reducing duplication of *EmbeddingStoreIT

This commit is contained in:
deep-learning-dynamo 2023-11-18 20:02:21 +01:00
parent e467beb64a
commit 7c5cade3c0
8 changed files with 85 additions and 243 deletions

View File

@ -3,14 +3,14 @@ package dev.langchain4j.store.embedding.chroma;
import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.embedding.AllMiniLmL6V2QuantizedEmbeddingModel; import dev.langchain4j.model.embedding.AllMiniLmL6V2QuantizedEmbeddingModel;
import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel;
import dev.langchain4j.store.embedding.AbstractEmbeddingStoreIT;
import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.EmbeddingStore;
import dev.langchain4j.store.embedding.EmbeddingStoreIT;
import org.junit.jupiter.api.Disabled; import org.junit.jupiter.api.Disabled;
import static dev.langchain4j.internal.Utils.randomUUID; import static dev.langchain4j.internal.Utils.randomUUID;
@Disabled("needs Chroma running locally") @Disabled("needs Chroma running locally")
class ChromaEmbeddingStoreIT extends AbstractEmbeddingStoreIT { class ChromaEmbeddingStoreIT extends EmbeddingStoreIT {
/** /**
* First ensure you have Chroma running locally. If not, then: * First ensure you have Chroma running locally. If not, then:
@ -19,12 +19,12 @@ class ChromaEmbeddingStoreIT extends AbstractEmbeddingStoreIT {
* - Wait until Chroma is ready to serve (may take a few minutes) * - Wait until Chroma is ready to serve (may take a few minutes)
*/ */
private final EmbeddingStore<TextSegment> embeddingStore = ChromaEmbeddingStore.builder() EmbeddingStore<TextSegment> embeddingStore = ChromaEmbeddingStore.builder()
.baseUrl("http://localhost:8000") .baseUrl("http://localhost:8000")
.collectionName(randomUUID()) .collectionName(randomUUID())
.build(); .build();
private final EmbeddingModel embeddingModel = new AllMiniLmL6V2QuantizedEmbeddingModel(); EmbeddingModel embeddingModel = new AllMiniLmL6V2QuantizedEmbeddingModel();
@Override @Override
protected EmbeddingStore<TextSegment> embeddingStore() { protected EmbeddingStore<TextSegment> embeddingStore() {

View File

@ -0,0 +1,38 @@
package dev.langchain4j.store.embedding;
import dev.langchain4j.data.document.Metadata;
import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment;
import org.junit.jupiter.api.Test;
import java.util.List;
import static org.assertj.core.api.Assertions.assertThat;
import static org.assertj.core.data.Percentage.withPercentage;
/**
* A minimum set of tests that each implementation of {@link EmbeddingStore} must pass.
*/
public abstract class EmbeddingStoreIT extends EmbeddingStoreWithoutMetadataIT {
@Test
void should_add_embedding_with_segment_with_metadata() {
TextSegment segment = TextSegment.from("hello", Metadata.from("test-key", "test-value"));
Embedding embedding = embeddingModel().embed(segment.text()).content();
String id = embeddingStore().add(embedding, segment);
assertThat(id).isNotBlank();
awaitUntilPersisted();
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore().findRelevant(embedding, 10);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(1, withPercentage(1));
assertThat(match.embeddingId()).isEqualTo(id);
assertThat(match.embedding()).isEqualTo(embedding);
assertThat(match.embedded()).isEqualTo(segment);
}
}

