foundationdb/fdbserver/networktest.actor.cpp

658 lines
20 KiB
C++
Raw Normal View History

2017-05-26 04:48:44 +08:00
/*
* networktest.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
2017-05-26 04:48:44 +08:00
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
2017-05-26 04:48:44 +08:00
* http://www.apache.org/licenses/LICENSE-2.0
*
2017-05-26 04:48:44 +08:00
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
2021-11-18 06:45:48 +08:00
#include "contrib/fmt-8.0.1/include/fmt/format.h"
#include "fdbserver/NetworkTest.h"
#include "flow/Knobs.h"
#include "flow/actorcompiler.h" // This must be the last #include.
#include "flow/ActorCollection.h"
#include "flow/UnitTest.h"
#include <inttypes.h>
2017-05-26 04:48:44 +08:00
constexpr int WLTOKEN_NETWORKTEST = WLTOKEN_FIRST_AVAILABLE;
2017-05-26 04:48:44 +08:00
2020-02-20 02:55:05 +08:00
struct LatencyStats {
using sample = double;
double x = 0;
double x2 = 0;
double n = 0;
sample tick() {
// now() returns the timestamp when we were scheduled; count
// all that time against this sample.
return now();
}
void tock(sample tick) {
// time_monotonic returns the timestamp when it was called;
// count the time it took us to be dispatched and invoke
// timer_monotonic
double delta = timer_monotonic() - tick;
x += delta;
x2 += (delta * delta);
n++;
}
2020-02-20 02:55:05 +08:00
void reset() { *this = LatencyStats(); }
double count() { return n; }
double mean() { return x / n; }
double stddev() { return sqrt(x2 / n - (x / n) * (x / n)); }
};
NetworkTestInterface::NetworkTestInterface(NetworkAddress remote)
: test(Endpoint::wellKnown({ remote }, WLTOKEN_NETWORKTEST)) {}
2017-05-26 04:48:44 +08:00
NetworkTestInterface::NetworkTestInterface(INetwork* local) {
test.makeWellKnownEndpoint(WLTOKEN_NETWORKTEST, TaskPriority::DefaultEndpoint);
2017-05-26 04:48:44 +08:00
}
ACTOR Future<Void> networkTestServer() {
state NetworkTestInterface interf(g_network);
state Future<Void> logging = delay(1.0);
2017-05-26 04:48:44 +08:00
state double lastTime = now();
state int sent = 0;
2020-02-20 02:55:05 +08:00
state LatencyStats latency;
2017-05-26 04:48:44 +08:00
loop {
choose {
when(NetworkTestRequest req = waitNext(interf.test.getFuture())) {
2020-02-20 02:55:05 +08:00
LatencyStats::sample sample = latency.tick();
req.reply.send(NetworkTestReply(Value(std::string(req.replySize, '.'))));
latency.tock(sample);
2017-05-26 04:48:44 +08:00
sent++;
}
when(wait(logging)) {
2017-05-26 04:48:44 +08:00
auto spd = sent / (now() - lastTime);
if (FLOW_KNOBS->NETWORK_TEST_SCRIPT_MODE) {
2020-02-20 02:55:05 +08:00
fprintf(stderr, "%f\t%.3f\t%.3f\n", spd, latency.mean() * 1e6, latency.stddev() * 1e6);
} else {
2020-02-20 02:55:05 +08:00
fprintf(stderr, "responses per second: %f (%f us)\n", spd, latency.mean() * 1e6);
}
latency.reset();
2017-05-26 04:48:44 +08:00
lastTime = now();
sent = 0;
logging = delay(1.0);
2017-05-26 04:48:44 +08:00
}
}
}
}
ACTOR Future<Void> networkTestStreamingServer() {
state NetworkTestInterface interf(g_network);
state Future<Void> logging = delay(1.0);
state double lastTime = now();
state int sent = 0;
state LatencyStats latency;
loop {
try {
choose {
when(state NetworkTestStreamingRequest req = waitNext(interf.testStream.getFuture())) {
