
IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID PAGE 1

Query Expansion Based on Crowd
Knowledge for Code Search

Liming Nie, He Jiang*, Zhilei Ren, Zeyi Sun, Xiaochen Li

Abstract—As code search is a frequent developer activity in software development practices, improving the performance of

code search is a critical task. In the text retrieval based search techniques employed in the code search, the term mismatch

problem is a critical language issue for retrieval effectiveness. By reformulating the queries, query expansion provides effective

ways to solve the term mismatch problem. In this paper, we propose Query Expansion based on Crowd Knowledge (QECK), a

novel technique to improve the performance of code search algorithms. QECK identifies software-specific expansion words

from the high quality pseudo relevance feedback question and answer pairs on Stack Overflow to automatically generate the

expansion queries. Furthermore, we incorporate QECK in the classic Rocchio’s model, and propose QECK based code search

method QECKRocchio. We conduct three experiments to evaluate our QECK technique and investigate QECKRocchio in a large-

scale corpus containing real-world code snippets and a question and answer pair collection. The results show that QECK

improves the performance of three code search algorithms by up to 64% in Precision, and 35% in NDCG. Meanwhile, compared

with the state-of-the-art query expansion method, the improvement of QECKRocchio is 22% in Precision, and 16% in NDCG.

Index Terms—Code search, crowd knowledge, query expansion, information retrieval, question & answer pair.

—————————— ——————————

1 INTRODUCTION

ODE search is a frequent developer activity in
software development practices, which has been a

part of software development for decades [47]. As
repositories containing billions lines of code become
available [1], [3], [6], [33], [43] the search mechanisms
have evolved to provide better recommendation for
given queries. On Google Code Search, a developer
composes 12 search queries per weekday on average
[41]. Meanwhile, developers search for sample codes
more than anything else, 34% queries are conducted to
find sample codes, and almost a third of searches are
incrementally performed through query reformulation
[41].

The performance of text retrieval based search
techniques used in code search strongly depends on
the text contained in queries and the code snippets (a
method is viewed as a code snippet [22]). The term
mismatch problem, also known as the vocabulary
problem [13], is a critical language issue for retrieval
effectiveness, as the queries given by users and the
code snippets do often not use the same words [10].
Meanwhile, the length of queries is usually short.
Sadowski et al. report that the average number of
words per query is 1.85 for the queries proposed to
Google search for code [41]. Obviously, it is not an
easy task to formulate a good query, which depends
greatly on the experience of the developer and his/her

knowledge of the software system [37]. To solve the
vocabulary problem, the query expansion methods
provide some effective ways by reformulating the
queries [10], [36].

In recent years, some query expansion based code
search approaches are presented. For example, Wang
et al. [58] incorporate users' opinions on the feedback
code snippets returned by a code search engine to
refine result lists. Hill et al. [40] suggest alternative
query words by calculating the frequencies of co-
occurring words with the words in the queries. Lu et al.
[29] propose a query expansion method denoted as
PWordNet by leveraging the Part-Of-Speech (POS) of each
word in queries and WordNet [30] to expand queries.
Lemos et al. [25] automatically expand test cases based
on WordNet and a code-related thesaurus.

In this paper, we propose Query Expansion based
on Crowd Knowledge (QECK) to improve the
performance of code search. Specifically, QECK
retrieves relevant Question & Answer (Q&A) pairs in a
collection extracted from Stack Overflow as the
Pseudo Relevance Feedback (PRF) documents for a
given free-form query, identifies the software-specific
words from these documents, and generates an
expansion query by adding words to the original
query. The advantages of QECK are three fold. First, it
automatically generates expansion queries without
human intervention, as QECK employs PRF to
automatically generate expansion queries. Second, it
generates high quality PRF Q&A pairs by considering
textual similarity and the quality of both questions and
answers. Third, it identifies software-specific words
from Q&A pairs by TF-IDF weighting function.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

C

————————————————

 L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li are with School of Software,
Dalian University of Technology, Dalian, China, and Key Laboratory for
Ubiquitous Network and Service Software of Liaoning Province, Dalian,
China. E-mail: limingnie@mail.dlut.edu.cn; {jianghe,zren}@dlut.edu.cn;
sunzeyidlut@gmail.com; li1989@mail.dlut.edu.cn.

 H. Jiang is also with State Key Laboratory of Software Engineering, Wuhan
University, Wuhan, China.

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

The underlying idea behind QECK is utilizing the
software-specific words contained in Q&A pairs to
further improve the possibility of searching relevant
code snippets. In Q&A pairs, the questions and
answers, denoted as posts on Stack Overflow, are
submitted and voted by developers. Therefore, the
Q&A pairs contain useful knowledge about software
development, which is called crowd knowledge in our
study. The knowledge can be extracted in the form of
software-specific words [54], [62]. Obviously, these
software-specific words are more useful for software
engineering tasks than the general words of WordNet
used in previous studies [25], [29].

Pseudo relevance feedback is one of a local query
expansion approaches, and the classic Rocchio’s model
is the implementation of pseudo relevance feedback in
information retrieval. We incorporate QECK into the
classic Rocchio’s model, and propose QECK based
code search method denoted as QECKRocchio. To evaluate
the effectiveness of QECK and investigate the
performance of QECKRocchio, we explore three Research
Questions (RQs) in three experiments, respectively.
These experiments are conducted on a Q&A pair
collection containing 312,941 Q&A pairs labeled with
the “android” tag, and a real-world code snippet
corpus containing 921,713 code snippets extracted
from 1,538 open source app projects on the Android
platform. A code snippet refers to a method in Java
files of app projects [22].

Three RQs and their conclusions are listed as follows.
RQ1: Whether QECK can improve the performance of

code search algorithms?
We employ three code search algorithms to verify

the effectiveness of QECK by comparing the
recommendation performance before and after QECK
is applied. From comparative results in the experiment,
we verify that our QECK technique can indeed
improve the retrieval performance for code search.
Specifically, QECK improve the performance of three
code search algorithms by up to 64% in Precision, and
35% in NDCG.

RQ2: How the parameters affect the performance of
QECK?

For the parameters (i.e. the number of PRF
documents and the number of expansion words) in
QECK, we further study the influence of parameters
variation on performance of QECK. As it is a time-
consuming task to label relevant scores for code
snippets, we only discuss the situation when we fix a
parameter and explore the trend of performance for
each code search algorithm by varying another
parameter. Our results indicate that: after employing
QECK, the performance of three algorithms are
generally better, there is a unique optimal value of
performance for each code search algorithm, and too
many or too less expansion words is not desirable.
Based on the results, we recommend that, in QECK,
the default value for the number of PRF documents is

5, and the default value for the number of expansion
words is 9.

RQ3: Whether our code expansion based code search
method, QECKRocchio, is better than the state-of-the-art
method?

We compare QECKRocchio against PWordNet, a state-of-
the-art query expansion method [29]. The experimental
results show that QECKRocchio is a better method to aid
mobile app development than the comparative method.
Specifically, for Precision, the improvement is 22%,
and for NDCG, the improvement is 16%.

This paper makes the following contributions:
 We propose QECK, a novel technique leveraging

crowd knowledge on Stack Overflow to improve
the performance of code search algorithms.

 We explore the performance and identify the
effectiveness of QECK by three code search
algorithms and a comparative method in terms of
Precision and NDCG.

 We construct a Q&A pair collection from Stack
Overflow and a code snippet corpus from open
source app projects.

Next section outlines the background of our study.
Section 3 elaborates our technique. Section 4 provides
details about experimental setup. Experimental results
and analysis are presented in Section 5. Section 6 states
the threats to validity. The related works are shown in
Section 7. In Section 8, we conclude this paper and
introduce the future work.

2 BACKGROUND

In this section, we discuss the query expansion
approaches, and elicit our query expansion based on
crowd knowledge (QECK) technique.

The query expansion approaches, either fully
automatically or with the help of users in the loop,
contain two major classes: global approaches and local
approaches [27], [60]. Here, we will mention the efforts
on both of them, whereas we concentrate on the
pseudo relevance feedback, a successful local approach
used in our paper.

