foundationdb/fdbserver/DeltaTree.h

369 lines
10 KiB
C
Raw Normal View History

/*
* MutablePrefixTree.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "flow/flow.h"
#include "flow/Arena.h"
#include "fdbclient/FDBTypes.h"
#include "fdbserver/Knobs.h"
#include "fdbserver/PrefixTree.h"
#include <string.h>
// Delta Tree is a memory mappable binary tree of T objects such that each node's item is
// stored as a Delta which can reproduce the node's T item given the node's greatest
// lesser ancestor and the node's least greater ancestor.
//
// The Delta type is intended to make use of ordered prefix compression and borrow all
// available prefix bytes from the ancestor T which shares the most prefix bytes with
// the item T being encoded.
//
// T requirements
//
// Must be compatible with Standalone<T> and must implement the following additional methods:
//
// // Writes to d a delta which can create *this from prev and next
// void writeDelta(dT &d, const T &prev, const T &next)
//
// // Compare *this to t, returns < 0 for less than, 0 for equal, > 0 for greater than
// int compare(const T &rhs)
//
// // Returns the delta size needed to make *this from base
// // TODO: Explain contract required for deltaSize to be used to predict final
// // balanced tree size incrementally while adding sorted items to a build set
// int deltaSize(const T &base)
//
// DeltaT requirements
//
// // Returns the size of this dT instance
// int size();
//
// // Returns the T created by applying the delta to prev or next
// T apply(const T &prev, const T &next, Arena &localStorage)
//
template <typename T, typename DeltaT = typename T::Delta, typename OffsetT = uint16_t>
struct DeltaTree {
static int MaximumTreeSize() {
return std::numeric_limits<OffsetT>::max();
};
#pragma pack(push,1)
struct Node {
OffsetT leftChildOffset;
OffsetT rightChildOffset;
DeltaT delta[0];
Node * rightChild() const {
//printf("Node(%p): leftOffset=%d rightOffset=%d deltaSize=%d\n", this, (int)leftChildOffset, (int)rightChildOffset, (int)delta->size());
return rightChildOffset == 0 ? nullptr : (Node *)((uint8_t *)delta + rightChildOffset);
}
Node * leftChild() const {
//printf("Node(%p): leftOffset=%d rightOffset=%d deltaSize=%d\n", this, (int)leftChildOffset, (int)rightChildOffset, (int)delta->size());
return leftChildOffset == 0 ? nullptr : (Node *)((uint8_t *)delta + leftChildOffset);
}
int size() const {
return sizeof(Node) + delta->size();
}
};
#pragma pack(pop)
#pragma pack(push,1)
struct {
OffsetT nodeBytes; // Total size of all Nodes including the root
uint8_t initialDepth; // Levels in the tree as of the last rebuild
Node root[0];
};
#pragma pack(pop)
int size() const {
return sizeof(DeltaTree) + nodeBytes;
}
public:
// Get count of total overhead bytes (everything but the user-formatted Delta) for a tree given size n
static inline int GetTreeOverhead(int n = 0) {
return sizeof(DeltaTree) + (n * sizeof(Node));
}
struct DecodedNode {
DecodedNode(Node *raw, const T *prev, const T *next, Arena &arena)
: raw(raw), parent(nullptr), left(nullptr), right(nullptr), prev(prev), next(next),
item(raw->delta->apply(*prev, *next, arena))
{
//printf("DecodedNode1 raw=%p delta=%s\n", raw, raw->delta->toString().c_str());
}
DecodedNode(Node *raw, DecodedNode *parent, bool left, Arena &arena)
: parent(parent), raw(raw), left(nullptr), right(nullptr),
prev(left ? parent->prev : &parent->item),
next(left ? &parent->item : parent->next),
item(raw->delta->apply(*prev, *next, arena))
{
//printf("DecodedNode2 raw=%p delta=%s\n", raw, raw->delta->toString().c_str());
}
Node *raw;
DecodedNode *parent;
DecodedNode *left;
DecodedNode *right;
const T *prev; // greatest ancestor to the left
const T *next; // least ancestor to the right
T item;
DecodedNode *getRight(Arena &arena) {
if(right == nullptr) {
Node *n = raw->rightChild();
if(n != nullptr) {
right = new (arena) DecodedNode(n, this, false, arena);
}
}
return right;
}
DecodedNode *getLeft(Arena &arena) {
if(left == nullptr) {
Node *n = raw->leftChild();
if(n != nullptr) {
left = new (arena) DecodedNode(n, this, true, arena);
}
}
return left;
}
};
struct Cursor;
// A Reader is used to read a Tree by getting cursors into it.
