## Change
Use awaitility in `EmbeddingStoreIT`
## General checklist
- [X] There are no breaking changes
- [X] I have added unit and integration tests for my change
- [x] I have manually run all the unit and integration tests in the
module I have added/changed, and they are all green
- [x] I have manually run all the unit and integration tests in the
[core]
## Issue
Closes#1066
## Change
These are changes for each split package (each change was done in a
separate commit, so they can be reviewed in isolation):
- `dev.langchain4j.retriever` -> Moved `EmbeddingStoreRetriever` into
`langchain4j-core` module
- `dev.langchain4j.agent.tool` -> Moved `DefaultToolExecutor` and
`ToolExecutor` into `dev.langchain4j.service.tool` package
- `dev.langchain4j.classification` -> Moved `TextClassifier` into
`langchian4j` module
- `dev.langchain4j.chain` -> Moved `Chain` into `langchain4j` module
- `dev.langchain4j.model.embedding` -> [All in-process embedding models
should have unique package
name](https://github.com/langchain4j/langchain4j-embeddings/pull/33)
- `dev.langchain4j.model.output` -> Moved `OutputParser` and all it's
implementations into `dev.langchain4j.service.output` package of the
`langchain4j` module
More details can be found
[here](https://docs.google.com/spreadsheets/d/1U7f2MIfDgWA1tydPpzWpOGTHiBjBVZjsu0uZnXBT9qE/edit?usp=sharing).
## Breaking Changes
- All in-process ONNX model classes moved into their own unique
packages:
- `AllMiniLmL6V2EmbeddingModel` moved into
`dev.langchain4j.model.embedding.onnx.allminilml6v2`
- `AllMiniLmL6V2QuantizedEmbeddingModel` moved into
`dev.langchain4j.model.embedding.onnx.allminilml6v2q`
- `OnnxEmbeddingModel` moved into `dev.langchain4j.model.embedding.onnx`
package
- etc
- `ToolExecutor` and `DefaultToolExecutor` moved into
`dev.langchain4j.service.tool` package
- Moved `OutputParser` and all it's implementations into
`dev.langchain4j.service.output` package of the `langchain4j` module
- Moved `Chain` into `langchain4j` module
- Moved `TextClassifier` into `langchian4j` module
## General checklist
- [ ] There are no breaking changes
- [ ] I have added unit and integration tests for my change
- [X] I have manually run all the unit and integration tests in the
module I have added/changed, and they are all green
- [X] I have manually run all the unit and integration tests in the
[core](https://github.com/langchain4j/langchain4j/tree/main/langchain4j-core)
and
[main](https://github.com/langchain4j/langchain4j/tree/main/langchain4j)
modules, and they are all green
<!-- Before adding documentation and example(s) (below), please wait
until the PR is reviewed and approved. -->
- [ ] I have added/updated the
[documentation](https://github.com/langchain4j/langchain4j/tree/main/docs/docs)
- [ ] I have added an example in the [examples
repo](https://github.com/langchain4j/langchain4j-examples) (only for
"big" features)
- [ ] I have added/updated [Spring Boot
starter(s)](https://github.com/langchain4j/langchain4j-spring) (if
applicable)
This is small refactoring
There are bunch of places where use deprecated methods.
These changes fix this issue.
## General checklist
<!-- Please double-check the following points and mark them like this:
[X] -->
- [x] There are no breaking changes
- [ ] I have added unit and integration tests for my change
- [x] I have manually run all the unit and integration tests in the
module I have added/changed, and they are all green
- [x] I have manually run all the unit and integration tests in the
[core](https://github.com/langchain4j/langchain4j/tree/main/langchain4j-core)
and
[main](https://github.com/langchain4j/langchain4j/tree/main/langchain4j)
modules, and they are all green
<!-- Before adding documentation and example(s) (below), please wait
until the PR is reviewed and approved. -->
- [ ] I have added/updated the
[documentation](https://github.com/langchain4j/langchain4j/tree/main/docs/docs)
- [ ] I have added an example in the [examples
repo](https://github.com/langchain4j/langchain4j-examples) (only for
"big" features)
## Issue
https://github.com/langchain4j/langchain4j/issues/232
## Change
An experimental `SqlDatabaseContentRetriever` has been added.