Global approaches mainly refer to query
expansion/reformulation with a thesaurus, like
WordNet [27]. The queries can be automatically
expanded with related words and synonyms from the
thesaurus. Specifically, WordNet is a general purpose
lexical database to compute the semantic distance
between two words. Sridhara et al. [45] show that the
general English-based similarity measurements of
WordNet could not effectively suggest similar words
in software engineering context, as it does not contain
many software-specific words, and the semantic
meaning stored in WordNet is often different even
though these words exist.

In the software engineering community, there are
some efforts to automatically build a word similarity
resource. For example, Yang and Tan [62] infer

LIMING NIE ET AL.: QUERY EXPANSION BASED ON CROWD KNOWLEDGE FOR CODE SEARCH PAGE3

semantically related words by leveraging the context
of words in software source code. Howard et al. [20]
seek to find similar verb pairs by leveraging the
comments of methods, programmer conventions, and
method signatures. Tian et al. [54], [55] build a
software-specific WordNet like resource by leveraging
the textual contents of posts on Stack Overflow.
Although these resources can be employed to expand
the words of queries, they omit the context of a query,
which does not view a query as a whole [27].

Local approaches expand a query according to the
documents initially appearing to match the original
query, which mainly refer to relevance feedback and
pseudo relevance feedback [27], [49]. Specifically,
Relevance Feedback (RF) need to leverage user' marks
on the RF documents as an initial set of results [58]. In
contrast, to automate the manual part of relevance
feedback, Pseudo Relevance Feedback (PRF), also
known as blind relevance feedback, provides an
approach for automatic local analysis [27]. Typically,
this method assumes that a fixed number of top
ranked documents are relevant to the original query,
and extracts a set of potentially useful words from
those documents and adds them to the query, which is
then used to retrieve the final set of documents. This
process is also called the classic Rocchio’s model. The
two following issues are mainly addressed in typical
PRF approaches: retrieval of good quality feedback
documents and identification of useful words [10].

In this paper, we propose query expansion based on
crowd knowledge, one variation of PRF, to improve
the performance of code search. QECK leverages the
Q&A pairs to expand the queries. Different from the
typical PRF, the initial set of results of QECK comes
from a Q&A pair collection extracted from Stack
Overflow rather than the code snippet corpus. Stack
Overflow [7] is a popular question answering site,
which provides a platform for developers to help
others by asking and answering questions [54]. With
about 4.8 million users and 11 million questions until
November 2015, Stack Overflow is an enormous
knowledge base. Most of the posts (questions or
answers) submitted by users on Stack Overflow are
related to software development. Leveraging the posts
and their scores voted by crowd, QECK extracts
software-specific expansion words to generate
expansion queries.

3 OUR TECHNIQUE

This section shows the steps of QECKRocchio, and the
construction of the Q&A pair collection and the code
snippet corpus employed in our study. We also
provide some details about the weighting of expansion
words in the PRF documents.

3.1 Steps of QECKRocchio

In this study, for exploring the effectiveness of our
QECK technique, we incorporate QECK into classic

Rocchio’s model to generate a code search method
denoted as QECKRocchio. The Rocchio’s model
incorporates pseudo relevance feedback into the
information retrieval process [43]. Fig. 1 shows the
overall structure of QECKRocchio containing three
modules: QA Pairs Search Engine, Expansion Words
selector, and Code Snippets Search Engine. The input of
our method is an original query q, a Q&A pair
collection, and a code snippet corpus. The output is a
ranked list with top-k code snippets.

The following three steps show the process of our
method in Fig. 1.
 First-pass retrieval: For the original query, we rank

all Q&A pairs using a particular information
retrieval model (e.g. BM25 model) [48] by the
module QA Pairs Search Engine. The top-m Q&A
pairs are identified as the PRF documents, which is
denoted as 𝐷𝑓. The i-th ranked document in 𝐷𝑓 is
denoted as 𝑑𝑖 , which will be treated as relevant to
the original query.

 Word selection: We identify useful expansion
words from PRF Q&A pairs (𝐷𝑓) by the module
Expansion Words selector. An expansion
weight 𝑤(𝑡, 𝑑𝑖) is assigned to each word 𝑡 in the
set of 𝐷𝑓. According to the weights of words, top-
n words are selected and added into the original
query to generate the Expanded Query 𝑞𝑒.

 Second-pass retrieval: Finally, we rank all code
snippets in corpus for the expanded
query 𝑞𝑒 using the module Code Snippets Search
Engine. Finally, the top-k code snippets related to
the expanded query are recommended to
developers as the results.

In the above steps, we hold the expectation that the
selected expansion words within the feedback
documents can bring more relevant code snippets in
the second-pass retrieval. Within this framework, three
aspects are the important parts, which are the
searching of PRF Q&A pairs, selecting of expansion
words, and the construction of the Q&A pair collection
and the code snippet corpus.

3.2 Q&A Pair Collection

3.2.1 Q&A pairs

On Stack Overflow, there are many questions posted
by users. The tags added to questions reveal the types

Fig. 1. Overall structure of QECK based Rocchio’s model

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

of these questions to help users find out what a
question is about, [21], [32]. To generate Q&A pairs,
we first select the questions with the “android” tags (a
question on Stack Overflow can have up to five tags
[48]), as the queries we employed in our experiments
are about Android mobile app development. Next, we
combine a question and one of their answers to
generate a Q&A pair. However, for each of answers
provided by users, it is not always fit to solve this
question. To assure the quality of answers, only the
answers labeled with “AcceptedAnswer” can be
selected to form the Q&A pairs together with the
corresponding questions. After the above steps, we
achieve a Q&A pair collection related with Android
development, which contains 312,941 Q&A pairs. In
order to facilitate searching, we index this collection
with Lucene [4].

Fig. 2 (a) shows an example of a Q&A pair for a
programming task “take a screenshot in Android”. In the
part of question, this programming task contains a title,
a detail description, two tags “android” and
“screenshot”. For this question, 224 votes and 16
answers are provided by crowd. Among the answers,
only one of them is manually labeled as "accepted
answer", which is marked with a tick. A part of this
answer is shown in Fig. 2 (a). We combine the text in
the question (the title and the description) and the
accepted answer as a Q&A pair.

3.2.2 Indexing Q&A Pairs

We utilize Lucene [4], a popular implementation of
BM25, to index and search Q&A pairs in the first-pass
retrieval.

Before indexing the Q&A pairs, text pre-processing
for Q&A pairs is required, which is an important
process in the text retrieval [51], [61]. In this process,
first, the terms in the questions and answers are split

by Camel-case and separators (e.g., “_”). For example,
the "MediaRecorder" can be split into "Media" and
"Recorder". Second, we filter these words by removing
the stop words. Finally, the remained words are
handled by stemming [53]. After the above steps, a
Q&A pair is now represented as a bag of words. Fig.
2(b) shows the pre-processed words in the question
and the accepted answer.

In the process of indexing, each Q&A pair now
represented by pre-processed words is stored as a
document. Each document consists of a number of
fields (i.e. the Q&A pair ID, words) as shown in Fig.
2(c). Now, we can search PRF Q&A pairs based on this
index.

