foundationdb/fdbserver/RestoreApplier.actor.h

396 lines
15 KiB
C
Raw Normal View History

/*
* RestoreApplier.actor.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This file declears RestoreApplier interface and actors
#pragma once
#if defined(NO_INTELLISENSE) && !defined(FDBSERVER_RESTORE_APPLIER_G_H)
2019-08-02 08:00:13 +08:00
#define FDBSERVER_RESTORE_APPLIER_G_H
#include "fdbserver/RestoreApplier.actor.g.h"
#elif !defined(FDBSERVER_RESTORE_APPLIER_H)
2019-08-02 08:00:13 +08:00
#define FDBSERVER_RESTORE_APPLIER_H
#include <sstream>
#include "flow/Stats.h"
#include "fdbclient/Atomic.h"
2020-02-21 06:15:53 +08:00
#include "fdbclient/FDBTypes.h"
#include "fdbclient/CommitTransaction.h"
#include "fdbrpc/fdbrpc.h"
#include "fdbrpc/Locality.h"
#include "fdbserver/CoordinationInterface.h"
#include "fdbclient/RestoreWorkerInterface.actor.h"
#include "fdbserver/RestoreUtil.h"
#include "fdbserver/RestoreRoleCommon.actor.h"
#include "flow/actorcompiler.h" // has to be last include
Value applyAtomicOp(Optional<StringRef> existingValue, Value value, MutationRef::Type type);
// Key whose mutations are buffered on applier.
// key, value, type and version defines the parsed mutation at version.
// pendingMutations has all versioned mutations to be applied.
// Mutations in pendingMutations whose version is below the version in StagingKey can be ignored in applying phase.
struct StagingKey {
Key key; // TODO: Maybe not needed?
Value val;
MutationRef::Type type; // set or clear
LogMessageVersion version; // largest version of set or clear for the key
std::map<LogMessageVersion, Standalone<MutationRef>> pendingMutations; // mutations not set or clear type
explicit StagingKey() : version(0), type(MutationRef::MAX_ATOMIC_OP) {}
// Add mutation m at newVersion to stagingKey
// Assume: SetVersionstampedKey and SetVersionstampedValue have been converted to set
void add(const MutationRef& m, LogMessageVersion newVersion) {
ASSERT(m.type != MutationRef::SetVersionstampedKey && m.type != MutationRef::SetVersionstampedValue);
if (debugMutation("StagingKeyAdd", newVersion.version, m)) {
TraceEvent("StagingKeyAdd")
.detail("Version", version.toString())
.detail("NewVersion", newVersion.toString())
.detail("Mutation", m.toString());
}
if (version == newVersion) {
// This could happen because the same mutation can be present in
// overlapping mutation logs, because new TLogs can copy mutations
// from old generation TLogs (or backup worker is recruited without
// knowning previously saved progress).
ASSERT(type == m.type && key == m.param1 && val == m.param2);
TraceEvent("SameVersion").detail("Version", version.toString()).detail("Mutation", m.toString());
return;
}
// newVersion can be smaller than version as different loaders can send
// mutations out of order.
if (m.type == MutationRef::SetValue || m.type == MutationRef::ClearRange) {
if (m.type == MutationRef::ClearRange) {
// We should only clear this key! Otherwise, it causes side effect to other keys
ASSERT(m.param1 == m.param2);
}
if (version < newVersion) {
if (debugMutation("StagingKeyAdd", newVersion.version, m)) {
TraceEvent("StagingKeyAdd")
2020-04-02 12:27:49 +08:00
.detail("Version", version.toString())
.detail("NewVersion", newVersion.toString())
.detail("MType", getTypeString(type))
2020-04-02 12:27:49 +08:00
.detail("Key", key)
.detail("Val", val)
.detail("NewMutation", m.toString());
}
key = m.param1;
val = m.param2;
type = (MutationRef::Type)m.type;
version = newVersion;
}
} else {
auto it = pendingMutations.find(newVersion);
if (it == pendingMutations.end()) {
pendingMutations.emplace(newVersion, m);
} else {
// Duplicated mutation ignored.