Simplest usage example:
```java
ContentRetriever contentRetriever = SqlDatabaseContentRetriever.builder()
.dataSource(dataSource)
.chatLanguageModel(openAiChatModel)
.build();
```
In this case SQL dialect and table structure will be determined from the
`DataSource`.
But it can be customized:
```java
ContentRetriever contentRetriever = SqlDatabaseContentRetriever.builder()
.dataSource(dataSource)
.sqlDialect("PostgreSQL")
.databaseStructure(...)
.promptTemplate(...)
.chatLanguageModel(openAiChatModel)
.maxRetries(2)
.build();
```
See `SqlDatabaseContentRetrieverIT` for a full example.
## General checklist
<!-- Please double-check the following points and mark them like this:
[X] -->
- [X] There are no breaking changes
- [X] I have added unit and integration tests for my change
- [X] I have manually run all the unit and integration tests in the
module I have added/changed, and they are all green
- [X] I have manually run all the unit and integration tests in the
[core](https://github.com/langchain4j/langchain4j/tree/main/langchain4j-core)
and
[main](https://github.com/langchain4j/langchain4j/tree/main/langchain4j)
modules, and they are all green
<!-- Before adding documentation and example(s) (below), please wait
until the PR is reviewed and approved. -->
- [ ] I have added/updated the
[documentation](https://github.com/langchain4j/langchain4j/tree/main/docs/docs)
- [ ] I have added an example in the [examples
repo](https://github.com/langchain4j/langchain4j-examples) (only for
"big" features)
## Checklist for adding new model integration
<!-- Please double-check the following points and mark them like this:
[X] -->
- [X] I have added my new module in the
[BOM](https://github.com/langchain4j/langchain4j/blob/main/langchain4j-bom/pom.xml)
## New EmbeddingStore (metadata) `Filter` API
Many embedding stores, such as
[Pinecone](https://docs.pinecone.io/docs/metadata-filtering) and
[Milvus](https://milvus.io/docs/boolean.md) support strict filtering
(think of an SQL "WHERE" clause) during similarity search.
So, if one has an embedding store with movies, for example, one could
search not only for the most semantically similar movies to the given
user query but also apply strict filtering by metadata fields like year,
genre, rating, etc. In this case, the similarity search will be
performed only on those movies that match the filter expression.
Since LangChain4j supports (and abstracts away) many embedding stores,
there needs to be an embedding-store-agnostic way for users to define
the filter expression.
This PR introduces a `Filter` interface, which can represent both simple
(e.g., `type = "documentation"`) and composite (e.g., `type in
("documentation", "tutorial") AND year > 2020`) filter expressions in an
embedding-store-agnostic manner.
`Filter` currently supports the following operations:
- Comparison:
- `IsEqualTo`
- `IsNotEqualTo`
- `IsGreaterThan`
- `IsGreaterThanOrEqualTo`
- `IsLessThan`
- `IsLessThanOrEqualTo`
- `IsIn`
- `IsNotIn`
- Logical:
- `And`
- `Not`
- `Or`
These operations are supported by most embedding stores and serve as a
good starting point. However, the list of operations will expand over
time to include other operations (e.g., `Contains`) supported by
embedding stores.
Currently, the DSL looks like this:
```java
Filter onlyDocs = metadataKey("type").isEqualTo("documentation");
Filter docsAndTutorialsAfter2020 = metadataKey("type").isIn("documentation", "tutorial").and(metadataKey("year").isGreaterThan(2020));
// or
Filter docsAndTutorialsAfter2020 = and(
metadataKey("type").isIn("documentation", "tutorial"),
metadataKey("year").isGreaterThan(2020)
);
```
## Filter expression as a `String`
Filter expression can also be specified as a `String`. This might be
necessary, for example, if the filter expression is generated
dynamically by the application or by the LLM (as in [self
querying](https://python.langchain.com/docs/modules/data_connection/retrievers/self_query/)).
This PR introduces a `FilterParser` interface with a simple `Filter
parse(String)` API, allowing for future support of multiple syntaxes (if
this will be required).