state LatencyStats::sample sample = latency.tick();
state int i = 0;
for (; i < 100; ++i) {
wait(req.reply.onReady());
req.reply.send(NetworkTestStreamingReply{ i });
}
req.reply.sendError(end_of_stream());
latency.tock(sample);
sent++;
}
when(wait(logging)) {
auto spd = sent / (now() - lastTime);
if (FLOW_KNOBS->NETWORK_TEST_SCRIPT_MODE) {
fprintf(stderr, "%f\t%.3f\t%.3f\n", spd, latency.mean() * 1e6, latency.stddev() * 1e6);
} else {
fprintf(stderr, "responses per second: %f (%f us)\n", spd, latency.mean() * 1e6);
}
latency.reset();
lastTime = now();
sent = 0;
logging = delay(1.0);
}
}
} catch (Error& e) {
if (e.code() != error_code_operation_obsolete) {
throw e;
}
}
}
}
2020-02-20 02:55:05 +08:00
static bool moreRequestsPending(int count) {
if (count == -1) {
return false;
} else {
int request_count = FLOW_KNOBS->NETWORK_TEST_REQUEST_COUNT;
return (!request_count) || count < request_count;
}
}
2020-02-20 02:55:05 +08:00
static bool moreLoggingNeeded(int count, int iteration) {
if (FLOW_KNOBS->NETWORK_TEST_SCRIPT_MODE) {
return iteration <= 2;
} else {
2020-02-20 02:55:05 +08:00
return moreRequestsPending(count);
}
}
ACTOR Future<Void> testClient(std::vector<NetworkTestInterface> interfs,
int* sent,
int* completed,
2020-02-20 02:55:05 +08:00
LatencyStats* latency) {
state std::string request_payload(FLOW_KNOBS->NETWORK_TEST_REQUEST_SIZE, '.');
state LatencyStats::sample sample;
2020-02-20 02:55:05 +08:00
while (moreRequestsPending(*sent)) {
2017-05-26 04:48:44 +08:00
(*sent)++;
sample = latency->tick();
2020-02-20 02:55:05 +08:00
NetworkTestReply rep = wait(
retryBrokenPromise(interfs[deterministicRandom()->randomInt(0, interfs.size())].test,
NetworkTestRequest(StringRef(request_payload), FLOW_KNOBS->NETWORK_TEST_REPLY_SIZE)));
latency->tock(sample);
(*completed)++;
2017-05-26 04:48:44 +08:00
}
return Void();
2017-05-26 04:48:44 +08:00
}
ACTOR Future<Void> testClientStream(std::vector<NetworkTestInterface> interfs,
int* sent,
int* completed,
LatencyStats* latency) {
state std::string request_payload(FLOW_KNOBS->NETWORK_TEST_REQUEST_SIZE, '.');
state LatencyStats::sample sample;
while (moreRequestsPending(*sent)) {
(*sent)++;
sample = latency->tick();
state ReplyPromiseStream<NetworkTestStreamingReply> stream =
interfs[deterministicRandom()->randomInt(0, interfs.size())].testStream.getReplyStream(
NetworkTestStreamingRequest{});
state int j = 0;
try {
loop {
NetworkTestStreamingReply rep = waitNext(stream.getFuture());
ASSERT(rep.index == j++);
}
} catch (Error& e) {
ASSERT(e.code() == error_code_end_of_stream || e.code() == error_code_connection_failed);
}
latency->tock(sample);
(*completed)++;
}
return Void();
}
2020-02-20 02:55:05 +08:00
ACTOR Future<Void> logger(int* sent, int* completed, LatencyStats* latency) {
2017-05-26 04:48:44 +08:00
state double lastTime = now();
state int logged = 0;
state int iteration = 0;
2020-02-20 02:55:05 +08:00
while (moreLoggingNeeded(logged, ++iteration)) {
wait(delay(1.0));
2020-02-20 02:55:05 +08:00
auto spd = (*completed - logged) / (now() - lastTime);
if (FLOW_KNOBS->NETWORK_TEST_SCRIPT_MODE) {
if (iteration == 2) {
// We don't report the first iteration because of warm-up effects.