View File

@ -1,6 +1,5 @@
package dev.langchain4j.store.embedding; package dev.langchain4j.store.embedding;
import dev.langchain4j.data.document.Metadata;
import dev.langchain4j.data.embedding.Embedding; import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel;
@ -14,10 +13,7 @@ import static java.util.Arrays.asList;
import static org.assertj.core.api.Assertions.assertThat; import static org.assertj.core.api.Assertions.assertThat;
import static org.assertj.core.data.Percentage.withPercentage; import static org.assertj.core.data.Percentage.withPercentage;
/** public abstract class EmbeddingStoreWithoutMetadataIT {
* A minimum set of tests that each implementation of {@link EmbeddingStore} must pass.
*/
public abstract class AbstractEmbeddingStoreIT {
protected abstract EmbeddingStore<TextSegment> embeddingStore(); protected abstract EmbeddingStore<TextSegment> embeddingStore();
@ -30,7 +26,7 @@ public abstract class AbstractEmbeddingStoreIT {
protected void ensureStoreIsEmpty() { protected void ensureStoreIsEmpty() {
Embedding embedding = embeddingModel().embed("hello").content(); Embedding embedding = embeddingModel().embed("hello").content();
assertThat(embeddingStore().findRelevant(embedding, Integer.MAX_VALUE)).isEmpty(); assertThat(embeddingStore().findRelevant(embedding, 1000)).isEmpty();
} }
@Test @Test
@ -94,27 +90,6 @@ public abstract class AbstractEmbeddingStoreIT {
assertThat(match.embedded()).isEqualTo(segment); assertThat(match.embedded()).isEqualTo(segment);
} }
@Test
void should_add_embedding_with_segment_with_metadata() {
TextSegment segment = TextSegment.from("hello", Metadata.from("test-key", "test-value"));
Embedding embedding = embeddingModel().embed(segment.text()).content();
String id = embeddingStore().add(embedding, segment);
assertThat(id).isNotBlank();
awaitUntilPersisted();
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore().findRelevant(embedding, 10);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(1, withPercentage(1));
assertThat(match.embeddingId()).isEqualTo(id);
assertThat(match.embedding()).isEqualTo(embedding);
assertThat(match.embedded()).isEqualTo(segment);
}
@Test @Test
void should_add_multiple_embeddings() { void should_add_multiple_embeddings() {

View File

@ -3,15 +3,15 @@ package dev.langchain4j.store.embedding.elasticsearch;
import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.embedding.AllMiniLmL6V2QuantizedEmbeddingModel; import dev.langchain4j.model.embedding.AllMiniLmL6V2QuantizedEmbeddingModel;
import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel;
import dev.langchain4j.store.embedding.AbstractEmbeddingStoreIT;
import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.EmbeddingStore;
import dev.langchain4j.store.embedding.EmbeddingStoreIT;
import lombok.SneakyThrows; import lombok.SneakyThrows;
import org.junit.jupiter.api.Disabled; import org.junit.jupiter.api.Disabled;
import static dev.langchain4j.internal.Utils.randomUUID; import static dev.langchain4j.internal.Utils.randomUUID;
@Disabled("needs Elasticsearch to be running locally") @Disabled("needs Elasticsearch to be running locally")
class ElasticsearchEmbeddingStoreIT extends AbstractEmbeddingStoreIT { class ElasticsearchEmbeddingStoreIT extends EmbeddingStoreIT {
/** /**
* First start elasticsearch locally: * First start elasticsearch locally:
@ -19,13 +19,13 @@ class ElasticsearchEmbeddingStoreIT extends AbstractEmbeddingStoreIT {
* docker run -d -p 9200:9200 -p 9300:9300 -e discovery.type=single-node -e xpack.security.enabled=false docker.elastic.co/elasticsearch/elasticsearch:8.9.0 * docker run -d -p 9200:9200 -p 9300:9300 -e discovery.type=single-node -e xpack.security.enabled=false docker.elastic.co/elasticsearch/elasticsearch:8.9.0
*/ */
private final EmbeddingStore<TextSegment> embeddingStore = ElasticsearchEmbeddingStore.builder() EmbeddingStore<TextSegment> embeddingStore = ElasticsearchEmbeddingStore.builder()
.serverUrl("http://localhost:9200") .serverUrl("http://localhost:9200")
.indexName(randomUUID()) .indexName(randomUUID())
.dimension(384) .dimension(384)
.build(); .build();
private final EmbeddingModel embeddingModel = new AllMiniLmL6V2QuantizedEmbeddingModel(); EmbeddingModel embeddingModel = new AllMiniLmL6V2QuantizedEmbeddingModel();
@Override @Override
protected EmbeddingStore<TextSegment> embeddingStore() { protected EmbeddingStore<TextSegment> embeddingStore() {

