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Abstract—As code search is a frequent developer activity in software development practices, improving the performance of 

code search is a critical task. In the text retrieval based search techniques employed in the code search, the term mismatch 

problem is a critical language issue for retrieval effectiveness. By reformulating the queries, query expansion provides effective 

ways to solve the term mismatch problem. In this paper, we propose Query Expansion based on Crowd Knowledge (QECK), a 

novel technique to improve the performance of code search algorithms. QECK identifies software-specific expansion words 

from the high quality pseudo relevance feedback question and answer pairs on Stack Overflow to automatically generate the 

expansion queries. Furthermore, we incorporate QECK in the classic Rocchio’s model, and propose QECK based code search 

method QECKRocchio. We conduct three experiments to evaluate our QECK technique and investigate QECKRocchio in a large-

scale corpus containing real-world code snippets and a question and answer pair collection. The results show that QECK 

improves the performance of three code search algorithms by up to 64% in Precision, and 35% in NDCG. Meanwhile, compared 

with the state-of-the-art query expansion method, the improvement of QECKRocchio is 22% in Precision, and 16% in NDCG.  

Index Terms—Code search, crowd knowledge, query expansion, information retrieval, question & answer pair.  
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1 INTRODUCTION 

ODE search is a frequent developer activity in 
software development practices, which has been a 

part of software development for decades [47]. As 
repositories containing billions lines of code become 
available [1], [3], [6], [33], [43] the search mechanisms 
have evolved to provide better recommendation for 
given queries. On Google Code Search, a developer 
composes 12 search queries per weekday on average 
[41]. Meanwhile, developers search for sample codes 
more than anything else, 34% queries are conducted to 
find sample codes, and almost a third of searches are 
incrementally performed through query reformulation 
[41].  

The performance of text retrieval based search 
techniques used in code search strongly depends on 
the text contained in queries and the code snippets (a 
method is viewed as a code snippet [22]). The term 
mismatch problem, also known as the vocabulary 
problem [13], is a critical language issue for retrieval 
effectiveness, as the queries given by users and the 
code snippets do often not use the same words [10]. 
Meanwhile, the length of queries is usually short. 
Sadowski et al. report that the average number of 
words per query is 1.85 for the queries proposed to 
Google search for code [41]. Obviously, it is not an 
easy task to formulate a good query, which depends 
greatly on the experience of the developer and his/her 

knowledge of the software system [37]. To solve the 
vocabulary problem, the query expansion methods 
provide some effective ways by reformulating the 
queries [10], [36]. 

In recent years, some query expansion based code 
search approaches are presented. For example, Wang 
et al. [58] incorporate users' opinions on the feedback 
code snippets returned by a code search engine to 
refine result lists. Hill et al. [40] suggest alternative 
query words by calculating the frequencies of co-
occurring words with the words in the queries. Lu et al. 
[29] propose a query expansion method denoted as 
PWordNet by leveraging the Part-Of-Speech (POS) of each 
word in queries and WordNet [30] to expand queries. 
Lemos et al. [25] automatically expand test cases based 
on WordNet and a code-related thesaurus.  

In this paper, we propose Query Expansion based 
on Crowd Knowledge (QECK) to improve the 
performance of code search. Specifically, QECK 
retrieves relevant Question & Answer (Q&A) pairs in a 
collection extracted from Stack Overflow as the  
Pseudo Relevance Feedback (PRF) documents for a 
given free-form query, identifies the software-specific 
words from these documents, and generates an 
expansion query by adding words to the original 
query. The advantages of QECK are three fold. First, it 
automatically generates expansion queries without 
human intervention, as QECK employs PRF to 
automatically generate expansion queries. Second, it 
generates high quality PRF Q&A pairs by considering 
textual similarity and the quality of both questions and 
answers. Third, it identifies software-specific words 
from Q&A pairs by TF-IDF weighting function.  
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The underlying idea behind QECK is utilizing the 
software-specific words contained in Q&A pairs to 
further improve the possibility of searching relevant 
code snippets. In Q&A pairs, the questions and 
answers, denoted as posts on Stack Overflow, are 
submitted and voted by developers. Therefore, the 
Q&A pairs contain useful knowledge about software 
development, which is called crowd knowledge in our 
study. The knowledge can be extracted in the form of 
software-specific words [54], [62]. Obviously, these 
software-specific words are more useful for software 
engineering tasks than the general words of WordNet 
used in previous studies [25], [29]. 