2020-02-20 02:55:05 +08:00
printf("%f\t%.3f\t%.3f\n", spd, latency->mean() * 1e6, latency->stddev() * 1e6);
}
} else {
2020-02-20 02:55:05 +08:00
fprintf(stderr, "messages per second: %f (%6.3f us)\n", spd, latency->mean() * 1e6);
}
latency->reset();
2017-05-26 04:48:44 +08:00
lastTime = now();
logged = *completed;
2017-05-26 04:48:44 +08:00
}
// tell the clients to shut down
*sent = -1;
return Void();
2017-05-26 04:48:44 +08:00
}
static void networkTestnanosleep() {
2017-05-26 04:48:44 +08:00
printf("nanosleep speed test\n");
#ifdef __linux__
printf("\nnanosleep(10) latencies:");
for (int i = 0; i < 10; i++) {
double before = timer_monotonic();
timespec tv;
tv.tv_sec = 0;
tv.tv_nsec = 10;
2020-08-19 05:18:50 +08:00
nanosleep(&tv, nullptr);
2017-05-26 04:48:44 +08:00
double after = timer_monotonic();
printf(" %0.3lf", (after - before) * 1e6);
2017-05-26 04:48:44 +08:00
}
printf("\nnanosleep(10) latency after 5ms spin:");
for (int i = 0; i < 10; i++) {
double a = timer_monotonic() + 5e-3;
while (timer_monotonic() < a) {
}
2017-05-26 04:48:44 +08:00
double before = timer_monotonic();
timespec tv;
tv.tv_sec = 0;
tv.tv_nsec = 10;
2020-08-19 05:18:50 +08:00
nanosleep(&tv, nullptr);
2017-05-26 04:48:44 +08:00
double after = timer_monotonic();
printf(" %0.3lf", (after - before) * 1e6);
2017-05-26 04:48:44 +08:00
}
printf("\nnanosleep(20000) latency:");
for (int i = 0; i < 10; i++) {
double before = timer_monotonic();
timespec tv;
tv.tv_sec = 0;
tv.tv_nsec = 20000;
2020-08-19 05:18:50 +08:00
nanosleep(&tv, nullptr);
2017-05-26 04:48:44 +08:00
double after = timer_monotonic();
printf(" %0.3lf", (after - before) * 1e6);
2017-05-26 04:48:44 +08:00
}
printf("\n");
printf("nanosleep(20000) loop\n");
while (true) {
timespec tv;
tv.tv_sec = 0;
tv.tv_nsec = 20000;
2020-08-19 05:18:50 +08:00
nanosleep(&tv, nullptr);
2017-05-26 04:48:44 +08:00
}
#endif
return;
}
ACTOR Future<Void> networkTestClient(std::string testServers) {
2017-05-26 04:48:44 +08:00
if (testServers == "nanosleep") {
networkTestnanosleep();
// return Void();
2017-05-26 04:48:44 +08:00
}
state std::vector<NetworkTestInterface> interfs;
state std::vector<NetworkAddress> servers = NetworkAddress::parseList(testServers);
state int sent = 0;
state int completed = 0;
2020-02-20 02:55:05 +08:00
state LatencyStats latency;
2017-05-26 04:48:44 +08:00
interfs.reserve(servers.size());
for (int i = 0; i < servers.size(); i++) {
interfs.push_back(NetworkTestInterface(servers[i]));
2017-05-26 04:48:44 +08:00
}
state std::vector<Future<Void>> clients;
clients.reserve(FLOW_KNOBS->NETWORK_TEST_CLIENT_COUNT);
2020-02-20 02:55:05 +08:00
for (int i = 0; i < FLOW_KNOBS->NETWORK_TEST_CLIENT_COUNT; i++) {
clients.push_back(testClient(interfs, &sent, &completed, &latency));
}
2020-02-20 02:55:05 +08:00
clients.push_back(logger(&sent, &completed, &latency));
2017-05-26 04:48:44 +08:00
wait(waitForAll(clients));
2017-05-26 04:48:44 +08:00
return Void();
2018-04-07 07:50:58 +08:00
}
struct RandomIntRange {
int min;
int max;
RandomIntRange(int low = 0, int high = 0) : min(low), max(high) {}
// Accepts strings of the form "min:max" or "N"
// where N will be used for both min and max
RandomIntRange(std::string str) {
StringRef high = str;
StringRef low = high.eat(":");
if (high.size() == 0) {
high = low;
}
min = low.size() == 0 ? 0 : atol(low.toString().c_str());