View File

@ -24,18 +24,13 @@
<dependency> <dependency>
<groupId>io.milvus</groupId> <groupId>io.milvus</groupId>
<artifactId>milvus-sdk-java</artifactId> <artifactId>milvus-sdk-java</artifactId>
<version>2.3.1</version> <version>2.3.3</version>
<exclusions> <exclusions>
<!-- due to CVE-2022-41915 vulnerability --> <!-- due to CVE-2022-41915 vulnerability -->
<exclusion> <exclusion>
<groupId>io.netty</groupId> <groupId>io.netty</groupId>
<artifactId>netty-codec</artifactId> <artifactId>netty-codec</artifactId>
</exclusion> </exclusion>
<!-- due to CVE-2022-42889 vulnerability -->
<exclusion>
<groupId>org.apache.commons</groupId>
<artifactId>commons-text</artifactId>
</exclusion>
</exclusions> </exclusions>
</dependency> </dependency>
<dependency> <dependency>
@ -43,10 +38,13 @@
<artifactId>netty-codec</artifactId> <artifactId>netty-codec</artifactId>
<version>${netty.version}</version> <version>${netty.version}</version>
</dependency> </dependency>
<dependency> <dependency>
<groupId>org.apache.commons</groupId> <groupId>dev.langchain4j</groupId>
<artifactId>commons-text</artifactId> <artifactId>langchain4j-core</artifactId>
<version>1.10.0</version> <classifier>tests</classifier>
<type>test-jar</type>
<scope>test</scope>
</dependency> </dependency>
<dependency> <dependency>

View File

@ -6,6 +6,7 @@ import dev.langchain4j.store.embedding.EmbeddingMatch;
import dev.langchain4j.store.embedding.RelevanceScore; import dev.langchain4j.store.embedding.RelevanceScore;
import io.milvus.client.MilvusServiceClient; import io.milvus.client.MilvusServiceClient;
import io.milvus.common.clientenum.ConsistencyLevelEnum; import io.milvus.common.clientenum.ConsistencyLevelEnum;
import io.milvus.exception.ParamException;
import io.milvus.response.QueryResultsWrapper; import io.milvus.response.QueryResultsWrapper;
import io.milvus.response.SearchResultsWrapper; import io.milvus.response.SearchResultsWrapper;
@ -47,10 +48,15 @@ class Mapper {
boolean queryForVectorOnSearch) { boolean queryForVectorOnSearch) {
List<EmbeddingMatch<TextSegment>> matches = new ArrayList<>(); List<EmbeddingMatch<TextSegment>> matches = new ArrayList<>();
List<String> rowIds = (List<String>) resultsWrapper.getFieldWrapper(ID_FIELD_NAME).getFieldData();
Map<String, Embedding> idToEmbedding = new HashMap<>(); Map<String, Embedding> idToEmbedding = new HashMap<>();
if (queryForVectorOnSearch) { if (queryForVectorOnSearch) {
try {
List<String> rowIds = (List<String>) resultsWrapper.getFieldWrapper(ID_FIELD_NAME).getFieldData();
idToEmbedding.putAll(queryEmbeddings(milvusClient, collectionName, rowIds, consistencyLevel)); idToEmbedding.putAll(queryEmbeddings(milvusClient, collectionName, rowIds, consistencyLevel));
} catch (ParamException e) {
// There is no way to check if the result is empty or not.
// If the result is empty, the exception will be thrown.
}
} }
for (int i = 0; i < resultsWrapper.getRowRecords().size(); i++) { for (int i = 0; i < resultsWrapper.getRowRecords().size(); i++) {