// TODO: Add SevError here
TraceEvent("SameVersion")
.detail("Version", version.toString())
.detail("NewVersion", newVersion.toString())
.detail("OldMutation", it->second.toString())
.detail("NewMutation", m.toString());
ASSERT(it->second.type == m.type && it->second.param1 == m.param1 && it->second.param2 == m.param2);
}
}
}
// Precompute the final value of the key.
// TODO: Look at the last LogMessageVersion, if it set or clear, we can ignore the rest of versions.
void precomputeResult(const char* context) {
TraceEvent(SevDebug, "FastRestoreApplierPrecomputeResult")
2020-04-02 12:27:49 +08:00
.detail("Context", context)
.detail("Version", version.toString())
.detail("Key", key)
2020-04-02 12:27:49 +08:00
.detail("Value", val)
.detail("MType", type < MutationRef::MAX_ATOMIC_OP ? getTypeString(type) : "[Unset]")
.detail("LargestPendingVersion",
(pendingMutations.empty() ? "[none]" : pendingMutations.rbegin()->first.toString()));
std::map<LogMessageVersion, Standalone<MutationRef>>::iterator lb = pendingMutations.lower_bound(version);
if (lb == pendingMutations.end()) {
return;
}
ASSERT(!pendingMutations.empty());
if (lb->first == version) {
// Sanity check mutations at version are either atomicOps which can be ignored or the same value as buffered
MutationRef m = lb->second;
if (m.type == MutationRef::SetValue || m.type == MutationRef::ClearRange) {
if (std::tie(type, key, val) != std::tie(m.type, m.param1, m.param2)) {
TraceEvent(SevError, "FastRestoreApplierPrecomputeResultUnhandledSituation")
.detail("BufferedType", getTypeString(type))
.detail("PendingType", getTypeString(m.type))
.detail("BufferedVal", val.toString())
.detail("PendingVal", m.param2.toString());
}
}
lb++;
}
for (; lb != pendingMutations.end(); lb++) {
MutationRef mutation = lb->second;
if (type == MutationRef::CompareAndClear) { // Special atomicOp
Arena arena;
Optional<StringRef> inputVal;
if (hasBaseValue()) {
inputVal = val;
}
Optional<ValueRef> retVal = doCompareAndClear(inputVal, mutation.param2, arena);
if (!retVal.present()) {
val = key;
type = MutationRef::ClearRange;
} // else no-op
} else if (isAtomicOp((MutationRef::Type)mutation.type)) {
Optional<StringRef> inputVal;
if (hasBaseValue()) {
inputVal = val;
}
val = applyAtomicOp(inputVal, mutation.param2, (MutationRef::Type)mutation.type);
type = MutationRef::SetValue; // Precomputed result should be set to DB.
} else if (mutation.type == MutationRef::SetValue || mutation.type == MutationRef::ClearRange) {
type = MutationRef::SetValue; // Precomputed result should be set to DB.
TraceEvent(SevError, "FastRestoreApplierPrecomputeResultUnexpectedSet")
.detail("MutationType", getTypeString(mutation.type))
.detail("Version", lb->first.toString());
} else {
TraceEvent(SevWarnAlways, "FastRestoreApplierPrecomputeResultSkipUnexpectedBackupMutation")
.detail("MutationType", getTypeString(mutation.type))
.detail("Version", lb->first.toString());
}
ASSERT(lb->first > version);
version = lb->first;
}
}
// Does the key has at least 1 set or clear mutation to get the base value
bool hasBaseValue() {
if (version.version > 0) {
ASSERT(type == MutationRef::SetValue || type == MutationRef::ClearRange);
}
return version.version > 0;
}
// Has all pendingMutations been pre-applied to the val?
bool hasPrecomputed() {
ASSERT(pendingMutations.empty() || pendingMutations.rbegin()->first >= pendingMutations.begin()->first);
return pendingMutations.empty() || version >= pendingMutations.rbegin()->first;
}
int expectedMutationSize() { return key.size() + val.size(); }
};
// The range mutation received on applier.
