Redis: more tests

This commit is contained in:
deep-learning-dynamo 2023-09-28 18:20:05 +02:00
parent cd5f405b75
commit f2b2f0214a
3 changed files with 239 additions and 62 deletions

View File

@ -46,14 +46,8 @@
</dependency>
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-junit-jupiter</artifactId>
<groupId>org.assertj</groupId>
<artifactId>assertj-core</artifactId>
<scope>test</scope>
</dependency>
@ -69,6 +63,21 @@
<scope>test</scope>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-embeddings-all-minilm-l6-v2-q</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<licenses>
<license>
<name>Apache-2.0</name>
<url>https://www.apache.org/licenses/LICENSE-2.0.txt</url>
<distribution>repo</distribution>
<comments>A business-friendly OSS license</comments>
</license>
</licenses>
</project>

View File

@ -219,7 +219,7 @@ public class RedisEmbeddingStore implements EmbeddingStore<TextSegment> {
private String user;
private String password;
private Integer dimension;
private List<String> metadataFieldsName;
private List<String> metadataFieldsName = new ArrayList<>();
/**
* @param host Redis Stack host

View File

@ -3,17 +3,24 @@ package dev.langchain4j.store.embedding.redis;
import dev.langchain4j.data.document.Metadata;
import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.internal.Utils;
import dev.langchain4j.model.embedding.AllMiniLmL6V2QuantizedEmbeddingModel;
import dev.langchain4j.model.embedding.EmbeddingModel;
import dev.langchain4j.store.embedding.CosineSimilarity;
import dev.langchain4j.store.embedding.EmbeddingMatch;
import dev.langchain4j.store.embedding.EmbeddingStore;
import dev.langchain4j.store.embedding.RelevanceScore;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.JedisPooled;
import java.util.List;
import static dev.langchain4j.internal.Utils.randomUUID;
import static java.util.Arrays.asList;
import static java.util.Collections.emptyList;
import static java.util.Collections.singletonList;
import static org.assertj.core.api.Assertions.assertThat;
import static org.assertj.core.data.Percentage.withPercentage;
@Disabled("needs Redis running locally")
class RedisEmbeddingStoreTest {
@ -24,73 +31,234 @@ class RedisEmbeddingStoreTest {
* docker run -d -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
*/
private final EmbeddingStore<TextSegment> store = new RedisEmbeddingStore(
"localhost",
6379,
"default",
"password",
4,
singletonList("field")
);
private static final String HOST = "localhost";
private static final int PORT = 6379;
private static final String METADATA_KEY = "test-key";
@Test
void testAdd() {
// test add without id
String id = store.add(Embedding.from(asList(0.50f, 0.85f, 0.760f, 0.24f)),
TextSegment.from("test string", Metadata.from("field", "value")));
System.out.println("id=" + id);
private EmbeddingStore<TextSegment> embeddingStore;
// test add with id
String selfId = Utils.randomUUID();
store.add(selfId, Embedding.from(asList(0.80f, 0.45f, 0.89f, 0.24f)));
System.out.println("id=" + selfId);
private final EmbeddingModel embeddingModel = new AllMiniLmL6V2QuantizedEmbeddingModel();
@BeforeEach
void initEmptyRedisEmbeddingStore() {
flushDB();
embeddingStore = RedisEmbeddingStore.builder()
.host(HOST)
.port(PORT)
.dimension(384)
.build();
}
private static void flushDB() {
try (JedisPooled jedis = new JedisPooled(HOST, PORT)) {
jedis.flushDB();
}
}
@Test
void testAddAll() {
// test add All Method without embedded
List<String> ids = store.addAll(asList(
Embedding.from(asList(0.3f, 0.87f, 0.90f, 0.24f)),
Embedding.from(asList(0.54f, 0.34f, 0.67f, 0.24f)),
Embedding.from(asList(0.80f, 0.45f, 0.779f, 0.5556f))
));
System.out.println("ids=" + ids);
void should_add_embedding() {
// test add all method with embedded
ids = store.addAll(asList(
