2017-05-26 04:48:44 +08:00
|
|
|
/*
|
|
|
|
* Throughput.actor.cpp
|
|
|
|
*
|
|
|
|
* This source file is part of the FoundationDB open source project
|
|
|
|
*
|
|
|
|
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
|
2018-02-22 02:25:11 +08:00
|
|
|
*
|
2017-05-26 04:48:44 +08:00
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
2018-02-22 02:25:11 +08:00
|
|
|
*
|
2017-05-26 04:48:44 +08:00
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
2018-02-22 02:25:11 +08:00
|
|
|
*
|
2017-05-26 04:48:44 +08:00
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "flow/actorcompiler.h"
|
|
|
|
#include "fdbrpc/ContinuousSample.h"
|
|
|
|
#include "fdbclient/NativeAPI.h"
|
|
|
|
#include "fdbserver/TesterInterface.h"
|
|
|
|
#include "fdbserver/WorkerInterface.h"
|
|
|
|
#include "workloads.h"
|
|
|
|
#include "flow/ActorCollection.h"
|
|
|
|
#include "fdbrpc/Smoother.h"
|
|
|
|
|
|
|
|
struct ITransactor : ReferenceCounted<ITransactor> {
|
|
|
|
struct Stats {
|
|
|
|
int64_t reads, writes, retries, transactions;
|
|
|
|
double totalLatency, grvLatency, rowReadLatency, commitLatency;
|
|
|
|
Stats() : reads(0), writes(0), retries(0), transactions(0), totalLatency(0), grvLatency(0), rowReadLatency(0), commitLatency(0) {}
|
|
|
|
void operator += (Stats const& s) {
|
|
|
|
reads += s.reads; writes += s.writes; retries += s.retries; transactions += s.transactions;
|
|
|
|
totalLatency += s.totalLatency; grvLatency += s.grvLatency; rowReadLatency += s.rowReadLatency; commitLatency += s.commitLatency;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
virtual Future<Void> doTransaction(Database const&, Stats* stats) = 0;
|
|
|
|
virtual ~ITransactor() {}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct RWTransactor : ITransactor {
|
|
|
|
int reads, writes;
|
|
|
|
int minValueBytes, maxValueBytes;
|
|
|
|
std::string valueString;
|
|
|
|
int keyCount, keyBytes;
|
|
|
|
|
|
|
|
RWTransactor( int reads, int writes, int keyCount, int keyBytes, int minValueBytes, int maxValueBytes )
|
|
|
|
: reads(reads), writes(writes), keyCount(keyCount), keyBytes(keyBytes),
|
|
|
|
minValueBytes(minValueBytes), maxValueBytes(maxValueBytes)
|
|
|
|
{
|
|
|
|
ASSERT(minValueBytes <= maxValueBytes);
|
|
|
|
valueString = std::string( maxValueBytes, '.' );
|
|
|
|
}
|
|
|
|
|
|
|
|
Key randomKey() {
|
|
|
|
Key result = makeString( keyBytes );
|
|
|
|
uint8_t* data = mutateString( result );
|
|
|
|
memset(data, '.', keyBytes);
|
|
|
|
|
|
|
|
double d = double(g_random->randomInt(0, keyCount)) / keyCount;
|
|
|
|
emplaceIndex( data, 0, *(int64_t*)&d );
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
Value randomValue() { return StringRef( (const uint8_t*)valueString.c_str(), g_random->randomInt(minValueBytes, maxValueBytes+1) ); };
|
|
|
|
|
|
|
|
virtual Future<Void> doTransaction(Database const& db, Stats* stats) {
|
|
|
|
return rwTransaction(db, Reference<RWTransactor>::addRef(this), stats );
|
|
|
|
}
|
|
|
|
|
|
|
|
ACTOR static Future<Optional<Value>> getLatency( Future<Optional<Value>> f, double* t ) {
|
|
|
|
Optional<Value> v = wait(f);
|
|
|
|
*t += now();
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
ACTOR static Future<Void> rwTransaction( Database db, Reference<RWTransactor> self, Stats* stats ) {
|
|
|
|
state vector<Key> keys;
|
|
|
|
state vector<Value> values;
|
|
|
|
state Transaction tr(db);
|
|
|
|
|
|
|
|
for(int op = 0; op < self->reads || op < self->writes; op++ )
|
|
|
|
keys.push_back( self->randomKey() );
|
|
|
|
for(int op = 0; op < self->writes; op++ )
|
|
|
|
values.push_back( self->randomValue() );