// Range mutations should be applied both to the destination DB and to the StagingKeys
struct StagingKeyRange {
Standalone<MutationRef> mutation;
LogMessageVersion version;
explicit StagingKeyRange(MutationRef m, LogMessageVersion newVersion) : mutation(m), version(newVersion) {}
bool operator<(const StagingKeyRange& rhs) const {
return std::tie(version, mutation.type, mutation.param1, mutation.param2) <
std::tie(rhs.version, rhs.mutation.type, rhs.mutation.param1, rhs.mutation.param2);
}
};
// Applier state in each verion batch
class ApplierVersionBatchState : RoleVersionBatchState {
public:
static const int NOT_INIT = 0;
static const int INIT = 1;
static const int RECEIVE_MUTATIONS = 2;
static const int WRITE_TO_DB = 3;
static const int DONE = 4;
static const int INVALID = 5;
explicit ApplierVersionBatchState(int newState) {
vbState = newState;
}
2020-02-28 12:59:56 +08:00
virtual ~ApplierVersionBatchState() = default;
2020-02-28 12:59:56 +08:00
virtual void operator=(int newState) { vbState = newState; }
2020-02-28 12:59:56 +08:00
virtual int get() { return vbState; }
};
struct ApplierBatchData : public ReferenceCounted<ApplierBatchData> {
2019-12-20 08:50:39 +08:00
// processedFileState: key: RestoreAsset; value: largest version of mutation received on the applier
std::map<RestoreAsset, NotifiedVersion> processedFileState;
Optional<Future<Void>> dbApplier;
VersionedMutationsMap kvOps; // Mutations at each version
std::map<Key, StagingKey> stagingKeys;
std::set<StagingKeyRange> stagingKeyRanges;
FlowLock applyStagingKeysBatchLock;
Future<Void> pollMetrics;
RoleVersionBatchState vbState;
// Status counters
struct Counters {
CounterCollection cc;
Counter receivedBytes, receivedWeightedBytes, receivedMutations, receivedAtomicOps;
Counter appliedWeightedBytes, appliedMutations, appliedAtomicOps;
Counter appliedTxns;
Counter fetchKeys; // number of keys to fetch from dest. FDB cluster.
Counters(ApplierBatchData* self, UID applierInterfID, int batchIndex)
: cc("ApplierBatch", applierInterfID.toString() + ":" + std::to_string(batchIndex)),
receivedBytes("ReceivedBytes", cc), receivedMutations("ReceivedMutations", cc),
receivedAtomicOps("ReceivedAtomicOps", cc), receivedWeightedBytes("ReceivedWeightedMutations", cc),
appliedWeightedBytes("AppliedWeightedBytes", cc), appliedMutations("AppliedMutations", cc),
appliedAtomicOps("AppliedAtomicOps", cc), appliedTxns("AppliedTxns", cc), fetchKeys("FetchKeys", cc) {}
} counters;
void addref() { return ReferenceCounted<ApplierBatchData>::addref(); }
void delref() { return ReferenceCounted<ApplierBatchData>::delref(); }
explicit ApplierBatchData(UID nodeID, int batchIndex)
: counters(this, nodeID, batchIndex), applyStagingKeysBatchLock(SERVER_KNOBS->FASTRESTORE_APPLYING_PARALLELISM),
vbState(ApplierVersionBatchState::NOT_INIT) {
pollMetrics = traceCounters(format("FastRestoreApplierMetrics%d", batchIndex), nodeID,
SERVER_KNOBS->FASTRESTORE_ROLE_LOGGING_DELAY, &counters.cc,
nodeID.toString() + "/RestoreApplierMetrics/" + std::to_string(batchIndex));
2020-02-11 09:01:59 +08:00
TraceEvent("FastRestoreApplierMetricsCreated").detail("Node", nodeID);
}
~ApplierBatchData() = default;
void addMutation(MutationRef m, LogMessageVersion ver) {
if (!isRangeMutation(m)) {
2020-02-21 06:15:53 +08:00
auto item = stagingKeys.emplace(m.param1, StagingKey());
item.first->second.add(m, ver);