3.2.3 Searching Q&A Pairs

For searching the PRF Q&A pairs, following previous
work [48], we consider the following two aspects. The
first is the textual similarity, denoted by Lucene score,
between Q&A pairs and queries calculated by BM25
similarity on Lucene. The other is the quality of Q&A
pairs in terms of SO score. A SO score is a weighted
mean value between the individual scores of its
question and answer. The score of a post (question or
answer) voted by crowd is regarded as a proxy for its
quality. As their different natures of Lucene score and
SO scores, we combine two scores by performing a
normalization step to achieve the final score.
Specifically, for the Q&A pairs returned in the first-
pass retrieval, we normalize the Lucene score value of
each pair and its SO score value in the range [0, 1]
using min-max normalization technique [48]. For the i-
th Q&A pair, the final score is calculated by following
formulas:

𝑓𝑖𝑛𝑎𝑙 𝑠𝑐𝑜𝑟𝑒𝑖 =
𝐿𝑖−𝑚𝑖𝑛𝐿

𝑚𝑎𝑥𝐿−𝑚𝑖𝑛𝐿
+

𝑆𝑖−𝑚𝑖𝑛𝑆

𝑚𝑎𝑥𝑆−𝑚𝑖𝑛𝑆
 (1)

𝑆𝑖 = 0.7 ∗ 𝑆𝑞𝑖 + 0.3 ∗ 𝑆𝑎𝑖 (2)

where, 𝐿𝑖 and 𝑆𝑖 are Lucene score and SO score of the i-
th Q&A pair, respectively. The maximum and
minimum of Lucene score and SO score among all Q&A
pairs are represented with 𝑚𝑎𝑥𝐿 and 𝑚𝑖𝑛𝐿, 𝑚𝑎𝑥𝑆 and
𝑚𝑖𝑛𝑆 , respectively. The symbols 𝑆𝑞𝑖 and 𝑆𝑎𝑖 refer to
the values of question and answer in the i-th Q&A pair
voted by crowd, respectively.

According to the final score, we rank the returned
Q&A pairs in descending order and recommend top-m
Q&A pairs as the PRF documents. Now, we can
identify the useful expansion words from these PRF
Q&A pairs [48].

3.3 Words Selection

A large number of approaches focus on finding good
expansion words by weighting scores for words in the
feedback documents [10]. Most of them are based on
the assumption that the words that are most closely
related to the query will have a comparatively higher
probability of occurrence in the feedback documents.
Following this general paradigm, various functions

(a)

(b)

(c)

Fig. 2. An example of a Q&A pair (a), the words in Question (Q) and
Answer (A) after text pre-processing (b), and the fields of a Q&A pair
(c).

LIMING NIE ET AL.: QUERY EXPANSION BASED ON CROWD KNOWLEDGE FOR CODE SEARCH PAGE5

have been proposed to assign high scores to the words.
In our study, to weight the candidate words in a

feedback document, we employ the traditional method,
TF-IDF weighting function. TF-IDF is often used to
determine the importance of a word for a particular
document in the corpus [17]. We show the weighting
of TF-IDF on Lucene as follows [4]:

𝑤(𝑡, 𝑑𝑖) = 𝑇𝐹(𝑡) ∗ 𝐼𝐷𝐹(𝑡) (3)

𝑇𝐹(𝑡, 𝑑𝑖) = 𝑠𝑞𝑟𝑡(𝑡𝑓(𝑡, 𝑑𝑖)) (4)

𝐼𝐷𝐹(𝑡) = 𝑙𝑜𝑔 (
𝑁

𝑑𝑓+1
) + 1 (5)

where, term frequency, 𝑡𝑓(𝑡, 𝑑𝑖), is the number of times
the word t appearing in a document 𝑑𝑖 . The Inverse
Document Frequency, 𝐼𝐷𝐹(𝑡) , is the inverse of the
number of documents in the corpus containing word t.
N is the total number of feedback documents. After
weighting the words, top-n words can be identified as
expansion words. Notably, as some words appearing
in more than 25% of the documents in the collection
are considered non-discriminating [15], [17], we
eliminate these words in this process.

3.4 Code Snippet Corpus

We store the candidate code snippets in a corpus and
index them on Lucene. The corpus contains 921,713
code snippets extracted from 1,538 open source app
projects on the Android platform. The following three
steps show the preparation for the code snippet corpus:
 Crawling the open source app projects

The code snippets in our experiments come from
open source app projects on F-droid [2]. F-droid is a
website with free and open source apps on the
Android platform. Notably, among several versions of
an app project, we select the latest version.
 Segmenting the Java files in these app projects

In order to collect candidate code snippets,
following previous work [22], we utilize the tool
Eclipse Abstract Syntax Tree (AST) to parse the Java
files. Each Java file contains one or more methods. In
the process of parsing, each method that containing the
code text and comments is viewed as a code snippet.
 Indexing the code snippets on Lucene

Like the text pre-processing for Q&A pair, we also
first process the code snippets before indexing them on
Lucene. Then, each code snippet is stored as a
document containing several fields (i.e. the name of
code snippet and the words).

In the second-pass retrieval of QECKRocchio, we score
each code snippet with the BM25 textual similarity
between the expanded query and this code snippet.
According to the scores, we select top-k code snippets
as the final recommendation results.

4 EXPERIMENTAL SETUP

In this section, based on three research questions (RQs),
we evaluate the effectiveness of QECK for improving
the performance of code search algorithms, and
investigate the performance of QECKRocchio. We conduct

three experiments to answer the three RQs,
respectively. We also provide the details about the
data set employed in our experiments and the
evaluation for the results. Our experiments are
conducted on a 3.60 GHz CPU (Intel i5) PC running
windows 8.1 OS with 8G memory. We implement
QECKRocchio using Java 1.7.0 in Eclipse.

4.1 Research Questions

We explore the following three RQs:
RQ1: Whether QECK can improve the performance of

code search algorithms?
In our first experiment, we utilize three code search

algorithms [22], [28] to verify the effectiveness of
QECK by comparing the performance of
recommendation before and after QECK is applied.
From comparative results of these code search
algorithms, we want to identify whether or not our
QECK technique can indeed improve the retrieval
performance.

Specifically, the first code search algorithm is BM25
based information retrieval approach on Lucene,
which is denoted as IR in the first experiment. The
second is Portfolio [28] based on Vector Space Model
(VSM), PageRank, and Spreading Activation Network
(SAN). The third is VF [22] based on VSM and the
frequent item-set mining. We program the IR on
Lucene [4], and reproduce Portfolio and VF by
following the parameters setting and the steps claimed
in literatures [22], [28].

In order to conduct fair comparison, we optimize the
parameters, the number of PRF documents and the
number of expansion words, as follows. Based on the
recommendation found in the domain literatures [10],
[17], we first set the top five Q&A pairs returned in the
first-pass retrieval as the PRF documents. Then, we
adjust the number of expansion words over (n ∈ (1 −
10,15,20)) to achieve the best performance for each
code search algorithm, respectively.

RQ2: How the parameters affect the performance of
QECK?

To further study the influence of parameters
variation on performance of QECK, we conduct the
second experiment. Two factors influencing QECK are
the quality of Q&A pairs and the expansion words
selected from these Q&A pairs, which correspond to
two parameters: the number of PRF documents (i.e.
feedback Q&A pairs) and the number of expansion
words, respectively.

As it is a time-consuming task to label relevant
scores for code snippets, we only discuss the situation
when fixing a parameter and adjusting another
parameter. Specifically, first, we set the top five Q&A
pairs as the PRF documents, and explore the trend of
performance for each code search algorithm by
varying the number of expansion words. Based on the
trend, we achieve the optimal value of the number of
expansion words for each code search algorithm. Then,
we fix this optimal value, and explore the trend of
performance for each code search algorithm by

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

varying the number of PRF documents.
RQ3: Whether our code search approach, QECK based

Rocchio’s model, is better than the state-of-the-art method?
As the state-of-the-art method, Lu et al. [29] present

a solution for improving the code search based on
query reformulation technique, denoted as PWordNet in
the experiment. To implement PWordNet, the authors,
first, find the synonyms of each word in the given
query with the same POS using WordNet to expand
the queries. Then, they identify the key source code
identifies in methods as the keyterms based on the
similarity values with the expanded queries. Finally,
according to the percentage of keyterms in each
method, they recommend top-k methods to developers.

We compare our approach QECKRocchio against
PWordNet in the same retrieval scenario, and verify the
effectiveness of our approach. The parameters in each
of these two approaches are adjusted to achieve the
best performance, respectively.

4.2 Dataset Collection

In this part, we describe the query set, the Q&A
collection, and the code snippet corpus used in three
experiments. These datasets can be found in our
webpage [5].

4.2.1 Query Set

In our experiments, we employ 20 programming tasks
to form the original queries. These tasks are real-world
programming tasks collected from Stack Overflow [7].