max = high.size() == 0 ? 0 : atol(high.toString().c_str());
if (min > max) {
std::swap(min, max);
}
}
int get() const { return (max == 0) ? 0 : nondeterministicRandom()->randomInt(min, max + 1); }
std::string toString() const { return format("%d:%d", min, max); }
};
struct P2PNetworkTest {
// Addresses to listen on
std::vector<Reference<IListener>> listeners;
// Addresses to randomly connect to
std::vector<NetworkAddress> remotes;
// Number of outgoing connections to maintain
int connectionsOut;
// Message size range to send on outgoing established connections
RandomIntRange requestBytes;
// Message size to reply with on incoming established connections
RandomIntRange replyBytes;
// Number of requests/replies per session
RandomIntRange requests;
// Delay after message send and receive are complete before closing connection
RandomIntRange idleMilliseconds;
// Random delay before socket reads
RandomIntRange waitReadMilliseconds;
// Random delay before socket writes
RandomIntRange waitWriteMilliseconds;
double startTime;
int64_t bytesSent;
int64_t bytesReceived;
int sessionsIn;
int sessionsOut;
int connectErrors;
int acceptErrors;
int sessionErrors;
Standalone<StringRef> msgBuffer;
2020-06-23 04:37:13 +08:00
std::string statsString() {
double elapsed = now() - startTime;
std::string s = format(
"%.2f MB/s bytes in %.2f MB/s bytes out %.2f/s completed sessions in %.2f/s completed sessions out ",
bytesReceived / elapsed / 1e6,
bytesSent / elapsed / 1e6,
sessionsIn / elapsed,
sessionsOut / elapsed);
s += format("Total Errors %d connect=%d accept=%d session=%d",
connectErrors + acceptErrors + sessionErrors,
connectErrors,
acceptErrors,
sessionErrors);
2020-06-23 04:37:13 +08:00
bytesSent = 0;
bytesReceived = 0;
sessionsIn = 0;
sessionsOut = 0;
startTime = now();
return s;
}
P2PNetworkTest() {}
P2PNetworkTest(std::string listenerAddresses,
std::string remoteAddresses,
int connectionsOut,
RandomIntRange sendMsgBytes,
RandomIntRange recvMsgBytes,
RandomIntRange requests,
RandomIntRange idleMilliseconds,
RandomIntRange waitReadMilliseconds,
RandomIntRange waitWriteMilliseconds)
: connectionsOut(connectionsOut), requestBytes(sendMsgBytes), replyBytes(recvMsgBytes), requests(requests),
idleMilliseconds(idleMilliseconds), waitReadMilliseconds(waitReadMilliseconds),
waitWriteMilliseconds(waitWriteMilliseconds) {
bytesSent = 0;
bytesReceived = 0;
sessionsIn = 0;
sessionsOut = 0;
connectErrors = 0;
acceptErrors = 0;
sessionErrors = 0;
msgBuffer = makeString(std::max(sendMsgBytes.max, recvMsgBytes.max));
if (!remoteAddresses.empty()) {
remotes = NetworkAddress::parseList(remoteAddresses);
}
if (!listenerAddresses.empty()) {
for (auto a : NetworkAddress::parseList(listenerAddresses)) {
listeners.push_back(INetworkConnections::net()->listen(a));
}
}
}
NetworkAddress randomRemote() { return remotes[nondeterministicRandom()->randomInt(0, remotes.size())]; }
ACTOR static Future<Standalone<StringRef>> readMsg(P2PNetworkTest* self, Reference<IConnection> conn) {
state Standalone<StringRef> buffer = makeString(sizeof(int));
state int writeOffset = 0;
state bool gotHeader = false;
// Fill buffer sequentially until the initial bytesToRead is read (or more), then read
// intended message size and add it to bytesToRead, continue if needed until bytesToRead is 0.