|
|
|
|
|
|
|
|
loop {
|
|
|
|
try {
|
|
|
|
state double t_start = now();
|
|
|
|
Version _ = wait( tr.getReadVersion() );
|
|
|
|
state double t_rv = now();
|
|
|
|
state double rrLatency = -t_rv * self->reads;
|
|
|
|
|
|
|
|
state vector<Future<Optional<Value>>> reads;
|
|
|
|
for(int i=0; i<self->reads; i++)
|
|
|
|
reads.push_back( getLatency( tr.get( keys[i] ), &rrLatency ) );
|
|
|
|
Void _ = wait( waitForAll(reads) );
|
|
|
|
for(int i=0; i<self->writes; i++)
|
|
|
|
tr.set( keys[i], values[i] );
|
|
|
|
state double t_beforeCommit = now();
|
|
|
|
Void _ = wait( tr.commit() );
|
|
|
|
|
|
|
|
stats->transactions++;
|
|
|
|
stats->reads += self->reads;
|
|
|
|
stats->writes += self->writes;
|
|
|
|
stats->grvLatency += t_rv - t_start;
|
|
|
|
stats->commitLatency += now() - t_beforeCommit;
|
|
|
|
stats->rowReadLatency += rrLatency / self->reads;
|
|
|
|
break;
|
|
|
|
} catch (Error& e) {
|
|
|
|
Void _ = wait( tr.onError(e) );
|
|
|
|
stats->retries++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Void();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ABTransactor : ITransactor {
|
|
|
|
Reference<ITransactor> a, b;
|
|
|
|
double alpha; // 0.0 = all a, 1.0 = all b
|
|
|
|
|
|
|
|
ABTransactor( double alpha, Reference<ITransactor> a, Reference<ITransactor> b )
|
|
|
|
: alpha(alpha), a(a), b(b)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Future<Void> doTransaction(Database const& db, Stats* stats) {
|
|
|
|
return g_random->random01() >= alpha ? a->doTransaction(db,stats) : b->doTransaction(db,stats);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct SweepTransactor : ITransactor {
|
|
|
|
// Runs a linearly-changing workload that changes from A-type to B-type over
|
|
|
|
// the specified duration--the timer starts at the first transaction.
|
|
|
|
Reference<ITransactor> a, b;
|
|
|
|
double startTime;
|
|
|
|
double startDelay;
|
|
|
|
double duration;
|
|
|
|
|
|
|
|
SweepTransactor( double duration, double startDelay, Reference<ITransactor> a, Reference<ITransactor> b )
|
|
|
|
: a(a), b(b), duration(duration), startTime(-1), startDelay(startDelay)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Future<Void> doTransaction(Database const& db, Stats* stats) {
|
|
|
|
if (startTime==-1) startTime = now()+startDelay;
|
|
|
|
|
|
|
|
double alpha;
|
|
|
|
double n = now();
|
|
|
|
if (n < startTime) alpha = 0;
|
|
|
|
else if (n > startTime+duration) alpha = 1;
|
|
|
|
else alpha = (n-startTime) / duration;
|
|
|
|
|
|
|
|
return g_random->random01() >= alpha ? a->doTransaction(db,stats) : b->doTransaction(db,stats);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct IMeasurer : ReferenceCounted<IMeasurer> {
|
|
|
|
// This could be an ITransactor, but then it needs an actor to wait for the transaction to actually finish
|
|
|
|
virtual Future<Void> start() { return Void(); }
|
|
|
|
virtual void addTransaction(ITransactor::Stats* stats, double now) = 0;
|
|
|
|
virtual void getMetrics( vector<PerfMetric>& m ) = 0;
|
|
|
|
IMeasurer& operator=(IMeasurer const&) {return *this;} // allow copy operator for non-reference counted instances of subclasses
|
|
|
|
|
|
|
|
virtual ~IMeasurer() {}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct MeasureSinglePeriod : IMeasurer {
|
|
|
|
double delay, duration;
|
|
|
|
double startT;
|
|
|
|
|
|
|
|
ContinuousSample<double> totalLatency, grvLatency, rowReadLatency, commitLatency;
|
|
|
|
ITransactor::Stats stats; // totalled over the period
|
|
|
|
|
|
|
|