Pseudo relevance feedback is one of a local query 
expansion approaches, and the classic Rocchio’s model 
is the implementation of pseudo relevance feedback in 
information retrieval. We incorporate QECK into the 
classic Rocchio’s model, and propose QECK based 
code search method denoted as QECKRocchio. To evaluate 
the effectiveness of QECK and investigate the 
performance of QECKRocchio, we explore three Research 
Questions (RQs) in three experiments, respectively. 
These experiments are conducted on a Q&A pair 
collection containing 312,941 Q&A pairs labeled with 
the “android” tag, and a real-world code snippet 
corpus containing 921,713 code snippets extracted 
from 1,538 open source app projects on the Android 
platform. A code snippet refers to a method in Java 
files of app projects [22].  

Three RQs and their conclusions are listed as follows. 
RQ1: Whether QECK can improve the performance of 

code search algorithms? 
We employ three code search algorithms to verify 

the effectiveness of QECK by comparing the 
recommendation performance before and after QECK 
is applied. From comparative results in the experiment, 
we verify that our QECK technique can indeed 
improve the retrieval performance for code search. 
Specifically, QECK improve the performance of three 
code search algorithms by up to 64% in Precision, and 
35% in NDCG. 

RQ2: How the parameters affect the performance of 
QECK? 

For the parameters (i.e. the number of PRF 
documents and the number of expansion words) in 
QECK, we further study the influence of parameters 
variation on performance of QECK. As it is a time-
consuming task to label relevant scores for code 
snippets, we only discuss the situation when we fix a 
parameter and explore the trend of performance for 
each code search algorithm by varying another 
parameter. Our results indicate that: after employing 
QECK, the performance of three algorithms are 
generally better, there is a unique optimal value of 
performance for each code search algorithm, and too 
many or too less expansion words is not desirable. 
Based on the results, we recommend that, in QECK, 
the default value for the number of PRF documents is 

5, and the default value for the number of expansion 
words is 9. 

RQ3: Whether our code expansion based code search 
method, QECKRocchio, is better than the state-of-the-art 
method? 

We compare QECKRocchio against PWordNet, a state-of-
the-art query expansion method [29]. The experimental 
results show that QECKRocchio is a better method to aid 
mobile app development than the comparative method.  
Specifically, for Precision, the improvement is 22%, 
and for NDCG, the improvement is 16%. 

This paper makes the following contributions: 
 We propose QECK, a novel technique leveraging 

crowd knowledge on Stack Overflow to improve 
the performance of code search algorithms. 

 We explore the performance and identify the 
effectiveness of QECK by three code search 
algorithms and a comparative method in terms of 
Precision and NDCG. 

 We construct a Q&A pair collection from Stack 
Overflow and a code snippet corpus from open 
source app projects. 

Next section outlines the background of our study. 
Section 3 elaborates our technique. Section 4 provides 
details about experimental setup. Experimental results 
and analysis are presented in Section 5. Section 6 states 
the threats to validity. The related works are shown in 
Section 7. In Section 8, we conclude this paper and 
introduce the future work. 

2 BACKGROUND 

In this section, we discuss the query expansion 
approaches, and elicit our query expansion based on 
crowd knowledge (QECK) technique. 

The query expansion approaches, either fully 
automatically or with the help of users in the loop, 
contain two major classes: global approaches and local 
approaches [27], [60]. Here, we will mention the efforts 
on both of them, whereas we concentrate on the 
pseudo relevance feedback, a successful local approach 
used in our paper.  

Global approaches mainly refer to query 
expansion/reformulation with a thesaurus, like 
WordNet [27]. The queries can be automatically 
expanded with related words and synonyms from the 
thesaurus. Specifically, WordNet is a general purpose 
lexical database to compute the semantic distance 
between two words. Sridhara et al. [45] show that the  
general English-based similarity measurements of 
WordNet could not effectively suggest similar words 
in software engineering context, as it does not contain 
many software-specific words, and the semantic 
meaning stored in WordNet is often different even 
though these words exist.  

