foundationdb/flow/test_memcpy_perf.cpp

358 lines
13 KiB
C++
Raw Normal View History

2020-04-25 06:44:27 +08:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "flow/rte_memcpy.h"
#include "flow/IRandom.h"
#include "flow/UnitTest.h"
#include "flow/flow.h"
2020-04-25 06:44:27 +08:00
#if (defined (__linux__) || defined (__FreeBSD__)) && defined (__AVX__)
2020-04-29 03:41:56 +08:00
extern "C" {
void* folly_memcpy(void* dst, const void* src, uint32_t length);
2020-04-29 03:41:56 +08:00
}
void * rte_memcpy_noinline(void* dst, const void* src, size_t length); // for performance comparisons
2020-04-25 06:44:27 +08:00
/*
* Set this to the maximum buffer size you want to test. If it is 0, then the
* values in the buf_sizes[] array below will be used.
*/
#define TEST_VALUE_RANGE 0
/* List of buffer sizes to test */
#if TEST_VALUE_RANGE == 0
static size_t buf_sizes[] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128,
129, 191, 192, 193, 255, 256, 257, 319, 320, 321, 383, 384, 385, 447, 448,
449, 511, 512, 513, 767, 768, 769, 1023, 1024, 1025, 1518, 1522, 1536, 1600,
2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168, 7680, 8192
};
/* MUST be as large as largest packet size above */
#define SMALL_BUFFER_SIZE 8192
#else /* TEST_VALUE_RANGE != 0 */
static size_t buf_sizes[TEST_VALUE_RANGE];
#define SMALL_BUFFER_SIZE TEST_VALUE_RANGE
#endif /* TEST_VALUE_RANGE == 0 */
/*
* Arrays of this size are used for measuring uncached memory accesses by
* picking a random location within the buffer. Make this smaller if there are
* memory allocation errors.
*/
#define LARGE_BUFFER_SIZE (100 * 1024 * 1024)
/* How many times to run timing loop for performance tests */
#define TEST_ITERATIONS 1000000
#define TEST_BATCH_SIZE 100
/* Data is aligned on this many bytes (power of 2) */
2020-04-29 03:41:56 +08:00
// #ifdef RTE_MACHINE_CPUFLAG_AVX512F
2020-04-25 06:44:27 +08:00
#define ALIGNMENT_UNIT 64
2020-04-29 03:41:56 +08:00
// #elif defined RTE_MACHINE_CPUFLAG_AVX2
// #define ALIGNMENT_UNIT 32
// #else /* RTE_MACHINE_CPUFLAG */
// #define ALIGNMENT_UNIT 16
// #endif /* RTE_MACHINE_CPUFLAG */
2020-04-25 06:44:27 +08:00
/*
* Pointers used in performance tests. The two large buffers are for uncached
* access where random addresses within the buffer are used for each
* memcpy. The two small buffers are for cached access.
*/
static uint8_t *large_buf_read, *large_buf_write;
static uint8_t *small_buf_read, *small_buf_write;
static size_t round_up(size_t sz, size_t alignment) {
return (((sz - 1) / alignment) + 1) * alignment;
}
static uint8_t * rte_malloc(char const * ignored, size_t sz, size_t align) {
return (uint8_t*) aligned_alloc(align, round_up(sz, align));
}
static void rte_free(void * ptr) {
if (!!ptr) {
free(ptr);
}
}
2020-04-25 06:44:27 +08:00
/* Initialise data buffers. */
static int
init_buffers(void)
{
unsigned i;
large_buf_read = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
if (large_buf_read == NULL)
goto error_large_buf_read;
large_buf_write = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
if (large_buf_write == NULL)
goto error_large_buf_write;
small_buf_read = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
if (small_buf_read == NULL)
goto error_small_buf_read;
small_buf_write = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
if (small_buf_write == NULL)
goto error_small_buf_write;
for (i = 0; i < LARGE_BUFFER_SIZE; i++)
large_buf_read[i] = deterministicRandom()->randomUInt32();
2020-04-25 06:44:27 +08:00
for (i = 0; i < SMALL_BUFFER_SIZE; i++)
small_buf_read[i] = deterministicRandom()->randomUInt32();
2020-04-25 06:44:27 +08:00
return 0;
error_small_buf_write:
rte_free(small_buf_read);
error_small_buf_read:
rte_free(large_buf_write);
error_large_buf_write:
rte_free(large_buf_read);
error_large_buf_read:
printf("ERROR: not enough memory\n");
return -1;
}
/* Cleanup data buffers */
static void
free_buffers(void)
{
rte_free(large_buf_read);
rte_free(large_buf_write);
rte_free(small_buf_read);
rte_free(small_buf_write);
}
/*
* Get a random offset into large array, with enough space needed to perform
* max copy size. Offset is aligned, uoffset is used for unalignment setting.
