foundationdb/fdbserver/FDBExecHelper.actor.cpp

298 lines
9.2 KiB
C++
Raw Normal View History

2019-06-21 05:28:31 +08:00
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__INTEL_COMPILER)
#define BOOST_SYSTEM_NO_LIB
#define BOOST_DATE_TIME_NO_LIB
#define BOOST_REGEX_NO_LIB
#include <boost/process.hpp>
#endif
#include "fdbserver/FDBExecHelper.actor.h"
#include "flow/Trace.h"
#include "flow/flow.h"
2020-05-23 00:25:32 +08:00
#include "fdbclient/versions.h"
2019-07-16 02:33:40 +08:00
#include "fdbserver/Knobs.h"
#include "flow/actorcompiler.h" // This must be the last #include.
ExecCmdValueString::ExecCmdValueString(StringRef pCmdValueString) {
cmdValueString = pCmdValueString;
parseCmdValue();
}
void ExecCmdValueString::setCmdValueString(StringRef pCmdValueString) {
// reset everything
binaryPath = StringRef();
// set the new cmdValueString
cmdValueString = pCmdValueString;
// parse it out
parseCmdValue();
}
2020-12-27 13:51:58 +08:00
StringRef ExecCmdValueString::getCmdValueString() const {
return cmdValueString.toString();
}
2020-12-27 13:51:58 +08:00
StringRef ExecCmdValueString::getBinaryPath() const {
return binaryPath;
}
2020-12-27 13:51:58 +08:00
VectorRef<StringRef> ExecCmdValueString::getBinaryArgs() const {
return binaryArgs;
}
void ExecCmdValueString::parseCmdValue() {
StringRef param = this->cmdValueString;
// get the binary path
this->binaryPath = param.eat(LiteralStringRef(" "));
// no arguments provided
if (param == StringRef()) {
return;
}
// extract the arguments
while (param != StringRef()) {
StringRef token = param.eat(LiteralStringRef(" "));
this->binaryArgs.push_back(this->binaryArgs.arena(), token);
}
return;
}
2020-12-27 13:51:58 +08:00
void ExecCmdValueString::dbgPrint() const {
auto te = TraceEvent("ExecCmdValueString");
te.detail("CmdValueString", cmdValueString.toString());
te.detail("BinaryPath", binaryPath.toString());
int i = 0;
for (auto elem : binaryArgs) {
te.detail(format("Arg", ++i).c_str(), elem.toString());
}
return;
}
2019-06-21 05:28:31 +08:00
#if defined(_WIN32) || defined(__APPLE__) || defined(__INTEL_COMPILER)
ACTOR Future<int> spawnProcess(std::string binPath, std::vector<std::string> paramList, double maxWaitTime, bool isSync, double maxSimDelayTime)
{
wait(delay(0.0));
return 0;
}
#else
2020-05-08 04:17:27 +08:00
static auto fork_child(const std::string& path, std::vector<char*>& paramList) {
2021-01-29 17:31:26 +08:00
int pipefd[2];
pipe(pipefd);
auto readFD = pipefd[0];
2021-01-29 17:31:26 +08:00
auto writeFD = pipefd[1];
2020-05-08 04:17:27 +08:00
pid_t pid = fork();
if (pid == -1) {
2021-01-29 17:31:26 +08:00
close(readFD);
close(writeFD);
return std::make_pair(-1, Optional<int>{});
2020-05-08 04:17:27 +08:00
}
if (pid == 0) {
2021-01-29 17:31:26 +08:00
close(readFD);
dup2(writeFD, 1); // stdout
dup2(writeFD, 2); // stderr
close(writeFD);
execv(&path[0], &paramList[0]);
2020-05-08 04:17:27 +08:00
_exit(EXIT_FAILURE);
}
2021-01-29 17:31:26 +08:00
close(writeFD);
return std::make_pair(pid, Optional<int>{ readFD });
2020-05-08 04:17:27 +08:00
}
2021-01-29 17:31:26 +08:00
static void setupTraceWithOutput(TraceEvent& event, size_t bytesRead, char* outputBuffer) {
if (bytesRead == 0) return;
ASSERT(bytesRead <= SERVER_KNOBS->MAX_FORKED_PROCESS_OUTPUT);
auto extraBytesNeeded = std::max<int>(bytesRead - event.getMaxFieldLength(), 0);
event.setMaxFieldLength(event.getMaxFieldLength() + extraBytesNeeded);