Embedding.from(asList(0.3f, 0.87f, 0.90f, 0.24f)),
Embedding.from(asList(0.54f, 0.34f, 0.67f, 0.24f)),
Embedding.from(asList(0.80f, 0.45f, 0.779f, 0.5556f))
), asList(
TextSegment.from("testString1", Metadata.from("field", "value1")),
TextSegment.from("testString2", Metadata.from("field", "value2")),
TextSegment.from("testingString3", Metadata.from("field", "value3"))
));
System.out.println("ids=" + ids);
Embedding embedding = embeddingModel.embed(randomUUID()).content();
String id = embeddingStore.add(embedding);
assertThat(id).isNotNull();
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(embedding, 10);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(1, withPercentage(1));
assertThat(match.embeddingId()).isEqualTo(id);
assertThat(match.embedding()).isEqualTo(embedding);
assertThat(match.embedded()).isNull();
}
@Test
void testAddEmpty() {
// see log
store.addAll(emptyList());
void should_add_embedding_with_id() {
String id = randomUUID();
Embedding embedding = embeddingModel.embed(randomUUID()).content();
embeddingStore.add(id, embedding);
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(embedding, 10);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(1, withPercentage(1));
assertThat(match.embeddingId()).isEqualTo(id);
assertThat(match.embedding()).isEqualTo(embedding);
assertThat(match.embedded()).isNull();
}
@Test
void testFindRelevant() {
List<EmbeddingMatch<TextSegment>> res = store.findRelevant(Embedding.from(asList(0.80f, 0.45f, 0.89f, 0.24f)), 5);
res.forEach(System.out::println);
void should_add_embedding_with_segment() {
TextSegment segment = TextSegment.from(randomUUID());
Embedding embedding = embeddingModel.embed(segment.text()).content();
String id = embeddingStore.add(embedding, segment);
assertThat(id).isNotNull();
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(embedding, 10);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(1, withPercentage(1));
assertThat(match.embeddingId()).isEqualTo(id);
assertThat(match.embedding()).isEqualTo(embedding);
assertThat(match.embedded()).isEqualTo(segment);
}
@Test
void testScore() {
String id = store.add(Embedding.from(asList(0.50f, 0.85f, 0.760f, 0.24f)),
TextSegment.from("test string", Metadata.from("field", "value")));
System.out.println("id=" + id);
void should_add_embedding_with_segment_with_metadata() {
// use the same embedding to search
List<EmbeddingMatch<TextSegment>> res = store.findRelevant(Embedding.from(asList(0.50f, 0.85f, 0.760f, 0.24f)), 1);
res.forEach(System.out::println);
flushDB();
// the result embeddingMatch score is 5.96046447754E-8, but expected is 1 because they are same vectors.
embeddingStore = RedisEmbeddingStore.builder()
.host(HOST)
.port(PORT)
.dimension(384)
.metadataFieldsName(singletonList(METADATA_KEY))
.build();
TextSegment segment = TextSegment.from(randomUUID(), Metadata.from(METADATA_KEY, "test-value"));
Embedding embedding = embeddingModel.embed(segment.text()).content();
String id = embeddingStore.add(embedding, segment);
assertThat(id).isNotNull();
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(embedding, 10);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(1, withPercentage(1));
assertThat(match.embeddingId()).isEqualTo(id);
assertThat(match.embedding()).isEqualTo(embedding);
assertThat(match.embedded()).isEqualTo(segment);
}
@Test
void should_add_multiple_embeddings() {
Embedding firstEmbedding = embeddingModel.embed(randomUUID()).content();
Embedding secondEmbedding = embeddingModel.embed(randomUUID()).content();
List<String> ids = embeddingStore.addAll(asList(firstEmbedding, secondEmbedding));
assertThat(ids).hasSize(2);
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(firstEmbedding, 10);
assertThat(relevant).hasSize(2);
EmbeddingMatch<TextSegment> firstMatch = relevant.get(0);