*/
static inline size_t
get_rand_offset(size_t uoffset)
{
return ((deterministicRandom()->randomUInt32() % (LARGE_BUFFER_SIZE - SMALL_BUFFER_SIZE)) &
2020-04-25 06:44:27 +08:00
~(ALIGNMENT_UNIT - 1)) + uoffset;
}
/* Fill in source and destination addresses. */
static inline void
fill_addr_arrays(size_t *dst_addr, int is_dst_cached, size_t dst_uoffset,
size_t *src_addr, int is_src_cached, size_t src_uoffset)
{
unsigned int i;
for (i = 0; i < TEST_BATCH_SIZE; i++) {
dst_addr[i] = (is_dst_cached) ? dst_uoffset : get_rand_offset(dst_uoffset);
src_addr[i] = (is_src_cached) ? src_uoffset : get_rand_offset(src_uoffset);
}
}
/*
* WORKAROUND: For some reason the first test doing an uncached write
* takes a very long time (~25 times longer than is expected). So we do
* it once without timing.
*/
static void
do_uncached_write(uint8_t *dst, int is_dst_cached,
const uint8_t *src, int is_src_cached, size_t size)
{
unsigned i, j;
size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE];
for (i = 0; i < (TEST_ITERATIONS / TEST_BATCH_SIZE); i++) {
fill_addr_arrays(dst_addrs, is_dst_cached, 0,
src_addrs, is_src_cached, 0);
for (j = 0; j < TEST_BATCH_SIZE; j++) {
memcpy(dst+dst_addrs[j], src+src_addrs[j], size);
2020-04-25 06:44:27 +08:00
}
}
}
/*
* Run a single memcpy performance test. This is a macro to ensure that if
* the "size" parameter is a constant it won't be converted to a variable.
*/
#define SINGLE_PERF_TEST(dst, is_dst_cached, dst_uoffset, \
src, is_src_cached, src_uoffset, size) \
do { \
unsigned int iter, t; \
size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE]; \
uint64_t start_time, total_time = 0; \
uint64_t total_time2 = 0; \
for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \
src_addrs, is_src_cached, src_uoffset); \
start_time = rte_rdtsc(); \
for (t = 0; t < TEST_BATCH_SIZE; t++) \
rte_memcpy_noinline(dst+dst_addrs[t], src+src_addrs[t], size); \
2020-04-25 06:44:27 +08:00
total_time += rte_rdtsc() - start_time; \
} \
for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \
src_addrs, is_src_cached, src_uoffset); \
start_time = rte_rdtsc(); \
for (t = 0; t < TEST_BATCH_SIZE; t++) \
memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
total_time2 += rte_rdtsc() - start_time; \
} \
printf("%3.0f -", (double)total_time / TEST_ITERATIONS); \
printf("%3.0f", (double)total_time2 / TEST_ITERATIONS); \
printf("(%6.2f%%) ", ((double)total_time - total_time2)*100/total_time2); \
} while (0)
/* Run aligned memcpy tests for each cached/uncached permutation */
#define ALL_PERF_TESTS_FOR_SIZE(n) \
do { \
if (__builtin_constant_p(n)) \
printf("\nC%6u", (unsigned)n); \
else \
printf("\n%7u", (unsigned)n); \
SINGLE_PERF_TEST(small_buf_write, 1, 0, small_buf_read, 1, 0, n); \
SINGLE_PERF_TEST(large_buf_write, 0, 0, small_buf_read, 1, 0, n); \
SINGLE_PERF_TEST(small_buf_write, 1, 0, large_buf_read, 0, 0, n); \
SINGLE_PERF_TEST(large_buf_write, 0, 0, large_buf_read, 0, 0, n); \
} while (0)
/* Run unaligned memcpy tests for each cached/uncached permutation */
#define ALL_PERF_TESTS_FOR_SIZE_UNALIGNED(n) \
do { \
if (__builtin_constant_p(n)) \
printf("\nC%6u", (unsigned)n); \
else \
printf("\n%7u", (unsigned)n); \
SINGLE_PERF_TEST(small_buf_write, 1, 1, small_buf_read, 1, 5, n); \
SINGLE_PERF_TEST(large_buf_write, 0, 1, small_buf_read, 1, 5, n); \
SINGLE_PERF_TEST(small_buf_write, 1, 1, large_buf_read, 0, 5, n); \
SINGLE_PERF_TEST(large_buf_write, 0, 1, large_buf_read, 0, 5, n); \
} while (0)
/* Run memcpy tests for constant length */
#define ALL_PERF_TEST_FOR_CONSTANT \
do { \
TEST_CONSTANT(6U); TEST_CONSTANT(64U); TEST_CONSTANT(128U); \
TEST_CONSTANT(192U); TEST_CONSTANT(256U); TEST_CONSTANT(512U); \
TEST_CONSTANT(768U); TEST_CONSTANT(1024U); TEST_CONSTANT(1536U); \
} while (0)
/* Run all memcpy tests for aligned constant cases */
static inline void