For collecting these programming tasks, we first
manually rank the posts with the “android” tag on
Stack Overflow. Then, we check the posts one by one
based on some criteria until we collect 20 tasks. The
criteria [28] are that the tasks should belong to the
framework of Android app development and be
viewed several times. Meanwhile, there are solutions
along with these programming tasks in the webpages,
as these solutions can provide assists for evaluating the

relevance scores of code snippets.
Each programming task contains a title and a

description. We find that the structure of descriptions
are different for different tasks. Some contain only
textual description, whereas some contain both code
context and text description. In our experiments, for
each of 20 programming tasks, we simply extract the
words in the title as the query. For example, for the
programming task in the Fig. 2 (a), we extract the
words “take a screenshot in Android” as the query. In
this process, the extracted words may not always
represent actual developer queries as some words in
the description may be neglected. This will be a threat
to our results.

Table 1 shows 20 queries. The column “Tags” shows
the categories of these queries. Note that our queries
belong to different categories. The column “Viewed
Times” indicates the number of times a query has been
viewed by visitors. These values are all comparatively
large, which means that the developers desire to
achieve the solutions of these programming tasks.

4.2.2 Q&A Pair Collection

We download a release of Stack Overflow public data
dump (the version of August 2015), posts.xml. This
dataset stores all questions and their answers (denoted
as posts) on Stack Overflow until the dump is built.
Following the steps in Section 3.2, we construct
5,108,770 Q&A pairs from total of 24,120,522 posts in
this dump. Finally, we achieve a collection containing
312,941 Q&A pairs that are labeled with the “android”
tag. Notably, to avoid introducing bias, in Q&A pair
collection, we remove the Q&A pairs corresponding to
our programming tasks.

4.2.3 Code Snippet Corpus

Following the steps in Section 3.4, until August 2015,
we collect totally 1,538 Android app projects from F-
droid. By segmenting the Java files in these projects,

TABLE 1

QUERIES FOR TEST

ID Query Tags Viewed times

1 Record audio sound android 4783
2 Get screen dimensions in pixels android, layout, screen 720031
3 Take a screenshot in Android android, screenshot 107071
4 Get the memory used android, memory, memory-management 217026
5 Get the list of activities/applications installed android 180820
6 Import the system time android, operating-system 36113
7 Open a URL in Android's web browser android, url, android-intent, android-browser 342424
8 Use android Timer in Android activity android, multithreading, timer, scheduled-tasks 18998
9 Capture Image from Camera and Display in Activity android, image, camera, capture 157947
10 Handle right to left swipe gestures android, swipe, gesture-recognition 152674
11 Converting pixels to dp android 264672
12 Draw a line in android android 182837
13 Get cpu usage android, cpu-usage 72209
14 Detect network connection status android, networking, wifi, connectivity 69553
15 Check if an application is installed or not in Android android, apk 46174
16 Convert an image into Base64 string android, base64 80049
17 Get the web page contents from a WebView android, android-webwiew 52124
18 Cancel an executing AsyncTask android, android-asynctask 85973
19 Detect if a Bluetooth device is connected android 39245
20 Retrieve incoming call's phone number android, telephonymanager, phone-state-listener 50134

LIMING NIE ET AL.: QUERY EXPANSION BASED ON CROWD KNOWLEDGE FOR CODE SEARCH PAGE7

we construct a corpus containing 921,713 code snippets.

4.3 Evaluation

4.3.1 Steps of Evaluation

After achieving the recommendation results from three
experiments, we need to manually label each code
snippet in the results, and calculate the metrics for
each comparative algorithm.

Specifically, we set up the evaluation as follows [65].
For a given query, first, we obtain the Top-k (k=10 in
our study) code snippets returned by each
comparative algorithm in three experiments. Then, we
merge all code snippets into a pool, which includes
only unique code snippets. For each code snippet in
this pool, we recruit two participants to label the
relevance scores with Four-level Likert scale.
Participants judge the relevance scores by the solutions
appearing with the programming tasks on the
webpages and their programming experience. As
regards the inconsistencies of labeling, we recruit an
expert to arbitrate the score. Finally, based on the
scores, we exploit two popular metrics to inspect the
performance of each algorithm. In the whole process,
about which algorithm is a code snippet from, it is
invisible for the participants and expert as the code
snippets are merged into a pool. Meanwhile, two
participants and the expert could view the queries and
the corresponding programming tasks on Stack
Overflow.

Two participants are graduate students from Dalian
University of Technology who have at least four years
of Java experience. Moreover, the expert, one author of
this paper, is a doctoral student who has more than
nine years of Java experience. Both two participants
and the expert have at least three years of Android
application development experience. Before the
labeling process, we give them a 30-minutes training
about labeling.

The guidelines of labeling code snippets are as
follows [28]:

Score 4: Highly relevant. The code snippet is
perfectly suitable for the programming task.

Score 3: Mostly relevant. The code snippet or the
APIs contained in this snippet can be reused for the
programming task with some changes.

 Score 2: Mostly irrelevant. The code snippet only
contains a little relevant code lines, which is not
enough to solve the programming task.

Score 1: Completely irrelevant. The code snippet
cannot solve the programming task.

In simple terms, a code snippet labeled with 3 or 4
means that this code snippet should contain the useful
code lines or APIs to solve the programming task.

Totally, two participants label 3251 code snippets in our
three experiments. Among these code snippets, two
participants label same scores for 2756 code snippets. The
degree of consensus is 84.8%.

4.3.2 Metrics

An ideal recommendation algorithm should hit more

of the relevant answers and place them at the top of
the results. Following the previous work [28], we
adopt two types of metrics to evaluate the
performance of each algorithm in three experiments,
namely, Precision and Normalized Discounted
Cumulative Gain (NDCG). In this paper, the
performance of algorithms refers to the effectiveness of
algorithms. We also discuss the efficiency of
algorithms in Section 6. For comparing the
performance of different algorithms, following [22],
[28], we calculate the mean value of two metrics for the
queries.

Specifically, the Precision@K is defined as the
proportion of the true positives (i.e. the code snippets
with score 3 or 4) in Top-k recommended results (both
true positives and false positives) for a given query
[28].

The Precision@K is calculated as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 =
(|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒|)

(|𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|)
 (6)

Where the denominator |Retrieved| is the total
number of results recommended by an algorithm,
which equals to 10 in our study. The numerator
|Relevance| is the number of relevant code snippets in
the result.

NDCG is commonly used in the information
retrieval to measure the ranking capability of a
recommendation algorithm. A algorithm is more
useful when there are more relevant results in higher
positions in the hit list than irrelevant results. We
calculate NDCG@K of each algorithm for a given
query, as:

𝑁𝐷𝐶𝐺@𝐾 =
𝐷𝐶𝐺@𝐾

𝐼𝐷𝐶𝐺@𝐾
 (7)

𝐷𝐶𝐺@𝐾 = 𝑅1 + ∑
𝑅𝑖

𝑙𝑜𝑔2𝑖

𝐾
𝑖=2 (8)

where NDCG@K is the DCG@K normalized by
IDCG@K. IDCG@K is the ideal DCG@K, where the
results are sorted by relevance scores. R1 is the
relevance score at the first position in the list. Ri is the
relevance score at the i-th position.
 Notably, in the experiments, we observe that the
value of NDCG cannot show the real performance for
recommendation. For example, there are two results
from two algorithms for a given query, respectively.
The result A is 4, 1, 1, and 1. The result B is 2, 2, 2, and
2. Here, we recommend Top-4 code snippets in the
results. The values of NDCG for two results are all
equal to 1. However, we find that there are no relevant
code snippets for the given query in the result B, as a
snippet with score 3 or 4 is considered to be relevant.
To solve this problem, we set the score 1 and score 2 to
score 0 in the returned results. Then, the NDCG value
of the result B equals to 0. The NDCG value of the
result A still equals to 1.

5 RESULTS AND ANALYSIS

The section provides three experimental results to
answer the RQs mentioned in Section 4.1, respectively.