View File

@ -131,7 +131,9 @@ public class MilvusEmbeddingStore implements EmbeddingStore<TextSegment> {
retrieveEmbeddingsOnSearch retrieveEmbeddingsOnSearch
); );
return matches.stream().filter(match -> match.score() >= minScore).collect(toList()); return matches.stream()
.filter(match -> match.score() >= minScore)
.collect(toList());
} }
private void addInternal(String id, Embedding embedding, TextSegment textSegment) { private void addInternal(String id, Embedding embedding, TextSegment textSegment) {

View File

@ -4,12 +4,12 @@ import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.embedding.AllMiniLmL6V2QuantizedEmbeddingModel; import dev.langchain4j.model.embedding.AllMiniLmL6V2QuantizedEmbeddingModel;
import dev.langchain4j.model.embedding.EmbeddingModel; import dev.langchain4j.model.embedding.EmbeddingModel;
import dev.langchain4j.store.embedding.CosineSimilarity;
import dev.langchain4j.store.embedding.EmbeddingMatch; import dev.langchain4j.store.embedding.EmbeddingMatch;
import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.EmbeddingStore;
import dev.langchain4j.store.embedding.RelevanceScore; import dev.langchain4j.store.embedding.EmbeddingStoreWithoutMetadataIT;
import org.junit.jupiter.api.Disabled; import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test; import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.condition.EnabledIfEnvironmentVariable;
import java.util.List; import java.util.List;
@ -20,7 +20,7 @@ import static org.assertj.core.api.Assertions.assertThat;
import static org.assertj.core.data.Percentage.withPercentage; import static org.assertj.core.data.Percentage.withPercentage;
@Disabled("needs Milvus running locally") @Disabled("needs Milvus running locally")
class MilvusEmbeddingStoreIT { class MilvusEmbeddingStoreIT extends EmbeddingStoreWithoutMetadataIT {
/** /**
* First run Milvus locally: * First run Milvus locally:
@ -33,221 +33,44 @@ class MilvusEmbeddingStoreIT {
.port(19530) .port(19530)
.collectionName("collection_" + randomUUID().replace("-", "")) .collectionName("collection_" + randomUUID().replace("-", ""))
.dimension(384) .dimension(384)
.retrieveEmbeddingsOnSearch(true)
.build(); .build();
EmbeddingModel embeddingModel = new AllMiniLmL6V2QuantizedEmbeddingModel(); EmbeddingModel embeddingModel = new AllMiniLmL6V2QuantizedEmbeddingModel();
@Test @Override
void should_add_embedding() { protected EmbeddingStore<TextSegment> embeddingStore() {
return embeddingStore;
}
Embedding embedding = embeddingModel.embed(randomUUID()).content(); @Override
protected EmbeddingModel embeddingModel() {
String id = embeddingStore.add(embedding); return embeddingModel;
assertThat(id).isNotNull();
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(embedding, 10);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(1, withPercentage(1));
assertThat(match.embeddingId()).isEqualTo(id);
assertThat(match.embedding()).isNull();
assertThat(match.embedded()).isNull();
} }
@Test @Test
void should_add_embedding_with_id() { void should_not_retrieve_embeddings_when_searching() {
String id = randomUUID();
Embedding embedding = embeddingModel.embed(randomUUID()).content();
embeddingStore.add(id, embedding);
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(embedding, 10);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(1, withPercentage(1));
assertThat(match.embeddingId()).isEqualTo(id);
assertThat(match.embedding()).isNull();
assertThat(match.embedded()).isNull();
}
@Test
