mindspore/model_zoo/wide_and_deep/train.py

87 lines
2.7 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" test_training """
import os
from mindspore import Model, context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
from src.callbacks import LossCallBack
from src.datasets import create_dataset
from src.config import WideDeepConfig
def get_WideDeep_net(configure):
"""
Get network of wide&deep model.
"""
WideDeep_net = WideDeepModel(configure)
loss_net = NetWithLossClass(WideDeep_net, configure)
train_net = TrainStepWrap(loss_net)
eval_net = PredictWithSigmoid(WideDeep_net)
return train_net, eval_net
class ModelBuilder():
"""
Build the model.
"""
def __init__(self):
pass
def get_hook(self):
pass
def get_train_hook(self):
hooks = []
callback = LossCallBack()
hooks.append(callback)
if int(os.getenv('DEVICE_ID')) == 0:
pass
return hooks
def get_net(self, configure):
return get_WideDeep_net(configure)
def test_train(configure):
"""
test_train
"""
data_path = configure.data_path
batch_size = configure.batch_size
epochs = configure.epochs
ds_train = create_dataset(data_path, train_mode=True, epochs=epochs, batch_size=batch_size)
print("ds_train.size: {}".format(ds_train.get_dataset_size()))
net_builder = ModelBuilder()
train_net, _ = net_builder.get_net(configure)
train_net.set_train()
model = Model(train_net)
callback = LossCallBack(config=configure)
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(),
keep_checkpoint_max=5)
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train', directory=configure.ckpt_path, config=ckptconfig)
model.train(epochs, ds_train, callbacks=[TimeMonitor(ds_train.get_dataset_size()), callback, ckpoint_cb])
if __name__ == "__main__":
config = WideDeepConfig()
config.argparse_init()
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
test_train(config)