foundationdb/flow/genericactors.actor.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

304 lines
8.5 KiB
C++
Raw Normal View History

2017-05-26 04:48:44 +08:00
/*
* genericactors.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
2022-03-22 04:36:23 +08:00
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
2017-05-26 04:48:44 +08:00
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
2017-05-26 04:48:44 +08:00
* http://www.apache.org/licenses/LICENSE-2.0
*
2017-05-26 04:48:44 +08:00
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/flow.h"
2021-05-13 15:51:19 +08:00
#include "flow/UnitTest.h"
#include "flow/actorcompiler.h" // This must be the last #include.
2017-05-26 04:48:44 +08:00
ACTOR Future<bool> allTrue(std::vector<Future<bool>> all) {
state int i = 0;
while (i != all.size()) {
bool r = wait(all[i]);
if (!r)
return false;
i++;
}
return true;
}
ACTOR Future<Void> anyTrue(std::vector<Reference<AsyncVar<bool>>> input, Reference<AsyncVar<bool>> output) {
loop {
bool oneTrue = false;
std::vector<Future<Void>> changes;
for (auto it : input) {
if (it->get())
oneTrue = true;
changes.push_back(it->onChange());
}
output->set(oneTrue);
wait(waitForAny(changes));
}
}
2017-05-26 04:48:44 +08:00
ACTOR Future<Void> cancelOnly(std::vector<Future<Void>> futures) {
// We don't do anything with futures except hold them, we never return, but if we are cancelled we (naturally) drop
// the futures
wait(Never());
2017-05-26 04:48:44 +08:00
return Void();
}
ACTOR Future<Void> timeoutWarningCollector(FutureStream<Void> input, double logDelay, const char* context, UID id) {
state uint64_t counter = 0;
state Future<Void> end = delay(logDelay);
loop choose {
when(waitNext(input)) {
counter++;
}
when(wait(end)) {
2017-05-26 04:48:44 +08:00
if (counter)
TraceEvent(SevWarn, context, id).detail("LateProcessCount", counter).detail("LoggingDelay", logDelay);
end = delay(logDelay);
counter = 0;
}
}
}
2022-08-03 01:38:11 +08:00
ACTOR Future<Void> waitForMost(std::vector<Future<ErrorOr<Void>>> futures,
int faultTolerance,
Error e,
double waitMultiplierForSlowFutures) {
state std::vector<Future<bool>> successFutures;
state double startTime = now();
successFutures.reserve(futures.size());
for (const auto& future : futures) {
successFutures.push_back(fmap([](auto const& result) { return result.present(); }, future));
}
bool success = wait(quorumEqualsTrue(successFutures, successFutures.size() - faultTolerance));
if (!success) {
throw e;
}
wait(delay((now() - startTime) * waitMultiplierForSlowFutures) || waitForAll(successFutures));
return Void();
}
2017-05-26 04:48:44 +08:00
ACTOR Future<bool> quorumEqualsTrue(std::vector<Future<bool>> futures, int required) {
state std::vector<Future<Void>> true_futures;
state std::vector<Future<Void>> false_futures;
2020-04-25 03:21:35 +08:00
true_futures.reserve(futures.size());
false_futures.reserve(futures.size());
2017-05-26 04:48:44 +08:00
for (int i = 0; i < futures.size(); i++) {
true_futures.push_back(onEqual(futures[i], true));
false_futures.push_back(onEqual(futures[i], false));
}
choose {
when(wait(quorum(true_futures, required))) {
return true;
}
when(wait(quorum(false_futures, futures.size() - required + 1))) {
return false;
}
2017-05-26 04:48:44 +08:00
}
}
2019-06-21 00:29:01 +08:00
ACTOR Future<bool> shortCircuitAny(std::vector<Future<bool>> f) {
std::vector<Future<Void>> sc;
2020-04-25 03:21:35 +08:00
sc.reserve(f.size());
2019-06-21 00:29:01 +08:00
for (Future<bool> fut : f) {
sc.push_back(returnIfTrue(fut));
}
choose {
when(wait(waitForAll(f))) {
// Handle a possible race condition? If the _last_ term to
// be evaluated triggers the waitForAll before bubbling
// out of the returnIfTrue quorum
2020-04-25 03:21:35 +08:00
for (const auto& fut : f) {
2019-06-21 00:29:01 +08:00
if (fut.get()) {
return true;
}
}
return false;
}
when(wait(waitForAny(sc))) {
return true;
}
2019-06-21 00:29:01 +08:00
}
}
Future<Void> orYield(Future<Void> f) {
if (f.isReady()) {
if (f.isError())
return tagError<Void>(yield(), f.getError());
else
return yield();
} else
return f;
}
ACTOR Future<Void> returnIfTrue(Future<bool> f) {
bool b = wait(f);
if (b) {
return Void();
}
wait(Never());
throw internal_error();
}
ACTOR Future<Void> lowPriorityDelay(double waitTime) {
state int loopCount = 0;
2021-01-28 06:12:18 +08:00
state int totalLoops =
std::max<int>(waitTime / FLOW_KNOBS->LOW_PRIORITY_MAX_DELAY, FLOW_KNOBS->LOW_PRIORITY_DELAY_COUNT);
while (loopCount < totalLoops) {
wait(delay(waitTime / totalLoops, TaskPriority::Low));
loopCount++;
}
return Void();
}
2021-05-13 15:51:19 +08:00
ACTOR Future<Void> delayAfterCleared(Reference<AsyncVar<bool>> condition, double time, TaskPriority taskID) {
state Future<Void> timer = condition->get() ? Never() : delay(time, taskID);
state bool previousState = condition->get();
loop choose {
when(wait(timer)) {
return Void();
}
when(wait(condition->onChange())) {
bool currentState = condition->get();
if (currentState != previousState) {
timer = currentState ? Never() : delay(time, taskID);
previousState = currentState;
}
}
}
}
// Same as delayAfterCleared, but use lowPriorityDelay.
