forked from OSSInnovation/mindspore
!2682 [quant]The top level add op prefix_name check error r0.5
Merge pull request !2682 from vlne-v1/I1LJMR-quant-the-top-level-add-op-prefix_name-check-error-r0.5
This commit is contained in:
commit
2108f72cd3
|
@ -153,6 +153,8 @@ class ConvertToQuantNetwork:
|
|||
per_channel=self.act_channel,
|
||||
symmetric=self.act_symmetric,
|
||||
narrow_range=self.act_range)
|
||||
prefix = self._convert_op_name(prim_op.name)
|
||||
if network.param_prefix:
|
||||
prefix = '.'.join([network.param_prefix, self._convert_op_name(prim_op.name)])
|
||||
add_quant.update_parameters_name(prefix + '.')
|
||||
del network.__dict__[name]
|
||||
|
|
|
@ -125,7 +125,7 @@ def scale_zp_from_fack_quant_cell(cell, data_type):
|
|||
"""
|
||||
minq = cell.minq.data.asnumpy()
|
||||
maxq = cell.maxq.data.asnumpy()
|
||||
op = cell.fake_quant
|
||||
op = cell.fake_quant_infer
|
||||
|
||||
scale, zp = cal_quantization_params(
|
||||
minq, maxq, data_type,
|
||||
|
|
|
@ -67,7 +67,7 @@ def test_qat_lenet():
|
|||
img = Tensor(np.ones((32, 1, 32, 32)).astype(np.float32))
|
||||
net = LeNet5()
|
||||
net = qat.convert_quant_network(
|
||||
net, quant_delay=0, bn_fold=False, freeze_bn=10000, num_bits=8)
|
||||
net, freeze_bn=10000, num_bits=8)
|
||||
# should load the checkpoint. mock here
|
||||
for param in net.get_parameters():
|
||||
param.init_data()
|
||||
|
|
Loading…
Reference in New Issue