In the software engineering community, there are 
some efforts to automatically build a word similarity 
resource. For example, Yang and Tan [62] infer 
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semantically related words by leveraging the context 
of words in software source code. Howard et al. [20] 
seek to find similar verb pairs by leveraging the 
comments of methods, programmer conventions, and 
method signatures. Tian et al. [54], [55] build a 
software-specific WordNet like resource by leveraging 
the textual contents of posts on Stack Overflow. 
Although these resources can be employed to expand 
the words of queries, they omit the context of a query, 
which does not view a query as a whole [27]. 

Local approaches expand a query according to the 
documents initially appearing to match the original 
query, which mainly refer to relevance feedback and 
pseudo relevance feedback [27], [49]. Specifically, 
Relevance Feedback (RF) need to leverage user' marks 
on the RF documents as an initial set of results [58]. In 
contrast, to automate the manual part of relevance 
feedback, Pseudo Relevance Feedback (PRF), also 
known as blind relevance feedback, provides an 
approach for automatic local analysis [27]. Typically, 
this method assumes that a fixed number of top 
ranked documents are relevant to the original query, 
and extracts a set of potentially useful words from 
those documents and adds them to the query, which is 
then used to retrieve the final set of documents. This 
process is also called the classic Rocchio’s model. The 
two following issues are mainly addressed in typical 
PRF approaches: retrieval of good quality feedback 
documents and identification of useful words [10].  

In this paper, we propose query expansion based on 
crowd knowledge, one variation of PRF, to improve 
the performance of code search. QECK leverages the 
Q&A pairs to expand the queries. Different from the 
typical PRF, the initial set of results of QECK comes 
from a Q&A pair collection extracted from Stack 
Overflow rather than the code snippet corpus. Stack 
Overflow [7] is a popular question answering site, 
which provides a platform for developers to help 
others by asking and answering questions [54]. With 
about 4.8 million users and 11 million questions until 
November 2015, Stack Overflow is an enormous 
knowledge base. Most of the posts (questions or 
answers) submitted by users on Stack Overflow are 
related to software development. Leveraging the posts 
and their scores voted by crowd, QECK extracts 
software-specific expansion words to generate 
expansion queries. 

3 OUR TECHNIQUE 

This section shows the steps of QECKRocchio, and the 
construction of the Q&A pair collection and the code 
snippet corpus employed in our study. We also 
provide some details about the weighting of expansion 
words in the PRF documents. 

3.1 Steps of QECKRocchio 

In this study, for exploring the effectiveness of our 
QECK technique, we incorporate QECK into classic 

Rocchio’s model to generate a code search method 
denoted as QECKRocchio. The Rocchio’s model 
incorporates pseudo relevance feedback into the 
information retrieval process [43]. Fig. 1 shows the 
overall structure of QECKRocchio containing three 
modules: QA Pairs Search Engine, Expansion Words 
selector, and Code Snippets Search Engine. The input of 
our method is an original query q, a Q&A pair 
collection, and a code snippet corpus. The output is a 
ranked list with top-k code snippets. 

The following three steps show the process of our 
method in Fig. 1. 
 First-pass retrieval: For the original query, we rank 

all Q&A pairs using a particular information 
retrieval model (e.g. BM25 model) [48] by the 
module QA Pairs Search Engine. The top-m Q&A 
pairs are identified as the PRF documents, which is 
denoted as 𝐷𝑓. The i-th ranked document in 𝐷𝑓 is 
denoted as 𝑑𝑖 , which will be treated as relevant to 
the original query. 

 Word selection: We identify useful expansion 
words from PRF Q&A pairs (𝐷𝑓) by the module 
Expansion Words selector. An expansion 
weight 𝑤(𝑡, 𝑑𝑖) is assigned to each word 𝑡 in the 
set of 𝐷𝑓. According to the weights of words, top-
n words are selected and added into the original 
query to generate the Expanded Query 𝑞𝑒. 