loop {
int stutter = self->waitReadMilliseconds.get();
if (stutter > 0) {
wait(delay(stutter / 1e3));
}
int len = conn->read((uint8_t*)buffer.begin() + writeOffset, (uint8_t*)buffer.end());
writeOffset += len;
self->bytesReceived += len;
// If buffer is complete, either process it as a header or return it
if (writeOffset == buffer.size()) {
if (gotHeader) {
return buffer;
} else {
gotHeader = true;
int msgSize = *(int*)buffer.begin();
if (msgSize == 0) {
return Standalone<StringRef>();
}
buffer = makeString(msgSize);
writeOffset = 0;
}
}
if (len == 0) {
wait(conn->onReadable());
wait(delay(0, TaskPriority::ReadSocket));
}
}
}
ACTOR static Future<Void> writeMsg(P2PNetworkTest* self, Reference<IConnection> conn, StringRef msg) {
state UnsentPacketQueue packets;
PacketWriter writer(packets.getWriteBuffer(msg.size()), nullptr, Unversioned());
writer.serializeBinaryItem((int)msg.size());
writer.serializeBytes(msg);
loop {
int stutter = self->waitWriteMilliseconds.get();
if (stutter > 0) {
wait(delay(stutter / 1e3));
}
int sent = conn->write(packets.getUnsent(), FLOW_KNOBS->MAX_PACKET_SEND_BYTES);
if (sent != 0) {
self->bytesSent += sent;
packets.sent(sent);
}
if (packets.empty()) {
break;
}
wait(conn->onWritable());
wait(yield(TaskPriority::WriteSocket));
}
return Void();
}
ACTOR static Future<Void> doSession(P2PNetworkTest* self, Reference<IConnection> conn, bool incoming) {
state int numRequests;
try {
if (incoming) {
2020-06-23 04:37:13 +08:00
wait(conn->acceptHandshake());
// Read the number of requests for the session
Standalone<StringRef> buf = wait(readMsg(self, conn));
ASSERT(buf.size() == sizeof(int));
numRequests = *(int*)buf.begin();
2020-06-23 04:37:13 +08:00
} else {
wait(conn->connectHandshake());
// Pick the number of requests for the session and send it to remote
numRequests = self->requests.get();
wait(writeMsg(self, conn, StringRef((const uint8_t*)&numRequests, sizeof(int))));
2020-06-23 04:37:13 +08:00
}
while (numRequests > 0) {
if (incoming) {
// Wait for a request
wait(success(readMsg(self, conn)));
// Send a reply
wait(writeMsg(self, conn, self->msgBuffer.substr(0, self->replyBytes.get())));
} else {
// Send a request
wait(writeMsg(self, conn, self->msgBuffer.substr(0, self->requestBytes.get())));
// Wait for a reply
wait(success(readMsg(self, conn)));
}
if (--numRequests == 0) {
break;
}
}
wait(delay(self->idleMilliseconds.get() / 1e3));
conn->close();
if (incoming) {
++self->sessionsIn;
} else {
++self->sessionsOut;
}
} catch (Error& e) {
++self->sessionErrors;
TraceEvent(SevError, incoming ? "P2PIncomingSessionError" : "P2POutgoingSessionError")
.detail("Remote", conn->getPeerAddress())
.error(e);
}
return Void();
}
ACTOR static Future<Void> outgoing(P2PNetworkTest* self) {
loop {
wait(delay(0, TaskPriority::WriteSocket));
state NetworkAddress remote = self->randomRemote();
try {
state Reference<IConnection> conn = wait(INetworkConnections::net()->connect(remote));
// printf("Connected to %s\n", remote.toString().c_str());
2020-06-23 04:37:13 +08:00
wait(doSession(self, conn, false));
} catch (Error& e) {
++self->connectErrors;
TraceEvent(SevError, "P2POutgoingError").detail("Remote", remote).error(e);
wait(delay(1));
}
}
}
ACTOR static Future<Void> incoming(P2PNetworkTest* self, Reference<IListener> listener) {
state ActorCollection sessions(false);