ACTOR Future<Void> lowPriorityDelayAfterCleared(Reference<AsyncVar<bool>> condition, double time) {
state Future<Void> timer = condition->get() ? Never() : lowPriorityDelay(time);
state bool previousState = condition->get();
loop choose {
when(wait(timer)) {
return Void();
}
when(wait(condition->onChange())) {
bool currentState = condition->get();
if (currentState != previousState) {
timer = currentState ? Never() : lowPriorityDelay(time);
previousState = currentState;
}
}
}
}
2021-05-13 15:51:19 +08:00
namespace {
struct DummyState {
int changed{ 0 };
int unchanged{ 0 };
bool operator==(DummyState const& rhs) const { return changed == rhs.changed && unchanged == rhs.unchanged; }
bool operator!=(DummyState const& rhs) const { return !(*this == rhs); }
};
ACTOR Future<Void> testPublisher(Reference<AsyncVar<DummyState>> input) {
state int i = 0;
for (; i < 100; ++i) {
wait(delay(deterministicRandom()->random01()));
auto var = input->get();
++var.changed;
input->set(var);
}
return Void();
}
2021-07-12 02:54:04 +08:00
ACTOR Future<Void> testSubscriber(Reference<IAsyncListener<int>> output, Optional<int> expected) {
2021-05-13 15:51:19 +08:00
loop {
wait(output->onChange());
ASSERT(expected.present());
if (output->get() == expected.get()) {
return Void();
}
}
}
2022-08-03 01:38:11 +08:00
static Future<ErrorOr<Void>> goodTestFuture(double duration) {
return tag(delay(duration), ErrorOr<Void>(Void()));
}
static Future<ErrorOr<Void>> badTestFuture(double duration, Error e) {
return tag(delay(duration), ErrorOr<Void>(e));
}
2021-05-13 15:51:19 +08:00
} // namespace
2021-07-12 02:54:04 +08:00
TEST_CASE("/flow/genericactors/AsyncListener") {
2021-05-13 15:51:19 +08:00
auto input = makeReference<AsyncVar<DummyState>>();
state Future<Void> subscriber1 =
2021-07-12 02:54:04 +08:00
testSubscriber(IAsyncListener<int>::create(input, [](auto const& var) { return var.changed; }), 100);
2021-05-13 15:51:19 +08:00
state Future<Void> subscriber2 =
2021-07-12 02:54:04 +08:00
testSubscriber(IAsyncListener<int>::create(input, [](auto const& var) { return var.unchanged; }), {});
2021-05-13 15:51:19 +08:00
wait(subscriber1 && testPublisher(input));
2021-06-17 02:34:20 +08:00
ASSERT(!subscriber2.isReady());
2021-05-13 15:51:19 +08:00
return Void();
}
2022-08-03 01:38:11 +08:00
TEST_CASE("/flow/genericactors/WaitForMost") {
state std::vector<Future<ErrorOr<Void>>> futures;
{
futures = { goodTestFuture(1), goodTestFuture(2), goodTestFuture(3) };
wait(waitForMost(futures, 1, operation_failed(), 0.0)); // Don't wait for slowest future
ASSERT(!futures[2].isReady());
}
{
futures = { goodTestFuture(1), goodTestFuture(2), goodTestFuture(3) };
wait(waitForMost(futures, 0, operation_failed(), 0.0)); // Wait for all futures
ASSERT(futures[2].isReady());
}
{
futures = { goodTestFuture(1), goodTestFuture(2), goodTestFuture(3) };
wait(waitForMost(futures, 1, operation_failed(), 1.0)); // Wait for slowest future
ASSERT(futures[2].isReady());
}
{
futures = { goodTestFuture(1), goodTestFuture(2), badTestFuture(1, success()) };
wait(waitForMost(futures, 1, operation_failed(), 1.0)); // Error ignored
}
{
futures = { goodTestFuture(1), goodTestFuture(2), badTestFuture(1, success()) };
try {
wait(waitForMost(futures, 0, operation_failed(), 1.0));
ASSERT(false);
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_operation_failed);
}
}
return Void();
}
2022-06-14 04:36:19 +08:00
#if false
TEST_CASE("/flow/genericactors/generic/storeTuple") {
state std::vector<UID> resA;
state int resB;
state double resC;
state Promise<std::tuple<std::vector<UID>, int, double>> promise;
auto future = storeTuple(promise.getFuture(), resA, resB, resC);
promise.send(std::make_tuple(std::vector<UID>(10), 15, 2.0));
wait(ready(future));
ASSERT(resA.size() == 10);
ASSERT(resB == 15);
ASSERT(resC == 2.0);
return Void();
}
2022-06-14 04:36:19 +08:00
#endif