MeasureSinglePeriod( double delay, double duration ) : delay(delay), duration(duration), totalLatency(2000), grvLatency(2000), rowReadLatency(2000), commitLatency(2000) {}
|
|
|
|
|
|
|
|
virtual Future<Void> start() { startT = now(); return Void(); }
|
|
|
|
virtual void addTransaction(ITransactor::Stats* st, double now) {
|
|
|
|
if (!(now >= startT+delay && now < startT+delay+duration)) return;
|
|
|
|
|
|
|
|
totalLatency.addSample( st->totalLatency );
|
|
|
|
grvLatency.addSample( st->grvLatency );
|
|
|
|
rowReadLatency.addSample( st->rowReadLatency );
|
|
|
|
|
|
|
|
if(st->commitLatency > 0) {
|
|
|
|
commitLatency.addSample( st->commitLatency );
|
|
|
|
}
|
|
|
|
|
|
|
|
stats += *st;
|
|
|
|
}
|
|
|
|
virtual void getMetrics( vector<PerfMetric>& m ) {
|
|
|
|
double measureDuration = duration;
|
|
|
|
m.push_back( PerfMetric( "Transactions/sec", stats.transactions / measureDuration, false ) );
|
|
|
|
m.push_back( PerfMetric( "Retries/sec", stats.retries / measureDuration, false ) );
|
|
|
|
m.push_back( PerfMetric( "Operations/sec", (stats.reads + stats.writes) / measureDuration, false ) );
|
|
|
|
m.push_back( PerfMetric( "Read rows/sec", stats.reads / measureDuration, false ) );
|
|
|
|
m.push_back( PerfMetric( "Write rows/sec", stats.writes / measureDuration, false ) );
|
|
|
|
|
|
|
|
m.push_back( PerfMetric( "Mean Latency (ms)", 1000 * totalLatency.mean(), true ) );
|
|
|
|
m.push_back( PerfMetric( "Median Latency (ms, averaged)", 1000 * totalLatency.median(), true ) );
|
|
|
|
m.push_back( PerfMetric( "90% Latency (ms, averaged)", 1000 * totalLatency.percentile( 0.90 ), true ) );
|
|
|
|
m.push_back( PerfMetric( "98% Latency (ms, averaged)", 1000 * totalLatency.percentile( 0.98 ), true ) );
|
|
|
|
|
|
|
|
m.push_back( PerfMetric( "Mean Row Read Latency (ms)", 1000 * rowReadLatency.mean(), true ) );
|
|
|
|
m.push_back( PerfMetric( "Median Row Read Latency (ms, averaged)", 1000 * rowReadLatency.median(), true ) );
|
|
|
|
m.push_back( PerfMetric( "Mean GRV Latency (ms)", 1000 * grvLatency.mean(), true ) );
|
|
|
|
m.push_back( PerfMetric( "Median GRV Latency (ms, averaged)", 1000 * grvLatency.median(), true ) );
|
|
|
|
m.push_back( PerfMetric( "Mean Commit Latency (ms)", 1000 * commitLatency.mean(), true ) );
|
|
|
|
m.push_back( PerfMetric( "Median Commit Latency (ms, averaged)", 1000 * commitLatency.median(), true ) );
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct MeasurePeriodically : IMeasurer {
|
|
|
|
double period;
|
|
|
|
std::set<std::string> includeMetrics;
|
|
|
|
MeasureSinglePeriod msp, msp0;
|
|
|
|
vector<PerfMetric> accumulatedMetrics;
|
|
|
|
|
|
|
|
MeasurePeriodically( double period, std::set<std::string> includeMetrics ) : period(period), includeMetrics(includeMetrics), msp(0,period), msp0(0,period) {}
|
|
|
|
|
|
|
|
virtual Future<Void> start() {
|
|
|
|
msp.start();
|
|
|
|
return periodicActor(this);
|
|
|
|
}
|
|
|
|
virtual void addTransaction(ITransactor::Stats* st, double now) {
|
|
|
|
msp.addTransaction(st, now);
|
|
|
|
}
|
|
|
|
virtual void getMetrics( vector<PerfMetric>& m ) {
|
|
|
|
m.insert(m.end(), accumulatedMetrics.begin(), accumulatedMetrics.end());
|
|
|
|
}
|
|
|
|
void nextPeriod(double t) {
|
|
|
|
// output stats
|
|
|
|
std::string prefix = format("T=%04.0fs:", t);
|
|
|
|
vector<PerfMetric> m;
|
|
|
|
msp.getMetrics(m);
|
|
|
|
for(auto i=m.begin(); i!=m.end(); ++i)
|
|
|
|
if (includeMetrics.count(i->name())) {
|
|
|
|
accumulatedMetrics.push_back( i->withPrefix(prefix) );
|
|
|
|
}
|
|
|
|
|
|
|
|
// reset stats
|
|
|
|
msp = msp0;
|
|
|
|
msp.start();
|
|
|
|
}
|
|
|
|
|
|
|
|