assertThat(firstMatch.score()).isCloseTo(1, withPercentage(1));
assertThat(firstMatch.embeddingId()).isEqualTo(ids.get(0));
assertThat(firstMatch.embedding()).isEqualTo(firstEmbedding);
assertThat(firstMatch.embedded()).isNull();
EmbeddingMatch<TextSegment> secondMatch = relevant.get(1);
assertThat(secondMatch.score()).isBetween(0d, 1d);
assertThat(secondMatch.embeddingId()).isEqualTo(ids.get(1));
assertThat(secondMatch.embedding()).isEqualTo(secondEmbedding);
assertThat(secondMatch.embedded()).isNull();
}
@Test
void should_add_multiple_embeddings_with_segments() {
TextSegment firstSegment = TextSegment.from(randomUUID());
Embedding firstEmbedding = embeddingModel.embed(firstSegment.text()).content();
TextSegment secondSegment = TextSegment.from(randomUUID());
Embedding secondEmbedding = embeddingModel.embed(secondSegment.text()).content();
List<String> ids = embeddingStore.addAll(
asList(firstEmbedding, secondEmbedding),
asList(firstSegment, secondSegment)
);
assertThat(ids).hasSize(2);
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(firstEmbedding, 10);
assertThat(relevant).hasSize(2);
EmbeddingMatch<TextSegment> firstMatch = relevant.get(0);
assertThat(firstMatch.score()).isCloseTo(1, withPercentage(1));
assertThat(firstMatch.embeddingId()).isEqualTo(ids.get(0));
assertThat(firstMatch.embedding()).isEqualTo(firstEmbedding);
assertThat(firstMatch.embedded()).isEqualTo(firstSegment);
EmbeddingMatch<TextSegment> secondMatch = relevant.get(1);
assertThat(secondMatch.score()).isBetween(0d, 1d);
assertThat(secondMatch.embeddingId()).isEqualTo(ids.get(1));
assertThat(secondMatch.embedding()).isEqualTo(secondEmbedding);
assertThat(secondMatch.embedded()).isEqualTo(secondSegment);
}
@Test
void should_find_with_min_score() {
String firstId = randomUUID();
Embedding firstEmbedding = embeddingModel.embed(randomUUID()).content();
embeddingStore.add(firstId, firstEmbedding);
String secondId = randomUUID();
Embedding secondEmbedding = embeddingModel.embed(randomUUID()).content();
embeddingStore.add(secondId, secondEmbedding);
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(firstEmbedding, 10);
assertThat(relevant).hasSize(2);
EmbeddingMatch<TextSegment> firstMatch = relevant.get(0);
assertThat(firstMatch.score()).isCloseTo(1, withPercentage(1));
assertThat(firstMatch.embeddingId()).isEqualTo(firstId);
EmbeddingMatch<TextSegment> secondMatch = relevant.get(1);
assertThat(secondMatch.score()).isBetween(0d, 1d);
assertThat(secondMatch.embeddingId()).isEqualTo(secondId);
List<EmbeddingMatch<TextSegment>> relevant2 = embeddingStore.findRelevant(
firstEmbedding,
10,
secondMatch.score() - 0.01
);
assertThat(relevant2).hasSize(2);
assertThat(relevant2.get(0).embeddingId()).isEqualTo(firstId);
assertThat(relevant2.get(1).embeddingId()).isEqualTo(secondId);
List<EmbeddingMatch<TextSegment>> relevant3 = embeddingStore.findRelevant(
firstEmbedding,
10,
secondMatch.score()
);
assertThat(relevant3).hasSize(2);
assertThat(relevant3.get(0).embeddingId()).isEqualTo(firstId);
assertThat(relevant3.get(1).embeddingId()).isEqualTo(secondId);
List<EmbeddingMatch<TextSegment>> relevant4 = embeddingStore.findRelevant(
firstEmbedding,
10,
secondMatch.score() + 0.01
);
assertThat(relevant4).hasSize(1);
assertThat(relevant4.get(0).embeddingId()).isEqualTo(firstId);
}
@Test
void should_return_correct_score() {
Embedding embedding = embeddingModel.embed("hello").content();
String id = embeddingStore.add(embedding);
assertThat(id).isNotNull();
Embedding referenceEmbedding = embeddingModel.embed("hi").content();
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(referenceEmbedding, 1);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(
RelevanceScore.fromCosineSimilarity(CosineSimilarity.between(embedding, referenceEmbedding)),
withPercentage(1)
);
}
}