For the out-of-the-box filter syntax, ANSI SQL's `WHERE` clause is
proposed as a suitable candidate for several reasons:
- SQL is well-known among Java developers
- There is extensive tooling available for SQL (e.g., parsers)
- LLMs are pretty good at generating valid SQL, as there are tons of SQL
queries on the internet, which are included in the LLM training
datasets. There are also specialized LLMs that are trained for
text-to-SQL task, such as [SQLCoder](https://huggingface.co/defog).
The downside is that SQL's `WHERE` clause might not support all
operations and data types that could be supported in the future by
various embedding stores. In such case, we could extend it to a superset
of ANSI SQL `WHERE` syntax and/or provide an option to express filters
in the native syntax of the store.
An out-of-the-box implementation of the SQL `FilterParser` is provided
as a `SqlFilterParser` in a separate module
`langchain4j-embedding-store-filter-parser-sql`, using
[JSqlParser](https://github.com/JSQLParser/JSqlParser) under the hood.
`SqlFilterParser` can parse SQL "SELECT" (or just "WHERE" clause)
statement into a `Filter` object:
- `SELECT * FROM fake_table WHERE userId = '123-456'` ->
`metadataKey("userId").isEqualTo("123-456")`
- `userId = '123-456'` -> `metadataKey("userId").isEqualTo("123-456")`
It can also resolve `CURDATE()` and
`CURRENT_DATE`/`CURRENT_TIME`/`CURRENT_TIMESTAMP`:
`SELECT * FROM fake_table WHERE year = EXTRACT(YEAR FROM CURRENT_DATE`
-> `metadataKey("year").isEqualTo(LocalDate.now().getYear())`
## Changes in `Metadata` API
Until now, `Metadata` supported only `String` values. This PR expands
the list of supported value types to `Integer`, `Long`, `Float` and
`Double`. In the future, more types may be added (if needed).
The method `String get(String key)` will be deprecated later in favor
of:
- `String getString(String key)`
- `Integer getInteger(String key)`
- `Long getLong(String key)`
- etc
New overloaded `put(key, value)` methods are introduced to support more
value types:
- `put(String key, int value)`
- `put(String key, long value)`
- etc
## Changes in `EmbeddingStore` API
New method `search` is added that will become the main entry point for
search in the future. All `findRelevant` methods will be deprecated
later.
New `search` method accepts `EmbeddingSearchRequest` and returns
`EmbeddingSearchResult`.
`EmbeddingSearchRequest` contains all search criteria (e.g.
`maxResults`, `minScore`), including new `Filter`.
`EmbeddingSearchResult` contains a list of `EmbeddingMatch`.
```java
EmbeddingSearchResult search(EmbeddingSearchRequest request);
```
## Changes in `EmbeddingStoreContentRetriever` API
`EmbeddingStoreContentRetriever` can now be configured with a static
`filter` as well as dynamic `dynamicMaxResults`, `dynamicMinScore` and
`dynamicFilter` in the builder:
```java
ContentRetriever contentRetriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
...
.maxResults(3)
// or
.dynamicMaxResults(query -> 3) // You can define maxResults dynamically. The value could, for example, depend on the query or the user associated with the query.
...
.minScore(0.3)
// or
.dynamicMinScore(query -> 0.3)
...
.filter(metadataKey("userId").isEqualTo("123-456")) // Assuming your TextSegments contain Metadata with key "userId"
// or
.dynamicFilter(query -> metadataKey("userId").isEqualTo(query.metadata().chatMemoryId().toString()))
...
.build();
```
So now you can define `maxResults`, `minScore` and `filter` both
statically and dynamically (they can depend on the query, user, etc.).
These values will be propagated to the underlying `EmbeddingStore`.
##
["Self-querying"](https://python.langchain.com/docs/modules/data_connection/retrievers/self_query/)
This PR also introduces `LanguageModelSqlFilterBuilder` in
`langchain4j-embedding-store-filter-parser-sql` module which can be used
with `EmbeddingStoreContentRetriever`'s `dynamicFilter` to automatically
build a `Filter` object from the `Query` using language model and
`SqlFilterParser`.