event.setMaxEventLength(event.getMaxEventLength() + extraBytesNeeded);
outputBuffer[bytesRead - 1] = '\0';
event.detail("Output", std::string(outputBuffer));
}
ACTOR Future<int> spawnProcess(std::string path, std::vector<std::string> args, double maxWaitTime, bool isSync, double maxSimDelayTime)
{
2020-05-08 04:17:27 +08:00
// for async calls in simulator, always delay by a deterministic amount of time and then
// do the call synchronously, otherwise the predictability of the simulator breaks
if (!isSync && g_network->isSimulated()) {
double snapDelay = std::max(maxSimDelayTime - 1, 0.0);
// add some randomness
snapDelay += deterministicRandom()->random01();
TraceEvent("SnapDelaySpawnProcess")
.detail("SnapDelay", snapDelay);
wait(delay(snapDelay));
}
std::vector<char*> paramList;
paramList.reserve(args.size());
for (int i = 0; i < args.size(); i++) {
2021-01-29 17:31:26 +08:00
paramList.push_back(&args[i][0]);
}
paramList.push_back(nullptr);
2020-05-08 04:16:23 +08:00
state std::string allArgs;
for (int i = 0; i < args.size(); i++) {
2021-01-29 17:31:26 +08:00
if (i > 0) allArgs += " ";
2020-05-08 04:16:23 +08:00
allArgs += args[i];
}
state std::pair<pid_t, Optional<int>> pidAndReadFD = fork_child(path, paramList);
state pid_t pid = pidAndReadFD.first;
state Optional<int> readFD = pidAndReadFD.second;
if (pid == -1) {
2020-05-08 04:16:23 +08:00
TraceEvent(SevWarnAlways, "SpawnProcess: Command failed to spawn")
.detail("Cmd", path)
.detail("Args", allArgs);
return -1;
} else if (pid > 0) {
2020-05-08 04:17:27 +08:00
state int status = -1;
state double runTime = 0;
2021-01-29 17:31:26 +08:00
state Arena arena;
state char* outputBuffer = new (arena) char[SERVER_KNOBS->MAX_FORKED_PROCESS_OUTPUT];
state size_t bytesRead = 0;
2020-05-08 04:17:27 +08:00
while (true) {
if (runTime > maxWaitTime) {
// timing out
2021-01-29 17:31:26 +08:00
2020-05-08 04:17:27 +08:00
TraceEvent(SevWarnAlways, "SpawnProcess : Command failed, timeout")
.detail("Cmd", path)
.detail("Args", allArgs);
return -1;
}
int err = waitpid(pid, &status, WNOHANG);
2021-01-29 17:31:26 +08:00
loop {
int bytes =
read(readFD.get(), &outputBuffer[bytesRead], SERVER_KNOBS->MAX_FORKED_PROCESS_OUTPUT - bytesRead);
2021-01-29 17:31:26 +08:00
bytesRead += bytes;
if (bytes == 0) break;
}
2020-05-08 04:17:27 +08:00
if (err < 0) {
2021-01-29 17:31:26 +08:00
TraceEvent event(SevWarnAlways, "SpawnProcess : Command failed");
setupTraceWithOutput(event, bytesRead, outputBuffer);
event.detail("Cmd", path)
.detail("Args", allArgs)
.detail("Errno", WIFEXITED(status) ? WEXITSTATUS(status) : -1);
2020-05-08 04:17:27 +08:00
return -1;
} else if (err == 0) {
// child process has not completed yet
if (isSync || g_network->isSimulated()) {
// synchronously sleep
threadSleep(0.1);
} else {
// yield for other actors to run
wait(delay(0.1));
}
runTime += 0.1;
} else {
// child process completed
if (!(WIFEXITED(status) && WEXITSTATUS(status) == 0)) {
2021-01-29 17:31:26 +08:00
TraceEvent event(SevWarnAlways, "SpawnProcess : Command failed");
setupTraceWithOutput(event, bytesRead, outputBuffer);
event.detail("Cmd", path)
.detail("Args", allArgs)
.detail("Errno", WIFEXITED(status) ? WEXITSTATUS(status) : -1);
2020-05-08 04:17:27 +08:00
return WIFEXITED(status) ? WEXITSTATUS(status) : -1;
}
2021-01-29 17:31:26 +08:00
TraceEvent event("SpawnProcess : Command status");
setupTraceWithOutput(event, bytesRead, outputBuffer);