ACTOR static Future<Void> periodicActor( MeasurePeriodically* self ) {
|
|
|
|
state double startT = now();
|
|
|
|
state double elapsed = 0;
|
|
|
|
loop {
|
|
|
|
elapsed += self->period;
|
|
|
|
Void _ = wait( delayUntil(startT + elapsed) );
|
|
|
|
self->nextPeriod(elapsed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct MeasureMulti : IMeasurer {
|
|
|
|
vector<Reference<IMeasurer>> ms;
|
|
|
|
virtual Future<Void> start() {
|
|
|
|
vector<Future<Void>> s;
|
|
|
|
for(auto m=ms.begin(); m!=ms.end(); ++m)
|
|
|
|
s.push_back( (*m)->start() );
|
|
|
|
return waitForAll(s);
|
|
|
|
}
|
|
|
|
virtual void addTransaction(ITransactor::Stats* stats, double now) {
|
|
|
|
for(auto m=ms.begin(); m!=ms.end(); ++m)
|
|
|
|
(*m)->addTransaction(stats, now);
|
|
|
|
}
|
|
|
|
virtual void getMetrics( vector<PerfMetric>& metrics ) {
|
|
|
|
for(auto m=ms.begin(); m!=ms.end(); ++m)
|
|
|
|
(*m)->getMetrics(metrics);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ThroughputWorkload : TestWorkload {
|
|
|
|
double targetLatency, testDuration, Pgain, Igain;
|
|
|
|
Reference<ITransactor> op;
|
|
|
|
Reference<IMeasurer> measurer;
|
|
|
|
|
|
|
|
int activeActors;
|
|
|
|
double totalLatencyIntegral, totalTransactionsIntegral, startT;
|
|
|
|
|
|
|
|
ThroughputWorkload(WorkloadContext const& wcx)
|
|
|
|
: TestWorkload(wcx), activeActors(0), totalLatencyIntegral(0), totalTransactionsIntegral(0)
|
|
|
|
{
|
|
|
|
Reference<MeasureMulti> multi( new MeasureMulti );
|
|
|
|
measurer = multi;
|
|
|
|
|
|
|
|
targetLatency = getOption( options, LiteralStringRef("targetLatency"), 0.05 );
|
|
|
|
|
|
|
|
int keyCount = getOption( options, LiteralStringRef("nodeCount"), (uint64_t)100000 );
|
|
|
|
int keyBytes = std::max( getOption( options, LiteralStringRef("keyBytes"), 16 ), 16 );
|
|
|
|
int maxValueBytes = getOption( options, LiteralStringRef("valueBytes"), 100 );
|
|
|
|
int minValueBytes = getOption( options, LiteralStringRef("minValueBytes"), maxValueBytes);
|
|
|
|
double sweepDuration = getOption( options, LiteralStringRef("sweepDuration"), 0);
|
|
|
|
double sweepDelay = getOption(options, LiteralStringRef("sweepDelay"), 0);
|
|
|
|
|
|
|
|
auto AType = Reference<ITransactor>( new RWTransactor(
|
|
|
|
getOption( options, LiteralStringRef("readsPerTransactionA"), 10 ),
|
|
|
|
getOption( options, LiteralStringRef("writesPerTransactionA"), 0 ),
|
|
|
|
keyCount, keyBytes, minValueBytes, maxValueBytes ) );
|
|
|
|
auto BType = Reference<ITransactor>( new RWTransactor(
|
|
|
|
getOption( options, LiteralStringRef("readsPerTransactionB"), 5 ),
|
|
|
|
getOption( options, LiteralStringRef("writesPerTransactionB"), 5 ),
|
|
|
|
keyCount, keyBytes, minValueBytes, maxValueBytes ) );
|
|
|
|
|
|
|
|
if (sweepDuration > 0){
|
|
|
|
op = Reference<ITransactor>( new SweepTransactor( sweepDuration, sweepDelay, AType, BType ) );
|
|
|
|
} else {
|
|
|
|
op = Reference<ITransactor>( new ABTransactor( getOption( options, LiteralStringRef("alpha"), 0.1 ), AType, BType) );
|
|
|
|
}
|
|
|
|
|
|
|
|
double measureDelay = getOption( options, LiteralStringRef("measureDelay"), 50.0 );
|
|
|
|
double measureDuration = getOption( options, LiteralStringRef("measureDuration"), 10.0 );
|
|
|
|
multi->ms.push_back( Reference<IMeasurer>( new MeasureSinglePeriod( measureDelay, measureDuration ) ) );
|
|
|
|
|
|
|
|
double measurePeriod = getOption( options, LiteralStringRef("measurePeriod"), 0.0 );
|
|
|
|
vector<std::string> periodicMetrics = getOption( options, LiteralStringRef("measurePeriodicMetrics"), vector<std::string>() );
|
|
|
|
if (measurePeriod) {
|
|
|
|