perf_test_constant_aligned(void)
{
#define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE
ALL_PERF_TEST_FOR_CONSTANT;
#undef TEST_CONSTANT
}
/* Run all memcpy tests for unaligned constant cases */
static inline void
perf_test_constant_unaligned(void)
{
#define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE_UNALIGNED
ALL_PERF_TEST_FOR_CONSTANT;
#undef TEST_CONSTANT
}
/* Run all memcpy tests for aligned variable cases */
static inline void
perf_test_variable_aligned(void)
{
unsigned n = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
unsigned i;
for (i = 0; i < n; i++) {
ALL_PERF_TESTS_FOR_SIZE((size_t)buf_sizes[i]);
}
}
/* Run all memcpy tests for unaligned variable cases */
static inline void
perf_test_variable_unaligned(void)
{
unsigned n = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
unsigned i;
for (i = 0; i < n; i++) {
ALL_PERF_TESTS_FOR_SIZE_UNALIGNED((size_t)buf_sizes[i]);
}
}
/* Run all memcpy tests */
TEST_CASE("performance/memcpy/rte") {
2020-04-25 06:44:27 +08:00
int ret;
struct timeval tv_begin, tv_end;
double time_aligned, time_unaligned;
double time_aligned_const, time_unaligned_const;
ret = init_buffers();
ASSERT(ret == 0);
2020-04-25 06:44:27 +08:00
#if TEST_VALUE_RANGE != 0
/* Set up buf_sizes array, if required */
unsigned i;
for (i = 0; i < TEST_VALUE_RANGE; i++)
buf_sizes[i] = i;
#endif
/* See function comment */
do_uncached_write(large_buf_write, 0, small_buf_read, 1, SMALL_BUFFER_SIZE);
printf("\n** rte_memcpy() - memcpy perf. tests (C = compile-time constant) **\n"
"======= ================= ================= ================= =================\n"
" Size Cache to cache Cache to mem Mem to cache Mem to mem\n"
"(bytes) (ticks) (ticks) (ticks) (ticks)\n"
"------- ----------------- ----------------- ----------------- -----------------");
printf("\n================================= %2dB aligned =================================",
ALIGNMENT_UNIT);
/* Do aligned tests where size is a variable */
gettimeofday(&tv_begin, NULL);
perf_test_variable_aligned();
gettimeofday(&tv_end, NULL);
time_aligned = (double)(tv_end.tv_sec - tv_begin.tv_sec)
+ ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
printf("\n------- ----------------- ----------------- ----------------- -----------------");
/* Do aligned tests where size is a compile-time constant */
gettimeofday(&tv_begin, NULL);
perf_test_constant_aligned();
gettimeofday(&tv_end, NULL);
time_aligned_const = (double)(tv_end.tv_sec - tv_begin.tv_sec)
+ ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
printf("\n================================== Unaligned ==================================");
/* Do unaligned tests where size is a variable */
gettimeofday(&tv_begin, NULL);
perf_test_variable_unaligned();
gettimeofday(&tv_end, NULL);
time_unaligned = (double)(tv_end.tv_sec - tv_begin.tv_sec)
+ ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
printf("\n------- ----------------- ----------------- ----------------- -----------------");
/* Do unaligned tests where size is a compile-time constant */
gettimeofday(&tv_begin, NULL);
perf_test_constant_unaligned();
gettimeofday(&tv_end, NULL);
time_unaligned_const = (double)(tv_end.tv_sec - tv_begin.tv_sec)
+ ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
printf("\n======= ================= ================= ================= =================\n\n");
printf("Test Execution Time (seconds):\n");
printf("Aligned variable copy size = %8.3f\n", time_aligned);
printf("Aligned constant copy size = %8.3f\n", time_aligned_const);
printf("Unaligned variable copy size = %8.3f\n", time_unaligned);
printf("Unaligned constant copy size = %8.3f\n", time_unaligned_const);
free_buffers();
return Void();
2020-04-25 06:44:27 +08:00
}
2020-05-14 02:59:59 +08:00
#endif // defined (__linux__) || defined (__FreeBSD__)
void forceLinkMemcpyPerfTests() {}