} else {
stagingKeyRanges.insert(StagingKeyRange(m, ver));
}
}
// Return true if all staging keys have been precomputed
bool allKeysPrecomputed() {
for (auto& stagingKey : stagingKeys) {
if (!stagingKey.second.hasPrecomputed()) {
TraceEvent("FastRestoreApplierAllKeysPrecomputedFalse")
.detail("Key", stagingKey.first)
.detail("BufferedVersion", stagingKey.second.version.toString())
.detail("MaxPendingVersion", stagingKey.second.pendingMutations.rbegin()->first.toString());
return false;
}
}
TraceEvent("FastRestoreApplierAllKeysPrecomputed");
return true;
}
void reset() {
kvOps.clear();
dbApplier = Optional<Future<Void>>();
}
void sanityCheckMutationOps() {
2019-08-02 08:00:13 +08:00
if (kvOps.empty()) return;
2019-08-02 08:00:13 +08:00
ASSERT_WE_THINK(isKVOpsSorted());
ASSERT_WE_THINK(allOpsAreKnown());
}
bool isKVOpsSorted() {
auto prev = kvOps.begin();
2019-08-02 08:00:13 +08:00
for (auto it = kvOps.begin(); it != kvOps.end(); ++it) {
if (prev->first > it->first) {
return false;
}
prev = it;
}
return true;
}
bool allOpsAreKnown() {
2019-08-02 08:00:13 +08:00
for (auto it = kvOps.begin(); it != kvOps.end(); ++it) {
for (auto m = it->second.begin(); m != it->second.end(); ++m) {
if (m->type == MutationRef::SetValue || m->type == MutationRef::ClearRange ||
isAtomicOp((MutationRef::Type)m->type))
continue;
else {
TraceEvent(SevError, "FastRestoreApplier").detail("UnknownMutationType", m->type);
return false;
}
}
}
return true;
}
};
struct RestoreApplierData : RestoreRoleData, public ReferenceCounted<RestoreApplierData> {
// Buffer for uncommitted data at ongoing version batches
std::map<int, Reference<ApplierBatchData>> batch;
void addref() { return ReferenceCounted<RestoreApplierData>::addref(); }
void delref() { return ReferenceCounted<RestoreApplierData>::delref(); }
explicit RestoreApplierData(UID applierInterfID, int assignedIndex) {
nodeID = applierInterfID;
nodeIndex = assignedIndex;
// Q: Why do we need to initMetric?
// version.initMetric(LiteralStringRef("RestoreApplier.Version"), cc.id);
role = RestoreRole::Applier;
}
~RestoreApplierData() = default;
// getVersionBatchState may be called periodically to dump version batch state,
// even when no version batch has been started.
int getVersionBatchState(int batchIndex) final {
std::map<int, Reference<ApplierBatchData>>::iterator item = batch.find(batchIndex);
if (item == batch.end()) { // Simply caller's effort in when it can call this func.
return ApplierVersionBatchState::INVALID;
} else {
return item->second->vbState.get();
}
}
void setVersionBatchState(int batchIndex, int vbState) final {
std::map<int, Reference<ApplierBatchData>>::iterator item = batch.find(batchIndex);
ASSERT(item != batch.end());
item->second->vbState = vbState;
}
void initVersionBatch(int batchIndex) {
TraceEvent("FastRestoreApplierInitVersionBatch", id()).detail("BatchIndex", batchIndex);
batch[batchIndex] = Reference<ApplierBatchData>(new ApplierBatchData(nodeID, batchIndex));
}
void resetPerRestoreRequest() {
batch.clear();
finishedBatch = NotifiedVersion(0);
}
std::string describeNode() {
std::stringstream ss;
ss << "NodeID:" << nodeID.toString() << " nodeIndex:" << nodeIndex;
return ss.str();
}
};
ACTOR Future<Void> restoreApplierCore(RestoreApplierInterface applierInterf, int nodeIndex, Database cx);
#include "flow/unactorcompiler.h"
2019-09-26 14:19:42 +08:00
#endif