forked from OSSInnovation/mindspore
unknown
c929dab3dd
2:fix normalize bug 3:add ci test3:add ci test3:add ci test |
||
---|---|---|
.. | ||
scripts | ||
src | ||
README.md | ||
eval.py | ||
train.py |
README.md
Deeplab-V3 Example
Description
This is an example of training DeepLabv3 with PASCAL VOC 2012 dataset in MindSpore.
Requirements
- Install MindSpore.
- Download the VOC 2012 dataset for training.
Notes: If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file.
Running the Example
Training
- Set options in config.py.
- Run
run_standalone_train.sh
for non-distributed training.sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
- Run
run_distribute_train.sh
for distributed training.sh scripts/run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH DATA_PATH
Evaluation
Set options in evaluation_config.py. Make sure the 'data_file' and 'finetune_ckpt' are set to your own path.
- Run run_eval.sh for evaluation.
sh scripts/run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH
Options and Parameters
It contains of parameters of Deeplab-V3 model and options for training, which is set in file config.py.
Options:
config.py:
learning_rate Learning rate, default is 0.0014.
weight_decay Weight decay, default is 5e-5.
momentum Momentum, default is 0.97.
crop_size Image crop size [height, width] during training, default is 513.
eval_scales The scales to resize images for evaluation, default is [0.5, 0.75, 1.0, 1.25, 1.5, 1.75].
output_stride The ratio of input to output spatial resolution, default is 16.
ignore_label Ignore label value, default is 255.
seg_num_classes Number of semantic classes, including the background class (if exists).
foreground classes + 1 background class in the PASCAL VOC 2012 dataset, default is 21.
fine_tune_batch_norm Fine tune the batch norm parameters or not, default is False.
atrous_rates Atrous rates for atrous spatial pyramid pooling, default is None.
decoder_output_stride The ratio of input to output spatial resolution when employing decoder
to refine segmentation results, default is None.
image_pyramid Input scales for multi-scale feature extraction, default is None.
epoch_size Epoch size, default is 6.
batch_size batch size of input dataset: N, default is 2.
enable_save_ckpt Enable save checkpoint, default is true.
save_checkpoint_steps Save checkpoint steps, default is 1000.
save_checkpoint_num Save checkpoint numbers, default is 1.
Parameters:
Parameters for dataset and network:
distribute Run distribute, default is false.
data_url Train/Evaluation data url, required.
checkpoint_url Checkpoint path, default is None.