In the first and third experiment, for drawing

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

confident conclusions whether one recommendation
result outperforms another, we conduct a statistical
test to compare the mean values of two metrics (i.e.
Precision and NDCG) for two results. Specifically, we
conduct the two-sided Wilcoxon’s signed rank test
between two results. When comparing each pair of
results, the primary null hypothesis is that there is no
statistical difference in the performance between two
results. In this section, we adopt the 95% confidence
level (i.e. the p−values below 0.05 are considered
significant).

5.1 RQ1

The first experiment is conducted to identify the
effectiveness of QECK for improving the retrieval
performance.

Table 2 contains the details of extremal values,
median, mean, and standard deviation of Precision
and NDCG, also shows the performance comparisons
of three code search algorithms before and after QECK
is applied. In this table, the "+" refers to that the p-
value is less than 0.05 among the pairwise comparison
for each algorithm. From this table, we can observe
that the p-values are all less than 0.05 among the
pairwise comparisons. For each code search algorithm
before and after QECK is applied, we reject the null
hypothesis and accept the alternative hypothesis that
there is a statistically significant difference in the mean
values of Precision and NDCG, respectively.

Fig. 3 shows the statistical summary of the
performance comparisons of two metrics for three
code search algorithms. In Table 2 and Fig. 3, we can
observe that, after using QECK, the performance is
improved for each algorithm. Specifically, for the mean
value of Precision, the improvement of IR is 38%,
Portfolio is 33%, and VF is 64%. For the mean value of
NDCG, the improvement of IR is 20%, Portfolio is 16%,
and VF is 35%. The foremost reason for these
improvements is the usage of the software-specific
words that are extracted from PRF Q&A pairs. QECK
increases the possibility of searching more relevant
code snippets.

Answer RQ1: After using our proposed QECK
technique, query expansion based on crowd

knowledge, the performance of three code search
algorithms are all improved.

5.2 RQ2

We conduct the second experiment to further explore
the influence of parameters variation on performance
of QECK. Following the first experiment, we compare
the performance trends of three code search algorithms
by changing the number of PRF documents and the
number of expansion words.

Fig. 4 and Fig. 5 show the trends of three code search
algorithms before and after QECK is applied by means
of two metrics (Precision@10 and NDCG@10) when we

TABLE 2
THE STATISTICAL SUMMARY OF THREE CODE SEARCH ALGORITHMS (IR, PORTFOLIO, AND VF) BEFORE AND AFTER

QECK IS APPLIED

Metrics Approaches Samples Min Max Median Mean StdDev

Precision

IR 20 0% 100% 60% 57.5% 0.2552
IRQECK 20 30% 100% 85% 79.5%+(0.007) 0.2164

Portfolio 20 0% 90% 60% 55.5% 0.2350
PortfolioQECK 20 10% 100% 80% 74%+(0.014) 0.2664

VF 20 0% 100% 50% 47% 0.3278
VFQECK 20 20% 100% 90% 77%+(0.013) 0.2774

NDCG

IR 20 0 1 0.7772 0.7551 0.2407
IRQECK 20 0.4864 1 0.9461 0.9030+(0.033) 0.1271

Portfolio 20 0 1 0.7795 0.7445 0.2325
PortfolioQECK 20 0.3562 1 0.9328 0.8661+(0.020) 0.1761

VF 20 0 0.9816 0.8220 0.6347 0.3526
VFQECK 20 0.5089 1 0.9221 0.8599+(0.033) 0.1493

The "+" refers to the p-value is less than 0.05 among the pairwise comparison for each algorithm. The p-values are surrounded by parentheses. The

better mean values among the pairwise comparisons are shown in bold font.

(a)

(b)

Fig. 3. The statistical results of Precision (a) and NDCG (b) for three
code search algorithms (IR, Portfolio (P), VF) before and after
QECK is applied. Here, IR_C refers to QECK based IR, P_C refers
to QECK based Portfolio, VF_C refers to QECK based VF. The x
axes indicate two code search algorithms, respectively. The y axes
indicate the range for two metrics, respectively. The red line
represents the median. And the blue rhombus represents the mean.

LIMING NIE ET AL.: QUERY EXPANSION BASED ON CROWD KNOWLEDGE FOR CODE SEARCH PAGE9

fix a parameter and change another. In the subfigures
of two figures, three curves refer to three code search
algorithms, respectively. The value "0" on the
horizontal axes refers to the situation using original
query. The other values on the horizontal axes refer to
the situations using query expansion when selecting
different values of the number of PRF documents or
the number of the expansion words. Fig. 4 shows that
the performance of three code search algorithms reach
the optimum state when the number of expansion
words equals to 9, and the number of PRF documents
is fixed as 5. In contrast, Fig. 5 shows that the
performance of three code search algorithms almost
reach the optimum state when the number of PRF
documents equals to 5, and the number of expansion
words is fixed as 9.

Here, we show and analyze some interesting
findings in two figures:
 After employing our QECK technique, the

performance of three algorithms are generally
better. This indicts that our proposed technique
can make use of Q&A pairs and add useful
expansion words to generate more useful
expansion queries.

 The performance of all code search algorithms
increase at the beginning when the value of each
of two parameter grows up. There is a unique
optimal value for each of two parameters. This
trends can be explained by considering the
percentage of truly useful documents and
expansion words in the PRF documents and the
adding expansion words, respectively [9]. Taking
the number of expansion words as example, on
the one hand, if we select a very small number of

expansion words, it is more likely that we will get
little useful words for some queries. On the other
hand, if we select a larger number of expansion
words, it is more likely that some irrelevant
words will be added, and the performance
deteriorates [44].

 The performance of IR is better than that of
Portfolio and VF in most cases for two metrics.
Therefore, we consider QECK based IR method
(i.e. QECK based Rocchio’s model) as our total
solution to search code.

Based on the findings and analysis above, we
recommend that, in QECK, the default value for the
number of PRF documents is 5, and the default value
for the number of expansion words is 9.

Answer RQ2: When fixing the number of PRF
documents and varying the number of expansion
words, there is a unique optimal value of performance
for each code search algorithm. Too many or too less
expansion words is not desirable.

5.3 RQ3

The third experiment is conducted to compare our
code search method QECKRocchio against PWordNet [29].
Table 3 shows the details of extremal values, median,
mean, and standard deviation of Precision and NDCG,
and presents the performance comparisons of two
methods.

We can observe that the p-values are all less than
0.05 among the pairwise comparisons for two metrics.
Then, we reject the null hypothesis and accept the
alternative hypothesis that there is a statistically
significant difference in the mean values of Precision
and NDCG for QECKRocchio and PWordNet, respectively.

(a) (b)

Fig. 4. The trends of Precision@10 (a) and NDCG@10 (b) when the number of expansion words equals to different values, and the number
of PRF documents is set as 5.

(a) (b)

Fig. 5. The trends of Precision@10 (a) and NDCG@10 (b) when the number of PRF documents equals to different values, and the number of
expansion words is set as 9.

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

Fig. 6 shows the statistical summary of the
performance comparisons of two metrics for two
methods. In Table 3 and Fig. 6, we can observe that the
performance of QECKRocchio is better than PWordNet.
Specifically, for Precision, the improvement is 22% (p-
value = 0.045). For NDCG, the improvement is 16% (p-
value = 0.005). The results further verify our
conclusion that the utilization of software-specific
words from QECK is effective for code search based on
query expansion.

Answer RQ3: Based on the observations and
analysis above, we can argue that our method
QECKRocchio is a better method for code search than the
state-of-the-art method. This result clearly validates
the ability of QECK for providing useful expansion
words.

6 THREATS TO VALIDITY

This section discusses the threats to the validity of our
work. We list them as follows.

Labeling: As mentioned in Section 4.3, in the process
of labeling the relevance scores for code snippets, we
recruit two participants. They have three years of
experience in Android app development, and four
years of experience in Java development. We believe
that they can assign the correct relevance scores with
the help of their experience and the solutions that
appearing with the programming tasks in the webpage.
However, they still have different programming levels
and may label the same code snippet with different
scores. This threat is minimized by recruiting an expert
to arbitrate the score.