 Second-pass retrieval: Finally, we rank all code 
snippets in corpus for the expanded 
query  𝑞𝑒  using the module Code Snippets Search 
Engine. Finally, the top-k code snippets related to 
the expanded query are recommended to 
developers as the results. 

In the above steps, we hold the expectation that the 
selected expansion words within the feedback 
documents can bring more relevant code snippets in 
the second-pass retrieval. Within this framework, three 
aspects are the important parts, which are the 
searching of PRF Q&A pairs, selecting of expansion 
words, and the construction of the Q&A pair collection 
and the code snippet corpus.  

3.2 Q&A Pair Collection 

3.2.1 Q&A pairs 

On Stack Overflow, there are many questions posted 
by users. The tags added to questions reveal the types 

 

Fig. 1. Overall structure of QECK based Rocchio’s model 

 



4 IEEE TRANSACTIONS ON SERVICES COMPUTING,  MANUSCRIPT ID 

 

of these questions to help users find out what a 
question is about, [21], [32]. To generate Q&A pairs, 
we first select the questions with the “android” tags (a 
question on Stack Overflow can have up to five tags 
[48]), as the queries we employed in our experiments 
are about Android mobile app development. Next, we 
combine a question and one of their answers to 
generate a Q&A pair. However, for each of answers 
provided by users, it is not always fit to solve this 
question. To assure the quality of answers, only the 
answers labeled with “AcceptedAnswer” can be 
selected to form the Q&A pairs together with the 
corresponding questions. After the above steps, we 
achieve a Q&A pair collection related with Android 
development, which contains 312,941 Q&A pairs. In 
order to facilitate searching, we index this collection 
with Lucene [4]. 

Fig. 2 (a) shows an example of a Q&A pair for a 
programming task “take a screenshot in Android”. In the 
part of question, this programming task contains a title, 
a detail description, two tags “android” and 
“screenshot”. For this question, 224 votes and 16 
answers are provided by crowd. Among the answers, 
only one of them is manually labeled as "accepted 
answer", which is marked with a tick. A part of this 
answer is shown in Fig. 2 (a). We combine the text in 
the question (the title and the description) and the 
accepted answer as a Q&A pair. 

3.2.2 Indexing Q&A Pairs 

We utilize Lucene [4], a popular implementation of 
BM25, to index and search Q&A pairs in the first-pass 
retrieval.  

Before indexing the Q&A pairs, text pre-processing 
for Q&A pairs is required, which is an important 
process in the text retrieval [51], [61]. In this process, 
first, the terms in the questions and answers are split 

by Camel-case and separators (e.g., “_”). For example, 
the "MediaRecorder" can be split into "Media" and 
"Recorder". Second, we filter these words by removing 
the stop words. Finally, the remained words are 
handled by stemming [53]. After the above steps, a 
Q&A pair is now represented as a bag of words. Fig. 
2(b) shows the pre-processed words in the question 
and the accepted answer. 

In the process of indexing, each Q&A pair now 
represented by pre-processed words is stored as a 
document. Each document consists of a number of 
fields (i.e. the Q&A pair ID, words) as shown in Fig. 
2(c). Now, we can search PRF Q&A pairs based on this 
index. 

3.2.3 Searching Q&A Pairs 

For searching the PRF Q&A pairs, following previous 
work [48], we consider the following two aspects. The 
first is the textual similarity, denoted by Lucene score, 
between Q&A pairs and queries calculated by BM25 
similarity on Lucene. The other is the quality of Q&A 
pairs in terms of SO score. A SO score is a weighted 
mean value between the individual scores of its 
question and answer. The score of a post (question or 
answer) voted by crowd is regarded as a proxy for its 
quality. As their different natures of Lucene score and 
SO scores, we combine two scores by performing a 
normalization step to achieve the final score. 
Specifically, for the Q&A pairs returned in the first-
pass retrieval, we normalize the Lucene score value of 
each pair and its SO score value in the range [0, 1] 
using min-max normalization technique [48]. For the i-
th Q&A pair, the final score is calculated by following 
formulas: 

