progress.curItInCurTxn->second.size())
.detail("Version", progress.curItInCurTxn->first);
// restoreApplierKeyFor(self->id(), curTxnId) to tell if txn succeeds at an unknown error
tr->set(restoreApplierKeyFor(applierID, batchIndex, progress.curTxnId), restoreApplierTxnValue);
while (1) { // Loop: Accumulate mutations in a transaction
MutationRef m = progress.getCurrentMutation();
2019-09-04 06:50:21 +08:00
if (m.type >= MutationRef::Type::SetValue && m.type <= MutationRef::Type::MAX_ATOMIC_OP) {
typeStr = typeString[m.type];
} else {
TraceEvent(SevError, "FastRestore").detail("InvalidMutationType", m.type);
}
TraceEvent(SevFRMutationInfo, "FastRestore")
.detail("ApplierApplyToDB", applierID)
.detail("Version", progress.curItInCurTxn->first)
.detail("Index", progress.curIndexInCurTxn)
.detail("Mutation", m.toString())
.detail("MutationSize", m.totalSize())
.detail("TxnSize", progress.txnBytes);
2019-08-02 08:00:13 +08:00
if (m.type == MutationRef::SetValue) {
tr->set(m.param1, m.param2);
2019-08-02 08:00:13 +08:00
} else if (m.type == MutationRef::ClearRange) {
KeyRangeRef mutationRange(m.param1, m.param2);
tr->clear(mutationRange);
2019-08-02 08:00:13 +08:00
} else if (isAtomicOp((MutationRef::Type)m.type)) {
tr->atomicOp(m.param1, m.param2, m.type);
progress.numAtomicOps++;
} else {
2019-08-02 08:00:13 +08:00
TraceEvent(SevError, "FastRestore")
.detail("UnhandledMutationType", m.type)
.detail("TypeName", typeStr);
}
progress.txnBytes += m.totalSize(); // Changed expectedSize to totalSize
progress.txnMutations += 1;
2019-08-02 08:00:13 +08:00
progress.nextMutation(); // Prepare for the next mutation
// commit per FASTRESTORE_TXN_BATCH_MAX_BYTES bytes; and commit does not cross version boundary
if (progress.shouldCommit()) {
break; // Got enough mutation in the txn
}
}
} // !lastTxnHasError
// Commit the txn and prepare the starting point for next txn
if (progress.shouldCommit()) {
wait(tr->commit());
// Update status counter appliedWeightedBytes, appliedMutations, atomicOps
batchData->counters.appliedWeightedBytes += progress.txnBytes;
2020-02-11 09:13:20 +08:00
batchData->counters.appliedMutations += progress.txnMutations;
batchData->counters.appliedAtomicOps += progress.numAtomicOps;
2020-02-11 09:13:20 +08:00
batchData->counters.appliedTxns += 1;
}
if (progress.isDone()) { // Are all mutations processed?
break;
}
progress.nextTxn();
2019-08-02 08:00:13 +08:00
} catch (Error& e) {
TraceEvent(SevWarnAlways, "FastRestoreApplyTxnError")
.detail("TxnStatus", "?")
.detail("ApplierApplyToDB", applierID)
.detail("TxnId", progress.curTxnId)
.detail("CurrentIndexInCurrentTxn", progress.curIndexInCurTxn)
.detail("Version", progress.curItInCurTxn->first)
.error(e, true);
progress.lastTxnHasError = true;
wait(tr->onError(e));
}
}
TraceEvent("FastRestoreApplerPhaseApplyTxn", applierID)
.detail("BatchIndex", batchIndex)
.detail("CleanupCurTxnIds", progress.curTxnId);
// clean up txn ids
loop {
try {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
// Clear txnIds in [0, progress.curTxnId). We add 100 to curTxnId just to be safe.
tr->clear(KeyRangeRef(restoreApplierKeyFor(applierID, batchIndex, 0),
restoreApplierKeyFor(applierID, batchIndex, progress.curTxnId + 100)));
wait(tr->commit());
break;
} catch (Error& e) {
wait(tr->onError(e));
}
}
// House cleaning
batchData->kvOps.clear();
TraceEvent("FastRestoreApplerPhaseApplyTxnDone", applierID).detail("BatchIndex", batchIndex);
2019-08-02 08:00:13 +08:00
return Void();
}
2019-08-02 08:00:13 +08:00
ACTOR static Future<Void> handleApplyToDBRequest(RestoreVersionBatchRequest req, Reference<RestoreApplierData> self,
Database cx) {
// Ensure batch (i-1) is applied before batch i
wait(self->finishedBatch.whenAtLeast(req.batchIndex - 1));
state bool isDuplicated = true;
Reference<ApplierBatchData> batchData = self->batch[req.batchIndex];
TraceEvent("FastRestoreApplierPhaseHandleApplyToDB", self->id())
.detail("BatchIndex", req.batchIndex)
.detail("FinishedBatch", self->finishedBatch.get())
.detail("HasStarted", batchData->dbApplier.present());
if (self->finishedBatch.get() == req.batchIndex - 1) {
ASSERT(batchData.isValid());
if (!batchData->dbApplier.present()) {
isDuplicated = false;
batchData->dbApplier = Never();
// batchData->dbApplier = applyToDB(self->id(), req.batchIndex, batchData, cx);
batchData->dbApplier = applyToDBV2(self->id(), req.batchIndex, batchData, cx);
}
ASSERT(batchData->dbApplier.present());
wait(batchData->dbApplier.get());
// Multiple actor invokation can wait on req.batchIndex-1;
// Avoid setting finishedBatch when finishedBatch > req.batchIndex
if (self->finishedBatch.get() == req.batchIndex - 1) {
self->finishedBatch.set(req.batchIndex);
}
}
req.reply.send(RestoreCommonReply(self->id(), isDuplicated));
return Void();
}
// Copy from WriteDuringRead.actor.cpp with small modifications
// Not all AtomicOps are handled in this function: SetVersionstampedKey, SetVersionstampedValue, and CompareAndClear
Value applyAtomicOp(Optional<StringRef> existingValue, Value value, MutationRef::Type type) {
Arena arena;
if (type == MutationRef::AddValue)
return doLittleEndianAdd(existingValue, value, arena);
else if (type == MutationRef::AppendIfFits)
return doAppendIfFits(existingValue, value, arena);
else if (type == MutationRef::And || type == MutationRef::AndV2)
return doAndV2(existingValue, value, arena);
else if (type == MutationRef::Or)
return doOr(existingValue, value, arena);
else if (type == MutationRef::Xor)
return doXor(existingValue, value, arena);
else if (type == MutationRef::Max)
return doMax(existingValue, value, arena);
else if (type == MutationRef::Min || type == MutationRef::MinV2)
return doMinV2(existingValue, value, arena);
else if (type == MutationRef::ByteMin)
return doByteMin(existingValue, value, arena);
else if (type == MutationRef::ByteMax)
return doByteMax(existingValue, value, arena);
else {
TraceEvent(SevError, "ApplyAtomicOpUnhandledType").detail("TypeCode", (int) type).detail("TypeName", typeString[type]);
ASSERT(false);
}
return Value();
}