The query set: In our three experiments, we use 20
queries to evaluate our technique. The size is the same
as the previous researches [8], [22]. However, it may
still threaten the validity of the conclusion. We will test
more queries in our further work. Moreover, in the
process of generating the query set, we simply extract
the words in the titles of programming tasks as the
queries. Obviously, some words in the descriptions
will be neglected, which means that queries may not
be representative of actual developer queries. This will
be a threat to validity. In our future work, we will
employ the whole programming task (i.e., the title and
description) as the query, and explore the impact of the
description on results.

The Q&A collection and the Code snippet corpus: In
three experiments, we return PRF documents from a
Q&A collection in the first-pass retrieval of QECKRocchio,
and retrieve code snippets on a code snippet corpus in
the second-pass retrieval. Two datasets are all real-

world, and have a certain scale. Based on two datasets,
the effectiveness of our QECK technique has been
demonstrated. However, these datasets are just about
Android, and the scale is still smaller than other sets
[1], [3], [6]. In future work, we plan to explore the
effectiveness of QECK on larger datasets.

The Comparative methods: We reproduce two code
search algorithms [22], [28] in our first and second
experiments and a comparative method [29] in our
third experiment. There are certain gaps in the
performance between our reproduced methods and
the original ones. The reasons may be the differences
of queries or the code snippet corpora. Specifically, our
queries are all about Android app development, and
the corpus is collected from Android app projects
rather than traditional software projects.

Parameters: In our experiments, as it is a time-
consuming task for labeling code snippets, we only
discuss the situation when fixing a parameter and
adjusting another parameter. Furthermore, we
arbitrarily add the expansion words into original
queries to generate the expansion queries. It means
that the weights of the words in the original queries
and the expansion words are viewed as equal. Actually,
different weights may produce different
recommendation performances [10]. In our future
work, we plan to automatically adjust two parameters
and the weights of words to achieve better performance.

Efficiency: In this paper, we focus on improving the
effectiveness of recommendation method. Similar to

TABLE 3

THE STATISTICAL SUMMARY OF TWO METHODS

Metrics Approaches Samples Min Max Median Mean StdDev

Precision@10
PWordNet 20 30% 90% 65% 65% 0.2037
QECKRocchio 20 30% 100% 85% 79.5% 0.2109

NDCG@10
PWordNet 20 0.3992 0.9818 0.7688 0.7794 0.1543
QECKRocchio 20 0.4864 1 0.9461 0.9030 0.1239

(a) (b)

Fig. 6. The statistical results of Precision (a) and NDCG (b) for two
query expansion based code search methods: our method
QECKRocchio denoted as QECK, and WordNet based method
(PWordNet) denoted as PW. The x axes indicate two code search
algorithms, respectively. The y axes indicate the range for two
metrics, respectively. The red line represents the median. And the
blue rhombus represents the mean.

LIMING NIE ET AL.: QUERY EXPANSION BASED ON CROWD KNOWLEDGE FOR CODE SEARCH PAGE11

the previous studies [22], [28], we employ two metrics
(i.e., Precision and NDCG) to measure the effectiveness.
However, the efficiency of a recommendation method
is also crucial, which depends on the quality of code,
the size of data, and the algorithm itself. Currently, our
method finishes a recommendation within 3 seconds
averagely. This will be a threat for using in practice. In
the future work, we will improve the quality of code
and build a plug-in for Eclipse.

7 RELATED WORK

The literatures related with our research involve two
aspects: code search based on query expansion and
Q&A pairs recommendation on Stack Overflow.

7.1 Query Expansion based Code Search

In this part, we first introduce the studies about code
search and query expansion, and explain the
relationship between our method and two types of
researches as shown in Table 4. Then, we show the
researches about code search based on query
expansion, and the differences between these
researches and our work.

For the studies about code search, according to input
types, there are several categories: test cases, free-form
queries, and others. Specifically, Lemos et al. [23], [24]
propose CodeGenie to perform the code search by
employing queries generated from the information (i.e.,
names of classes and methods, and interfaces)
available on test cases. Except the test cases, free-form
queries represented with several words are employed
as the inputs to retrieve a ranked list of relevant code
snippets [8], [22], [28]. Moreover, other kinds of input
for code search contain: the names of API methods [31],
[35], [64], the pairs of class types [26], the examples of
desired code [50], the pairs with source and
destination types [52], the structural context [19], [42],
the code under editing [14], [34], and so on. Our work
focusses on the studies taking free-form queries as
input.

For the studies about query expansion, there are two
major classes: global approaches and local approaches
[10], [27], [60]. Specifically, the global approaches
reformulate queries with a thesaurus, like WordNet,
by leveraging related words and synonyms from this
thesaurus. In contrast, based on the documents
initially appearing to match the original queries, the
local approaches leverage the user' marks on these
documents (Relevance Feedback, RF) or automatically

extract expansion words (Pseudo Relevance Feedback,
PRF) from these documents. Our method employs the
pseudo relevance feedback, one of the local
approaches, to expand queries.

As query expansion can solve the term mismatch
problem, it has been shown to be effective on many
natural language processing (NLP) tasks [10], [27], [60].
For improving the performance of code search, some
query expansion based methods are presented in
recent years. For example, Wang et al. [58] integrate
the users' feedbacks to make the more relevant code
snippets appearing earlier in the list. However, this
work need human intervention. For automating this
process, Hill et al. [18], [40], [46] propose a source code
search technique, CONQUER, which refines the
queries by suggesting the most highly co-occurring
words that appearing in the source code as alternative
query words. In 2015, Lu et al. [29] provide a query
reformulation technique, which is denoted as PWordNet
in our experiment, based on part-of-speech of each
word in queries and WordNet. The results of PWordNet

show that it can help recommend good alternative
queries, and outperform CONQUER. In our study, we
employ PWordNet as a comparative method in our third
experiment. Lemos et al. [25] present an automatic
query expansion approach, AQE, which uses test cases
as inputs, and leverages WordNet and a code-related
thesaurus [62] to expand queries.

These approaches mentioned above either use test
cases as inputs rather than free-form queries, or have
not employed the software-specific words to expand
queries. Different from these researches, in our study,
QECK automatically extracts software-specific
expansion words from PRF Q&A pairs on Stack
Overflow, and takes the free-form queries as the inputs.

7.2 Q&A Pairs Recommendation

Many studies have been conducted on solving the
software engineering tasks by leveraging the
discussions on Stack Overflow, for example, mining
source code description [56], extracting cookbooks for
APIs [12], helping developers debugging their code
[11], assisting software comprehension and
development [38], [39], [48], locating method
definitions on Stack Overflow [57], and so on. We focus
on the studies about recommending Q&A pairs on
Stack Overflow.

In 2013, Ponzaneli et al. [38] present Seahawk, which
automatically generates queries by extracting words

TABLE 4
 COMPARISON BETWEEN QECKROCCHIO WITH RELATED METHODS

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

from the code entities in the integrated development
environment (IDE), and displays the Q&A pairs on
Stack Overflow to developers for software
comprehension. Seahawk employs the textual
similarity between queries and Q&A documents.
Based on Seahawk, Ponzanelli et al. [39] propose a tool,
Prompter, which automatically retrieves discussions
on Stack Overflow by using several combined aspects.
Souza et al. [48] improve Seahawk by integrating the
textual similarity and the scores of Q&A pairs that are
voted by crowd. They combine two types of scores by
performing a normalization step to generate the final
score. Using the same strategy in [48], we retrieve PRF
Q&A pairs for given queries in our paper. The
different is, to assure the quality of Q&A pairs, we
only select the answers with the label
“AcceptedAnswer” rather than each answer.