𝑓𝑖𝑛𝑎𝑙 𝑠𝑐𝑜𝑟𝑒𝑖 =
𝐿𝑖−𝑚𝑖𝑛𝐿

𝑚𝑎𝑥𝐿−𝑚𝑖𝑛𝐿
+

𝑆𝑖−𝑚𝑖𝑛𝑆

𝑚𝑎𝑥𝑆−𝑚𝑖𝑛𝑆
       (1) 

𝑆𝑖 = 0.7 ∗ 𝑆𝑞𝑖 + 0.3 ∗ 𝑆𝑎𝑖                     (2) 

where,  𝐿𝑖 and 𝑆𝑖 are Lucene score and SO score of the i-
th Q&A pair, respectively. The maximum and 
minimum of Lucene score and SO score among all Q&A 
pairs are represented with 𝑚𝑎𝑥𝐿 and 𝑚𝑖𝑛𝐿, 𝑚𝑎𝑥𝑆 and 
𝑚𝑖𝑛𝑆 , respectively. The symbols 𝑆𝑞𝑖  and 𝑆𝑎𝑖  refer to 
the values of question and answer in the i-th Q&A pair 
voted by crowd, respectively. 

According to the final score, we rank the returned 
Q&A pairs in descending order and recommend top-m 
Q&A pairs as the PRF documents. Now, we can 
identify the useful expansion words from these PRF 
Q&A pairs [48]. 

3.3 Words Selection 

A large number of approaches focus on finding good 
expansion words by weighting scores for words in the 
feedback documents [10]. Most of them are based on 
the assumption that the words that are most closely 
related to the query will have a comparatively higher 
probability of occurrence in the feedback documents. 
Following this general paradigm, various functions 

 

 

 
(a) 

 

(b) 

 
 
 

 
(c) 

Fig. 2. An example of a Q&A pair (a), the words in Question (Q) and 
Answer (A) after text pre-processing (b), and the fields of a Q&A pair 
(c).  
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have been proposed to assign high scores to the words. 
In our study, to weight the candidate words in a 

feedback document, we employ the traditional method, 
TF-IDF weighting function. TF-IDF is often used to 
determine the importance of a word for a particular 
document in the corpus [17]. We show the weighting 
of TF-IDF on Lucene as follows [4]: 

𝑤(𝑡, 𝑑𝑖) = 𝑇𝐹(𝑡) ∗ 𝐼𝐷𝐹(𝑡)                           (3) 

𝑇𝐹(𝑡, 𝑑𝑖) = 𝑠𝑞𝑟𝑡(𝑡𝑓(𝑡, 𝑑𝑖))                          (4) 

𝐼𝐷𝐹(𝑡) = 𝑙𝑜𝑔 (
𝑁

𝑑𝑓+1
) + 1                           (5) 

where, term frequency, 𝑡𝑓(𝑡, 𝑑𝑖), is the number of times 
the word t appearing in a document 𝑑𝑖 . The Inverse 
Document Frequency,  𝐼𝐷𝐹(𝑡) , is the inverse of the 
number of documents in the corpus containing word t. 
N is the total number of feedback documents. After 
weighting the words, top-n words can be identified as 
expansion words. Notably, as some words appearing 
in more than 25% of the documents in the collection 
are considered non-discriminating [15], [17], we 
eliminate these words in this process. 

3.4 Code Snippet Corpus 

We store the candidate code snippets in a corpus and 
index them on Lucene. The corpus contains 921,713 
code snippets extracted from 1,538 open source app 
projects on the Android platform. The following three 
steps show the preparation for the code snippet corpus: 
 Crawling the open source app projects 

The code snippets in our experiments come from 
open source app projects on F-droid [2]. F-droid is a 
website with free and open source apps on the 
Android platform. Notably, among several versions of 
an app project, we select the latest version.  
 Segmenting the Java files in these app projects 

In order to collect candidate code snippets, 
following previous work [22], we utilize the tool 
Eclipse Abstract Syntax Tree (AST) to parse the Java 
files. Each Java file contains one or more methods. In 
the process of parsing, each method that containing the 
code text and comments is viewed as a code snippet.   
 Indexing the code snippets on Lucene 

Like the text pre-processing for Q&A pair, we also 
first process the code snippets before indexing them on 
Lucene. Then, each code snippet is stored as a 
document containing several fields (i.e. the name of 
code snippet and the words).  