// Any node decoded by any cursor is placed in cache for use
// by other cursors.
struct Reader : FastAllocated<Reader> {
Reader(const void *treePtr = nullptr, const T *lowerBound = nullptr, const T *upperBound = nullptr)
: tree((DeltaTree *)treePtr), lower(lowerBound), upper(upperBound) {
// TODO: Remove these copies into arena and require users of Reader to keep prev and next alive during its lifetime
lower = new(arena) T(arena, *lower);
upper = new(arena) T(arena, *upper);
root = (tree->nodeBytes == 0) ? nullptr : new (arena) DecodedNode(tree->root, lower, upper, arena);
}
const T *lowerBound() const {
return lower;
}
const T *upperBound() const {
return upper;
}
Arena arena;
DeltaTree *tree;
DecodedNode *root;
const T *lower;
const T *upper;
Cursor getCursor() {
return Cursor(this);
}
};
// Cursor provides a way to seek into a PrefixTree and iterate over its contents
// All Cursors from a Reader share the same decoded node 'cache' (tree of DecodedNodes)
struct Cursor {
Cursor() : reader(nullptr), node(nullptr) {
}
Cursor(Reader *r) : reader(r), node(reader->root) {
}
Reader *reader;
DecodedNode *node;
bool valid() const {
return node != nullptr;
}
const T & get() const {
return node->item;
}
const T & getOrUpperBound() const {
return valid() ? node->item : *reader->upperBound();
}
// Moves the cursor to the node with the greatest key less than or equal to s. If successful,
// returns true, otherwise returns false and the cursor will be at the node with the next key
// greater than s.
bool seekLessThanOrEqual(const T &s) {
node = nullptr;
DecodedNode *n = reader->root;
while(n != nullptr) {
int cmp = s.compare(n->item);
if(cmp == 0) {
node = n;
return true;
}
if(cmp < 0) {
n = n->getLeft(reader->arena);
}
else {
// n < s so store it in node as a potential result
node = n;
n = n->getRight(reader->arena);
}
}
return node != nullptr;
}
bool moveFirst() {
DecodedNode *n = reader->root;
node = n;
while(n != nullptr) {
n = n->getLeft(reader->arena);
if(n != nullptr)
node = n;
}
return node != nullptr;
}
bool moveLast() {
DecodedNode *n = reader->root;
node = n;
while(n != nullptr) {
n = n->getRight(reader->arena);
if(n != nullptr)
node = n;
}
return node != nullptr;
}
bool moveNext() {
// Try to go right
DecodedNode *n = node->getRight(reader->arena);
if(n != nullptr) {
// Go left as far as possible
while(n != nullptr) {
node = n;
n = n->getLeft(reader->arena);
}
return true;
}
// Follow parent links until a greater parent is found
while(node->parent != nullptr) {
bool greaterParent = node->parent->left == node;
node = node->parent;
if(greaterParent) {
return true;
}
}
node = nullptr;
return false;
}
bool movePrev() {
// Try to go left
DecodedNode *n = node->getLeft(reader->arena);
if(n != nullptr) {
// Go right as far as possible
while(n != nullptr) {
node = n;
n = n->getRight(reader->arena);
}
return true;
}
// Follow parent links until a lesser parent is found
while(node->parent != nullptr) {
bool lesserParent = node->parent->right == node;
node = node->parent;
if(lesserParent) {
return true;
}
}
node = nullptr;
return false;
}
};
// Returns number of bytes written
int build(const T *begin, const T *end, const T *prev, const T *next) {
//printf("tree size: %d node size: %d\n", sizeof(DeltaTree), sizeof(Node));
int count = end - begin;
initialDepth = (uint8_t)log2(count) + 1;
// The boundary leading to the new page acts as the last time we branched right
if(begin != end) {
nodeBytes = build(*root, begin, end, prev, next);
}
else {
nodeBytes = 0;
}
return size();
}
private:
static OffsetT build(Node &root, const T *begin, const T *end, const T *prev, const T *next) {
//printf("build: %s to %s\n", begin->toString().c_str(), (end - 1)->toString().c_str());
//printf("build: root at %p sizeof(Node) %d delta at %p \n", &root, sizeof(Node), root.delta);
ASSERT(end != begin);
int count = end - begin;
// Find key to be stored in root
int mid = perfectSubtreeSplitPointCached(count);
const T &item = begin[mid];
item.writeDelta(*root.delta, *prev, *next);
//printf("Serialized %s to %p\n", item.toString().c_str(), root.delta);
// Delta can have variable size, so calculate wptr which is where to write to next
int deltaSize = root.delta->size();
uint8_t *wptr = (uint8_t *)root.delta + deltaSize;
// Serialize left child
if(count > 1) {
wptr += build(*(Node *)wptr, begin, begin + mid, prev, &item);
root.leftChildOffset = deltaSize;
}
else {
root.leftChildOffset = 0;
}
// Serialize right child
if(count > 2) {
root.rightChildOffset = wptr - (uint8_t *)root.delta;
wptr += build(*(Node *)wptr, begin + mid + 1, end, &item, next);
}
else {
root.rightChildOffset = 0;
}
return wptr - (uint8_t *)&root;
}
};