foundationdb/fdbrpc/ContinuousSample.h

101 lines
2.5 KiB
C
Raw Normal View History

2017-05-26 04:48:44 +08:00
/*
* ContinuousSample.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
2017-05-26 04:48:44 +08:00
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
2017-05-26 04:48:44 +08:00
* http://www.apache.org/licenses/LICENSE-2.0
*
2017-05-26 04:48:44 +08:00
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CONTINUOUSSAMPLE_H
#define CONTINUOUSSAMPLE_H
#pragma once
#include "flow/Platform.h"
#include "flow/IRandom.h"
#include <vector>
#include <algorithm>
#include <cmath>
2017-05-26 04:48:44 +08:00
template <class T>
class ContinuousSample {
public:
explicit ContinuousSample(int sampleSize)
: sampleSize(sampleSize), populationSize(0), sorted(true), _min(T()), _max(T()) {}
2017-05-26 04:48:44 +08:00
ContinuousSample<T>& addSample(T sample) {
if (!populationSize)
2017-05-26 04:48:44 +08:00
_min = _max = sample;
populationSize++;
sorted = false;
if (populationSize <= sampleSize) {
samples.push_back(sample);
} else if (deterministicRandom()->random01() < ((double)sampleSize / populationSize)) {
samples[deterministicRandom()->randomInt(0, sampleSize)] = sample;
2017-05-26 04:48:44 +08:00
}
_max = std::max(_max, sample);
_min = std::min(_min, sample);
2017-05-26 04:48:44 +08:00
return *this;
}
double mean() const {
if (!samples.size())
return 0;
2017-05-26 04:48:44 +08:00
T sum = 0;
for (int c = 0; c < samples.size(); c++)
sum += samples[c];
2017-05-26 04:48:44 +08:00
return (double)sum / samples.size();
}
T median() { return percentile(0.5); }
2017-05-26 04:48:44 +08:00
2022-02-17 02:04:34 +08:00
// Percentile (X) is the smallest element in the sample set at least as large as X% of the samples.
T percentile(double percentile) {
if (!samples.size() || percentile < 0.0 || percentile > 1.0)
2017-05-26 04:48:44 +08:00
return T();
sort();
2022-02-17 02:04:34 +08:00
int idx = std::max<int>(0, std::ceil(samples.size() * percentile) - 1);
return samples[idx];
2017-05-26 04:48:44 +08:00
}
T min() const { return _min; }
T max() const { return _max; }
2017-05-26 04:48:44 +08:00
void clear() {
samples.clear();
populationSize = 0;
sorted = true;
_min = _max = 0; // Doesn't work for all T
}
uint64_t getPopulationSize() const { return populationSize; }
2017-05-26 04:48:44 +08:00
private:
int sampleSize;
uint64_t populationSize;
bool sorted;
std::vector<T> samples;
T _min, _max;
void sort() {
if (!sorted && samples.size() > 1)
std::sort(samples.begin(), samples.end());
2017-05-26 04:48:44 +08:00
sorted = true;
}
};
#endif