ASSERT( periodicMetrics.size() != 0 );
|
|
|
|
multi->ms.push_back( Reference<IMeasurer>( new MeasurePeriodically( measurePeriod, std::set<std::string>(periodicMetrics.begin(),periodicMetrics.end()) ) ) );
|
|
|
|
}
|
|
|
|
|
|
|
|
Pgain = getOption( options, LiteralStringRef("ProportionalGain"), 0.1 );
|
|
|
|
Igain = getOption( options, LiteralStringRef("IntegralGain"), 0.005 );
|
|
|
|
|
|
|
|
testDuration = measureDelay + measureDuration;
|
|
|
|
//testDuration = getOption( options, LiteralStringRef("testDuration"), measureDelay + measureDuration );
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual std::string description() { return "Throughput"; }
|
|
|
|
|
|
|
|
virtual Future<Void> setup( Database const& cx ) {
|
|
|
|
return Void(); // No setup for now - use a separate workload to do setup
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Future<Void> start( Database const& cx ) {
|
|
|
|
startT = now();
|
|
|
|
PromiseStream<Future<Void>> add;
|
|
|
|
Future<Void> ac = actorCollection( add.getFuture(), &activeActors );
|
|
|
|
Future<Void> r = timeout( measurer->start() && ac, testDuration, Void() );
|
|
|
|
ASSERT( !ac.isReady() ); // ... because else the following line would create an unbreakable reference cycle
|
|
|
|
add.send( throughputActor( cx, this, add ) );
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Future<bool> check( Database const& cx ) { return true; }
|
|
|
|
|
|
|
|
ACTOR static Future<Void> throughputActor( Database db, ThroughputWorkload* self, PromiseStream<Future<Void>> add ) {
|
|
|
|
state double before = now();
|
|
|
|
state ITransactor::Stats stats;
|
|
|
|
Void _ = wait( self->op->doTransaction(db, &stats) );
|
|
|
|
state double after = now();
|
|
|
|
|
|
|
|
Void _ = wait( delay( 0.0 ) );
|
|
|
|
stats.totalLatency = after-before;
|
|
|
|
self->measurer->addTransaction( &stats, after );
|
|
|
|
|
|
|
|
self->totalLatencyIntegral += after-before;
|
|
|
|
self->totalTransactionsIntegral += 1;
|
|
|
|
|
|
|
|
double error = after - before - self->targetLatency;
|
|
|
|
// Ideally ierror would be integral [avg. transaction latency - targetLatency] dt.
|
|
|
|
// Actually we calculate integral[ transaction latency - targetLatency ] dtransaction and change units.
|
|
|
|
double ierror = (self->totalLatencyIntegral - self->totalTransactionsIntegral * self->targetLatency) /
|
|
|
|
self->totalTransactionsIntegral * (after-self->startT);
|
|
|
|
|
2017-09-09 08:27:54 +08:00
|
|
|
double desiredSuccessors = 1 - (error*self->Pgain + ierror*self->Igain) / self->targetLatency;
|
2017-05-26 04:48:44 +08:00
|
|
|
|
|
|
|
//if (g_random->random01() < .001) TraceEvent("ThroughputControl").detail("Error", error).detail("IError", ierror).detail("DesiredSuccessors", desiredSuccessors).detail("ActiveActors", self->activeActors);
|
|
|
|
|
|
|
|
desiredSuccessors = std::min( desiredSuccessors, 2.0 );
|
|
|
|
|
|
|
|
// SOMEDAY: How can we prevent the number of actors on different clients from diverging?
|
|
|
|
|
|
|
|
int successors = g_random->random01() + desiredSuccessors;
|
|
|
|
if (successors<1 && self->activeActors <= 1) successors = 1;
|
|
|
|
if (successors>1 && self->activeActors >= 200000) successors = 1;
|
|
|
|
for(int s=0; s<successors; s++)
|
|
|
|
add.send( throughputActor(db, self, add) );
|
|
|
|
return Void();
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void getMetrics( vector<PerfMetric>& m ) {
|
|
|
|
measurer->getMetrics(m);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
WorkloadFactory<ThroughputWorkload> ThroughputWorkloadFactory("Throughput");
|