event.detail("Cmd", path)
.detail("Args", allArgs)
.detail("Errno", WIFEXITED(status) ? WEXITSTATUS(status) : 0);
2020-05-08 04:17:27 +08:00
return 0;
}
}
}
2020-05-08 04:17:27 +08:00
return -1;
}
#endif
ACTOR Future<int> execHelper(ExecCmdValueString* execArg, UID snapUID, std::string folder, std::string role) {
state Standalone<StringRef> uidStr(snapUID.toString());
state int err = 0;
state Future<int> cmdErr;
2019-07-23 06:44:49 +08:00
state double maxWaitTime = SERVER_KNOBS->SNAP_CREATE_MAX_TIMEOUT;
if (!g_network->isSimulated()) {
// get bin path
auto snapBin = execArg->getBinaryPath();
std::vector<std::string> paramList;
paramList.push_back(snapBin.toString());
// get user passed arguments
auto listArgs = execArg->getBinaryArgs();
for (auto elem : listArgs) {
paramList.push_back(elem.toString());
}
// get additional arguments
paramList.push_back("--path");
paramList.push_back(folder);
const char* version = FDB_VT_VERSION;
paramList.push_back("--version");
paramList.push_back(version);
paramList.push_back("--role");
paramList.push_back(role);
paramList.push_back("--uid");
paramList.push_back(uidStr.toString());
2019-07-16 02:33:40 +08:00
cmdErr = spawnProcess(snapBin.toString(), paramList, maxWaitTime, false /*isSync*/, 0);
wait(success(cmdErr));
err = cmdErr.get();
} else {
// copy the files
2019-04-23 21:55:55 +08:00
state std::string folderFrom = folder + "/.";
state std::string folderTo = folder + "-snap-" + uidStr.toString();
2019-07-23 06:44:49 +08:00
double maxSimDelayTime = 10.0;
folderTo = folder + "-snap-" + uidStr.toString() + "-" + role;
std::vector<std::string> paramList;
std::string mkdirBin = "/bin/mkdir";
paramList.push_back(mkdirBin);
paramList.push_back(folderTo);
2019-07-16 02:33:40 +08:00
cmdErr = spawnProcess(mkdirBin, paramList, maxWaitTime, false /*isSync*/, maxSimDelayTime);
wait(success(cmdErr));
err = cmdErr.get();
if (err == 0) {
std::vector<std::string> paramList;
std::string cpBin = "/bin/cp";
paramList.push_back(cpBin);
paramList.push_back("-a");
paramList.push_back(folderFrom);
paramList.push_back(folderTo);
2019-07-16 02:33:40 +08:00
cmdErr = spawnProcess(cpBin, paramList, maxWaitTime, true /*isSync*/, 1.0);
wait(success(cmdErr));
err = cmdErr.get();
}
}
return err;
}
struct StorageVersionInfo {
Version version;
Version durableVersion;
};
2019-07-16 02:33:40 +08:00
// storage nodes get snapshotted through the worker interface which does not have context about version information,
// following info is gathered at worker level to facilitate printing of version info during storage snapshots.
typedef std::map<UID, StorageVersionInfo> UidStorageVersionInfo;
std::map<NetworkAddress, UidStorageVersionInfo> workerStorageVersionInfo;
void setDataVersion(UID uid, Version version) {
NetworkAddress addr = g_network->getLocalAddress();
workerStorageVersionInfo[addr][uid].version = version;
}
void setDataDurableVersion(UID uid, Version durableVersion) {
NetworkAddress addr = g_network->getLocalAddress();
workerStorageVersionInfo[addr][uid].durableVersion = durableVersion;
}
void printStorageVersionInfo() {
NetworkAddress addr = g_network->getLocalAddress();
for (auto itr = workerStorageVersionInfo[addr].begin(); itr != workerStorageVersionInfo[addr].end(); itr++) {
TraceEvent("StorageVersionInfo")
.detail("UID", itr->first)
.detail("Version", itr->second.version)
.detail("DurableVersion", itr->second.durableVersion);
}
}