8 CONCLUSION AND FUTURE WORK

For improving the performance of code search, in
this paper, we propose query expansion based on
crowd knowledge (QECK) to solve the vocabulary
problem. To evaluate the effectiveness of QECK, we
explore three Research Questions (RQs) in three
experiments on real-world datasets on the Android
platform. The results of three experiments state that:
first, after using QECK, the performance of three code
search algorithms are improved by up to 64% in
Precision, and 35% in NDCG. Second, too many or too
less expansion words are not desirable for code search
based on query expansion. Third, comparing to the
state-of-the-art query expansion method, our method
QECKRocchio, the implementation of QECK in the
Rocchio’s model, improves 22% for Precision and 16%
for NDCG. These results verify the effectiveness of
QECK for code search in aiding mobile app
development. It also means that the utilization of
software-specific words in QECK is effective for code
search.

We consider two aspects as our future work. First is
analyzing queries based on its features, which includes
automatically assessing performance of a query [16],
[37] and automatically recommending a reformulation
strategy for a given query [17]. Second, for improving
the performance of the automatic query expansion,
there are some efforts, for example, heuristic term
frequency transformation model [63] to capture the
local saliency of a candidate term in the feedback
documents, general solution to improve the efficiency
of pseudo relevance feedback methods [59], and so on.
These techniques could be employed by our QECK
technique to further enhance the effectiveness.

ACKNOWLEDGMENTS

This work is supported in part by the National Program on

Key Basic Research Project under Grant 2013CB035906,

the New Century Excellent Talents in University under

Grant NCET-13-0073, the National Natural Science

Foundation of China under Grants 61370144 and 61403057,

the Fundamental Research Funds for the Central

Universities under Grant DUT14YQ203.

REFERENCES

[1] CodePlex. [Online]. Available: https://www.codeplex.com/

[2] F-droid. [Online]. Available: https://f-droid.org

[3] Github. [Online]. Available: https://github.com/

[4] Lucene. [Online]. Available: http://lucene.apache.org

[5] Our Webpage QECK. [Online]. Available: http://oscar-

lab.org/people/~lnie/QECK/

[6] Source Forge. [Online]. Available: http://sourceforge.net/

[7] Stack Overflow. [Online]. Available: http://stackoverflow.com/

[8] S. K. Bajracharya, J. Ossher, and C. V. Lopes, "Leveraging usage

similarity for effective retrieval of examples in code repositories,"

presented at the Proceedings of the eighteenth ACM SIGSOFT

international symposium on Foundations of software engineering,

Santa Fe, New Mexico, USA, 2010.

[9] C. Carpineto, R. d. Mori, G. Romano, and B. Bigi, "An information-

theoretic approach to automatic query expansion," ACM Trans. Inf.

Syst., vol. 19, pp. 1-27, 2001.

[10] C. Carpineto and G. Romano, "A Survey of Automatic Query

Expansion in Information Retrieval," ACM Comput. Surv., vol. 44,

pp. 1-50, 2012.

[11] F. Chen and S. Kim, "Crowd debugging," presented at the

Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering, Bergamo, Italy, 2015.

[12] L. B. L. de Souza, E. C. Campos, and M. de A Maia, "On the

Extraction of Cookbooks for APIs from the Crowd Knowledge," in

Software Engineering (SBES), 2014 Brazilian Symposium on,

2014, pp. 21-30.

[13] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais,

"The vocabulary problem in human-system communication,"

Commun. ACM, vol. 30, pp. 964-971, 1987.

[14] J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen,

"CodeHint: Dynamic and interactive synthesis of code snippets,"

in Proceedings of the 36th International Conference on Software

Engineering, 2014, pp. 653-663.

[15] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, "On the use of

relevance feedback in IR-based concept location," in Software

Maintenance, 2009. ICSM 2009. IEEE International Conference

on, 2009, pp. 351-360.

[16] S. Haiduc, "Automatically detecting the quality of the query and

its implications in IR-based concept location," in Automated

Software Engineering (ASE), 2011 26th IEEE/ACM International

Conference on, 2011, pp. 637-640.

[17] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. D. Lucia, and T.

Menzies, "Automatic query reformulations for text retrieval in

software engineering," presented at the Proceedings of the 2013

International Conference on Software Engineering, San Francisco,

CA, USA, 2013.

[18] E. Hill, M. Roldan-Vega, J. A. Fails, and G. Mallet, "NL-based

query refinement and contextualized code search results: A user

study," in Software Maintenance, Reengineering and Reverse

Engineering (CSMR-WCRE), 2014 Software Evolution Week-

IEEE Conference on, 2014, pp. 34-43.

[19] R. Holmes and G. C. Murphy, "Using structural context to

LIMING NIE ET AL.: QUERY EXPANSION BASED ON CROWD KNOWLEDGE FOR CODE SEARCH PAGE13

recommend source code examples," presented at the

Proceedings of the 27th international conference on Software

engineering, St. Louis, MO, USA, 2005.

[20] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker,

"Automatically mining software-based, semantically-similar words

from comment-code mappings," in Mining Software Repositories

(MSR), 2013 10th IEEE Working Conference on, 2013, pp. 377-

386.

[21] H. Jiang, J. Zhang, X. Li, Z. Ren, and D. Lo, "a more accurate

model for finding tutorial segments explaining APIs," in Software

Analysis, Evolution and Reengineering (SANER), 2016 IEEE

23nd International Conference on, 2016, pp. 157-167.

[22] I. Keivanloo, J. Rilling, and Y. Zou, "Spotting working code

examples," presented at the Proceedings of the 36th International

Conference on Software Engineering (ICSE), Hyderabad, India,

2014.

[23] O. A. L. Lemos, S. Bajracharya, J. Ossher, P. C. Masiero, and C.

Lopes, "A test-driven approach to code search and its application

to the reuse of auxiliary functionality," Information and Software

Technology, vol. 53, pp. 294-306, Apr 2011.

[24] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla, P. C.

Masiero, P. Baldi, et al., "CodeGenie: using test-cases to search

and reuse source code," presented at the Proceedings of the

twenty-second IEEE/ACM international conference on Automated

software engineering, Atlanta, Georgia, USA, 2007.

[25] O. v. A. L. Lemos, A. C. d. Paula, F. C. Zanichelli, and C. V.

Lopes, "Thesaurus-based automatic query expansion for

interface-driven code search," presented at the Proceedings of

the 11th Working Conference on Mining Software Repositories,

Hyderabad, India, 2014.

[26] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman, "Jungloid

mining: helping to navigate the API jungle," ACM SIGPLAN

Notices, vol. 40, pp. 48-61, 2005.

[27] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to

Information Retrieval: Cambridge University Press, 2008.

[28] C. Mcmillan, D. Poshyvanyk, M. Grechanik, Q. Xie, and C. Fu,

"Portfolio: Searching for relevant functions and their usages in

millions of lines of code," ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 22, p. 37, 2013.

[29] L. Meili, S. Xiaobing, W. Shaowei, D. Lo, and D. Yucong, "Query

expansion via WordNet for effective code search," in Software

Analysis, Evolution and Reengineering (SANER), 2015 IEEE

22nd International Conference on, 2015, pp. 545-549.

[30] G. A. Miller, "WordNet: a lexical database for English," Commun.

ACM, vol. 38, pp. 39-41, 1995.

[31] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus,

"How Can I Use This Method?," in Software Engineering (ICSE),

2015 IEEE/ACM 37th IEEE International Conference on, 2015, pp.

880-890.

[32] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, "What makes a

good code example?: A study of programming Q&A in

StackOverflow," in Software Maintenance (ICSM), 2012 28th

IEEE International Conference on, 2012, pp. 25-34.

[33] N. Nazar, H. Jiang, G. Gao, T. Zhang, X. Li, and Z. Ren, "Source

code fragment summarization with small-scale crowdsourcing

based features," Frontiers of Computer Science, pp. 1-14, 2016.

[34] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V.

Nguyen, J. Al-Kofahi, et al., "Graph-based pattern-oriented,

context-sensitive source code completion," presented at the

Proceedings of the 34th International Conference on Software

Engineering, Zurich, Switzerland, 2012.

[35] H. Niu, I. Keivanloo, and Y. Zou, "Learning to rank code

examples for code search engines," Empirical Software

Engineering, pp. 1-33, 2016.