For example:
```java
TextSegment groundhogDay = TextSegment.from("Groundhog Day", new Metadata().put("genre", "comedy").put("year", 1993));
TextSegment forrestGump = TextSegment.from("Forrest Gump", new Metadata().put("genre", "drama").put("year", 1994));
TextSegment dieHard = TextSegment.from("Die Hard", new Metadata().put("genre", "action").put("year", 1998));
// describe metadata keys as if they were columns in the SQL table
TableDefinition tableDefinition = TableDefinition.builder()
.name("movies")
.addColumn("genre", "VARCHAR", "one of [comedy, drama, action]")
.addColumn("year", "INT")
.build();
LanguageModelSqlFilterBuilder sqlFilterBuilder = new LanguageModelSqlFilterBuilder(model, tableDefinition);
ContentRetriever contentRetriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
.dynamicFilter(sqlFilterBuilder::build)
.build();
String answer = assistant.answer("Recommend me a good drama from 90s"); // Forrest Gump
```
## Which embedding store integrations will support `Filter`?
In the long run, all (provided the embedding store itself supports it).
In the first iteration, I aim to add support to just a few:
- `InMemoryEmbeddingStore`
- Elasticsearch
- Milvus
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit
## Summary by CodeRabbit
- **New Features**
- Introduced filters for checking key's value existence in a collection
for improved data handling.
- **Enhancements**
- Updated `InMemoryEmbeddingStoreTest` to extend a different class for
improved testing coverage and added a new test method.
- **Refactor**
- Made minor formatting adjustments in the assertion block for better
readability.
- **Documentation**
- Updated class hierarchy information for clarity.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
Hi! Noticed _almost all_ tests used AssertJ, but in some cases JUnit was
still used. In addition to that some tests don't use the most expressive
assertions. Figured clean that up such that you get better assertions if
any tests were to fail. Compare for instance
```diff
- assertThat(document.metadata().asMap().size()).isEqualTo(4);
+ assertThat(document.metadata().asMap()).hasSize(4);
```
The first one will print expected 5 to be equal to 4, whereas the second
one shows the contents of the map involved.
Being consistent with your test library also stops bad patterns from
repeating accidentally through copy-and-paste. If you want to enforce
these best practices through an automated pull request check that's also
an option. Let me know if you'd want that as well. Hope that helps!
with such a setting, you can safely build only once the whole project
with JDK 17 or even 21 without fearing any wrong API being injected in
.class files
In the Datastax Astra DB saas solution, a new way to integrate with
vector databases has been introduced: using an HTTP APi instead of the
Cassandra Cluster. It is called the DataAPI and use the MongoDB
principles with collections.
The pull request includes the following:
### Update on previous implementations
- Previous implementations of embedding stores have been grouped in a
single `CassandraEmbeddingStore`. It can be instantiated for Astra or
OSS Cassandra based on 2 different constructor builders but everything
else is the same.
- Previous implementations of chat memory stores have been grouped in a
single `CassandraChatMemoryStore`. It can be instantiated for Astra or
OSS Cassandra based on 2 different constructor builders but everything
else is the same.
- Integration test for OSS Cassandra now using test containers (as
Cassandra 5-alpha2 image is out)
- Usage
```java
// Using with Astra (Cassandra AAS in the cloud)
CassandraEmbeddingStore.builderAstra()
.token(token)
.databaseId(dbId)
.databaseRegion(TEST_REGION)
.keyspace(KEYSPACE)
.table(TEST_INDEX)
.dimension(11)
.metric(CassandraSimilarityMetric.COSINE)
.build();
// Using OSS Cassandra
CassandraEmbeddingStore.builder()
.contactPoints(Arrays.asList(contactPoint.getHostName()))
.port(contactPoint.getPort())
.localDataCenter(DATACENTER)
.keyspace(KEYSPACE)
.table(TEST_INDEX)
.dimension(11)
.metric(CassandraSimilarityMetric.COSINE)
.build();
```
-Adding jdk11 in the pom
```
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
```
- introducing `insertMany()`, distributed to all bulk loading
- Extending the variables `EmbeddingStoreIT`
- Using `MessageWindowChatMemory` for the tests.
- Change the order of the returned list for chat
- Improve `AstraDbEmbeddingStoreTest.java` that could actually failed if
the env environment was not set and we do not want that