void should_add_embedding_with_segment() {
TextSegment segment = TextSegment.from(randomUUID());
Embedding embedding = embeddingModel.embed(segment.text()).content();
String id = embeddingStore.add(embedding, segment);
assertThat(id).isNotNull();
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(embedding, 10);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(1, withPercentage(1));
assertThat(match.embeddingId()).isEqualTo(id);
assertThat(match.embedding()).isNull();
assertThat(match.embedded()).isEqualTo(segment);
}
@Test
void should_add_multiple_embeddings() {
Embedding firstEmbedding = embeddingModel.embed(randomUUID()).content();
Embedding secondEmbedding = embeddingModel.embed(randomUUID()).content();
List<String> ids = embeddingStore.addAll(asList(firstEmbedding, secondEmbedding));
assertThat(ids).hasSize(2);
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(firstEmbedding, 10);
assertThat(relevant).hasSize(2);
EmbeddingMatch<TextSegment> firstMatch = relevant.get(0);
assertThat(firstMatch.score()).isCloseTo(1, withPercentage(1));
assertThat(firstMatch.embeddingId()).isEqualTo(ids.get(0));
assertThat(firstMatch.embedding()).isNull();
assertThat(firstMatch.embedded()).isNull();
EmbeddingMatch<TextSegment> secondMatch = relevant.get(1);
assertThat(secondMatch.score()).isBetween(0d, 1d);
assertThat(secondMatch.embeddingId()).isEqualTo(ids.get(1));
assertThat(secondMatch.embedding()).isNull();
assertThat(secondMatch.embedded()).isNull();
}
@Test
void should_add_multiple_embeddings_with_segments() {
TextSegment firstSegment = TextSegment.from(randomUUID());
Embedding firstEmbedding = embeddingModel.embed(firstSegment.text()).content();
TextSegment secondSegment = TextSegment.from(randomUUID());
Embedding secondEmbedding = embeddingModel.embed(secondSegment.text()).content();
List<String> ids = embeddingStore.addAll(
asList(firstEmbedding, secondEmbedding),
asList(firstSegment, secondSegment)
);
assertThat(ids).hasSize(2);
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(firstEmbedding, 10);
assertThat(relevant).hasSize(2);
EmbeddingMatch<TextSegment> firstMatch = relevant.get(0);
assertThat(firstMatch.score()).isCloseTo(1, withPercentage(1));
assertThat(firstMatch.embeddingId()).isEqualTo(ids.get(0));
assertThat(firstMatch.embedding()).isNull();
assertThat(firstMatch.embedded()).isEqualTo(firstSegment);
EmbeddingMatch<TextSegment> secondMatch = relevant.get(1);
assertThat(secondMatch.score()).isBetween(0d, 1d);
assertThat(secondMatch.embeddingId()).isEqualTo(ids.get(1));
assertThat(secondMatch.embedding()).isNull();
assertThat(secondMatch.embedded()).isEqualTo(secondSegment);
}
@Test
void should_find_with_min_score() {
String firstId = randomUUID();
Embedding firstEmbedding = embeddingModel.embed(randomUUID()).content();
embeddingStore.add(firstId, firstEmbedding);
String secondId = randomUUID();
Embedding secondEmbedding = embeddingModel.embed(randomUUID()).content();
embeddingStore.add(secondId, secondEmbedding);
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(firstEmbedding, 10);
assertThat(relevant).hasSize(2);
EmbeddingMatch<TextSegment> firstMatch = relevant.get(0);
assertThat(firstMatch.score()).isCloseTo(1, withPercentage(1));
assertThat(firstMatch.embeddingId()).isEqualTo(firstId);
EmbeddingMatch<TextSegment> secondMatch = relevant.get(1);
assertThat(secondMatch.score()).isBetween(0d, 1d);
assertThat(secondMatch.embeddingId()).isEqualTo(secondId);
List<EmbeddingMatch<TextSegment>> relevant2 = embeddingStore.findRelevant(