loop {
wait(delay(0, TaskPriority::AcceptSocket));
try {
state Reference<IConnection> conn = wait(listener->accept());
// printf("Connected from %s\n", conn->getPeerAddress().toString().c_str());
2020-06-23 04:37:13 +08:00
sessions.add(doSession(self, conn, true));
} catch (Error& e) {
++self->acceptErrors;
TraceEvent(SevError, "P2PIncomingError").detail("Listener", listener->getListenAddress()).error(e);
}
}
}
ACTOR static Future<Void> run_impl(P2PNetworkTest* self) {
state ActorCollection actors(false);
self->startTime = now();
2021-11-18 06:45:48 +08:00
fmt::print("{0} listeners, {1} remotes, {2} outgoing connections\n",
self->listeners.size(),
self->remotes.size(),
self->connectionsOut);
for (auto n : self->remotes) {
printf("Remote: %s\n", n.toString().c_str());
}
for (auto el : self->listeners) {
printf("Listener: %s\n", el->getListenAddress().toString().c_str());
actors.add(incoming(self, el));
}
printf("Request size: %s\n", self->requestBytes.toString().c_str());
printf("Response size: %s\n", self->replyBytes.toString().c_str());
printf("Requests per outgoing session: %s\n", self->requests.toString().c_str());
printf("Delay before socket read: %s\n", self->waitReadMilliseconds.toString().c_str());
printf("Delay before socket write: %s\n", self->waitWriteMilliseconds.toString().c_str());
printf("Delay before session close: %s\n", self->idleMilliseconds.toString().c_str());
printf("Send/Recv size %d bytes\n", FLOW_KNOBS->MAX_PACKET_SEND_BYTES);
if ((self->remotes.empty() || self->connectionsOut == 0) && self->listeners.empty()) {
printf("No listeners and no remotes or connectionsOut, so there is nothing to do!\n");
ASSERT((!self->remotes.empty() && (self->connectionsOut > 0)) || !self->listeners.empty());
}
if (!self->remotes.empty()) {
for (int i = 0; i < self->connectionsOut; ++i) {
actors.add(outgoing(self));
}
}
loop {
wait(delay(1.0, TaskPriority::Max));
printf("%s\n", self->statsString().c_str());
}
}
Future<Void> run() { return run_impl(this); }
};
// Peer-to-Peer network test.
// One or more instances can be run and set to talk to each other.
// Each instance
// - listens on 0 or more listenerAddresses
// - maintains 0 or more connectionsOut at a time, each to a random choice from remoteAddresses
// Address lists are a string of comma-separated IP:port[:tls] strings.
//
// The other arguments can be specified as "fixedValue" or "minValue:maxValue".
// Each outgoing connection will live for a random requests count.
// Each request will
// - send a random requestBytes sized message
// - wait for a random replyBytes sized response.
// The client will close the connection after a random idleMilliseconds.
// Reads and writes can optionally preceded by random delays, waitReadMilliseconds and waitWriteMilliseconds.
TEST_CASE(":/network/p2ptest") {
state P2PNetworkTest p2p(params.get("listenerAddresses").orDefault(""),
params.get("remoteAddresses").orDefault(""),
params.getInt("connectionsOut").orDefault(1),
params.get("requestBytes").orDefault("50:100"),
params.get("replyBytes").orDefault("500:1000"),
params.get("requests").orDefault("10:10000"),
params.get("idleMilliseconds").orDefault("0"),
params.get("waitReadMilliseconds").orDefault("0"),
params.get("waitWriteMilliseconds").orDefault("0"));
wait(p2p.run());
return Void();
}