[36] J. H. Paik, D. Pal, and S. K. Parui, "Incremental blind feedback:

An effective approach to automatic query expansion," vol. 13, pp.

1-22, 2014.

[37] J. A. R. Perez and J. M. Jose, "Predicting query performance in

microblog retrieval," presented at the Proceedings of the 37th

international ACM SIGIR conference on Research &

development in information retrieval, Gold Coast, Queensland,

Australia, 2014.

[38] L. Ponzanelli, A. Bacchelli, and M. Lanza, "Leveraging Crowd

Knowledge for Software Comprehension and Development," in

Software Maintenance and Reengineering (CSMR), 2013 17th

European Conference on, 2013, pp. 57-66.

[39] L. Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto, and M. Lanza,

"Mining StackOverflow to turn the IDE into a self-confident

programming prompter," presented at the Proceedings of the 11th

Working Conference on Mining Software Repositories,

Hyderabad, India, 2014.

[40] M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails, "CONQUER:

A Tool for NL-Based Query Refinement and Contextualizing Code

Search Results," in Software Maintenance (ICSM), 2013 29th

IEEE International Conference on, 2013, pp. 512-515.

[41] C. Sadowski, K. T. Stolee, and S. Elbaum, "How developers

search for code: a case study," presented at the Proceedings of

the 2015 10th Joint Meeting on Foundations of Software

Engineering, Bergamo, Italy, 2015.

[42] N. Sahavechaphan and K. Claypool, "XSnippet: Mining for

sample code," Acm Sigplan Notices, vol. 41, pp. 413-430, Oct

2006.

[43] G. Salton, The SMART Retrieval System--Experiments in

Automatic Document Processing: Prentice-Hall, Inc., 1971.

[44] G. Salton and C. Buckley, "Improving retrieval performance by

relevance feedback," in Readings in information retrieval, J.

Karen Sparck and W. Peter, Eds., ed: Morgan Kaufmann

Publishers Inc., 1997, pp. 355-364.

[45] W. Shaowei, D. Lo, and J. Lingxiao, "Inferring semantically

related software terms and their taxonomy by leveraging

collaborative tagging," in Software Maintenance (ICSM), 2012

28th IEEE International Conference on, 2012, pp. 604-607.

[46] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker,

"Using natural language program analysis to locate and

understand action-oriented concerns," presented at the

Proceedings of the 6th international conference on Aspect-

oriented software development, Vancouver, British Columbia,

Canada, 2007.

[47] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, "An

examination of software engineering work practices," presented

at the Proceedings of the 1997 conference of the Centre for

Advanced Studies on Collaborative research, Toronto, Ontario,

Canada, 1997.

[48] L. B. L. d. Souza, E. C. Campos, and M. d. A. Maia, "Ranking

crowd knowledge to assist software development," presented at

the Proceedings of the 22nd International Conference on

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

Program Comprehension, Hyderabad, India, 2014.

[49] A. Spink, "Term relevance feedback and query expansion:

relation to design," presented at the Proceedings of the 17th

annual international ACM SIGIR conference on Research and

development in information retrieval, Dublin, Ireland, 1994.

[50] K. T. Stolee, S. Elbaum, and D. Dobos, "Solving the Search for

Source Code," Acm Transactions on Software Engineering and

Methodology, vol. 23, May 2014.

[51] X. Sun, X. Liu, J. Hu, and J. Zhu, "Empirical studies on the NLP

techniques for source code data preprocessing," presented at the

Proceedings of the 2014 3rd International Workshop on Evidential

Assessment of Software Technologies, Nanjing, China, 2014.

[52] S. Thummalapenta and T. Xie, "Parseweb: a programmer

assistant for reusing open source code on the web," presented at

the Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering, Atlanta, Georgia,

USA, 2007.

[53] F. Thung, S. Wang, D. Lo, and J. Lawall, "Automatic

recommendation of api methods from feature requests," in

Automated Software Engineering (ASE), 2013 IEEE/ACM 28th

International Conference on, 2013, pp. 290-300.

[54] Y. Tian, D. Lo, and J. Lawall, "Automated construction of a

software-specific word similarity database," in Software

Maintenance, Reengineering and Reverse Engineering (CSMR-

WCRE), 2014 Software Evolution Week - IEEE Conference on,

2014, pp. 44-53.

[55] Y. Tian, D. Lo, and J. Lawall, "SEWordSim: software-specific

word similarity database," presented at the Companion

Proceedings of the 36th International Conference on Software

Engineering, Hyderabad, India, 2014.

[56] C. Vassallo, S. Panichella, M. D. Penta, and G. Canfora,

"CODES: mining source code descriptions from developers

discussions," presented at the Proceedings of the 22nd

International Conference on Program Comprehension,

Hyderabad, India, 2014.

[57] V. Vinayakarao, "Spotting familiar code snippet structures for

program comprehension," presented at the Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering,

Bergamo, Italy, 2015.

[58] S. Wang, D. Lo, and L. Jiang, "Active code search: incorporating

user feedback to improve code search relevance," presented at

the Proceedings of the 29th ACM/IEEE international conference

on Automated software engineering, Vasteras, Sweden, 2014.

[59] H. Wu and H. Fang, "An incremental approach to efficient

pseudo-relevance feedback," presented at the Proceedings of the

36th international ACM SIGIR conference on Research and

development in information retrieval, Dublin, Ireland, 2013.

[60] J. Xu and W. B. Croft, "Query expansion using local and global

document analysis," presented at the Proceedings of the 19th

annual international ACM SIGIR conference on Research and

development in information retrieval, Zurich, Switzerland, 1996.

[61] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, et al., "Towards

Effective Bug Triage with Software Data Reduction Techniques,"

IEEE Transactions on Knowledge and Data Engineering, vol. 27,

pp. 264-280, 2015.

[62] J. Yang and L. Tan, "SWordNet: Inferring semantically related

words from software context," Empirical Softw. Engg., vol. 19, pp.

1856-1886, 2014.

[63] Z. Ye and J. X. Huang, "A simple term frequency transformation

model for effective pseudo relevance feedback," presented at the

Proceedings of the 37th international ACM SIGIR conference on

Research & development in information retrieval, Gold Coast,

Queensland, Australia, 2014.

[64] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, "MAPO: Mining

and Recommending API Usage Patterns," Ecoop 2009 - Object-

Oriented Programming, vol. 5653, pp. 318-343, 2009.

[65] H. Zhu, H. Xiong, Y. Ge, and E. Chen, "Mobile app

recommendations with security and privacy awareness,"

presented at the Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data

mining, New York, New York, USA, 2014.

Liming Nie received the M.Sc. degree in Guangxi
University for Nationalities, Nanning, China, in 2009.
He is currently a Ph.D. candidate in Dalian University
of Technology. His current research interests include
code recommendation and mining software
repositories in software engineering.

He Jiang received the Ph.D. degree in computer
science from the University of Science and
Technology of China, Hefei, China. He is currently a
Professor with the Dalian University of Technology,
Dalian, China. His current research interests include
search based software engineering and mining
software repositories. Dr. Jiang is also a member of

the ACM and the CCF.

Zhilei Ren received the B.Sc. degree in software
engineering and the Ph.D. degree in computational
mathematics from the Dalian University of
Technology, Dalian, China, in 2007 and 2013,
respectively. He is currently a lecturer with the Dalian
University of Technology. His current research
interests include evolutionary computation and its

applications in software engineering. Dr. Ren is a member of the
ACM and the CCF.

Zeyi Sun received the B.Sc. degree in software
engineering from the Dalian University of Technology,
Dalian, China, in 2015. He is currently a Master of
Software Engineering candidate in Dalian University
of Technology. His current research interest is code
recommendation in software engineering.

Xiaochen Li received the M.Sc. degree in software
engineering from the Dalian University of Technology,
Dalian, China, in 2015. He is currently a Ph.D.
candidate in Dalian University of Technology. His
current research interest is mining software
repositories in software engineering.