firstEmbedding,
10,
secondMatch.score() - 0.01
);
assertThat(relevant2).hasSize(2);
assertThat(relevant2.get(0).embeddingId()).isEqualTo(firstId);
assertThat(relevant2.get(1).embeddingId()).isEqualTo(secondId);
List<EmbeddingMatch<TextSegment>> relevant3 = embeddingStore.findRelevant(
firstEmbedding,
10,
secondMatch.score()
);
assertThat(relevant3).hasSize(2);
assertThat(relevant3.get(0).embeddingId()).isEqualTo(firstId);
assertThat(relevant3.get(1).embeddingId()).isEqualTo(secondId);
List<EmbeddingMatch<TextSegment>> relevant4 = embeddingStore.findRelevant(
firstEmbedding,
10,
secondMatch.score() + 0.01
);
assertThat(relevant4).hasSize(1);
assertThat(relevant4.get(0).embeddingId()).isEqualTo(firstId);
}
@Test
void should_return_correct_score() {
Embedding embedding = embeddingModel.embed("hello").content();
String id = embeddingStore.add(embedding);
assertThat(id).isNotNull();
Embedding referenceEmbedding = embeddingModel.embed("hi").content();
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(referenceEmbedding, 1);
assertThat(relevant).hasSize(1);
EmbeddingMatch<TextSegment> match = relevant.get(0);
assertThat(match.score()).isCloseTo(
RelevanceScore.fromCosineSimilarity(CosineSimilarity.between(embedding, referenceEmbedding)),
withPercentage(1)
);
}
@Test
void should_retrieve_embeddings_when_searching() {
EmbeddingStore<TextSegment> embeddingStore = MilvusEmbeddingStore.builder() EmbeddingStore<TextSegment> embeddingStore = MilvusEmbeddingStore.builder()
.host("localhost") .host("localhost")
.port(19530) .port(19530)
.collectionName("collection_" + randomUUID().replace("-", "")) .collectionName("collection_" + randomUUID().replace("-", ""))
.dimension(384) .dimension(384)
.retrieveEmbeddingsOnSearch(true) .retrieveEmbeddingsOnSearch(false)
.build(); .build();
Embedding firstEmbedding = embeddingModel.embed(randomUUID()).content(); Embedding firstEmbedding = embeddingModel.embed("hello").content();
Embedding secondEmbedding = embeddingModel.embed(randomUUID()).content(); Embedding secondEmbedding = embeddingModel.embed("hi").content();
embeddingStore.addAll(asList(firstEmbedding, secondEmbedding));
List<String> ids = embeddingStore.addAll(asList(firstEmbedding, secondEmbedding));
assertThat(ids).hasSize(2);
List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(firstEmbedding, 10); List<EmbeddingMatch<TextSegment>> relevant = embeddingStore.findRelevant(firstEmbedding, 10);
assertThat(relevant).hasSize(2); assertThat(relevant).hasSize(2);
assertThat(relevant.get(0).embedding()).isNull();
EmbeddingMatch<TextSegment> firstMatch = relevant.get(0); assertThat(relevant.get(1).embedding()).isNull();
assertThat(firstMatch.score()).isCloseTo(1, withPercentage(1));
assertThat(firstMatch.embeddingId()).isEqualTo(ids.get(0));
assertThat(firstMatch.embedding()).isEqualTo(firstEmbedding);
assertThat(firstMatch.embedded()).isNull();
EmbeddingMatch<TextSegment> secondMatch = relevant.get(1);
assertThat(secondMatch.score()).isBetween(0d, 1d);
assertThat(secondMatch.embeddingId()).isEqualTo(ids.get(1));
assertThat(secondMatch.embedding()).isEqualTo(secondEmbedding);
assertThat(secondMatch.embedded()).isNull();
} }
@Test @Test
@EnabledIfEnvironmentVariable(named = "MILVUS_API_KEY", matches = ".+")
void should_use_cloud_instance() { void should_use_cloud_instance() {
EmbeddingStore<TextSegment> embeddingStore = MilvusEmbeddingStore.builder() EmbeddingStore<TextSegment> embeddingStore = MilvusEmbeddingStore.builder()