In the second-pass retrieval of QECKRocchio, we score 
each code snippet with the BM25 textual similarity 
between the expanded query and this code snippet. 
According to the scores, we select top-k code snippets 
as the final recommendation results. 

4 EXPERIMENTAL SETUP 

In this section, based on three research questions (RQs), 
we evaluate the effectiveness of QECK for improving 
the performance of code search algorithms, and 
investigate the performance of QECKRocchio. We conduct 

three experiments to answer the three RQs, 
respectively. We also provide the details about the 
data set employed in our experiments and the 
evaluation for the results. Our experiments are 
conducted on a 3.60 GHz CPU (Intel i5) PC running 
windows 8.1 OS with 8G memory. We implement 
QECKRocchio using Java 1.7.0 in Eclipse. 

4.1 Research Questions 

We explore the following three RQs: 
RQ1: Whether QECK can improve the performance of 

code search algorithms? 
In our first experiment, we utilize three code search 

algorithms [22], [28] to verify the effectiveness of 
QECK by comparing the performance of 
recommendation before and after QECK is applied. 
From comparative results of these code search 
algorithms, we want to identify whether or not our 
QECK technique can indeed improve the retrieval 
performance. 

Specifically, the first code search algorithm is BM25 
based information retrieval approach on Lucene, 
which is denoted as IR in the first experiment. The 
second is Portfolio [28] based on Vector Space Model 
(VSM), PageRank, and Spreading Activation Network 
(SAN). The third is VF [22] based on VSM and the 
frequent item-set mining. We program the IR on 
Lucene [4], and reproduce Portfolio and VF by 
following the parameters setting and the steps claimed 
in literatures  [22], [28].  

In order to conduct fair comparison, we optimize the 
parameters, the number of PRF documents and the 
number of expansion words, as follows. Based on the 
recommendation found in the domain literatures [10], 
[17], we first set the top five Q&A pairs returned in the 
first-pass retrieval as the PRF documents. Then, we 
adjust the number of expansion words over (n ∈ (1 −
10,15,20))  to achieve the best performance for each 
code search algorithm, respectively. 

RQ2: How the parameters affect the performance of 
QECK? 

To further study the influence of parameters 
variation on performance of QECK, we conduct the 
second experiment. Two factors influencing QECK are 
the quality of Q&A pairs and the expansion words 
selected from these Q&A pairs, which correspond to 
two parameters: the number of PRF documents (i.e. 
feedback Q&A pairs) and the number of expansion 
words, respectively. 

As it is a time-consuming task to label relevant 
scores for code snippets, we only discuss the situation 
when fixing a parameter and adjusting another 
parameter. Specifically, first, we set the top five Q&A 
pairs as the PRF documents, and explore the trend of 
performance for each code search algorithm by 
varying the number of expansion words. Based on the 
trend, we achieve the optimal value of the number of 
expansion words for each code search algorithm. Then, 
we fix this optimal value, and explore the trend of 
performance for each code search algorithm by 
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varying the number of PRF documents. 
RQ3: Whether our code search approach, QECK based 

Rocchio’s model, is better than the state-of-the-art method? 
As the state-of-the-art method, Lu et al. [29] present 

a solution for improving the code search based on 
query reformulation technique, denoted as PWordNet in 
the experiment. To implement PWordNet, the authors, 
first, find the synonyms of each word in the given 
query with the same POS using WordNet to expand 
the queries. Then, they identify the key source code 
identifies in methods as the keyterms based on the 
similarity values with the expanded queries. Finally, 
according to the percentage of keyterms in each 
method, they recommend top-k methods to developers.  

We compare our approach QECKRocchio against 
PWordNet in the same retrieval scenario, and verify the 
effectiveness of our approach. The parameters in each 
of these two approaches are adjusted to achieve the 
best performance, respectively. 

4.2 Dataset Collection 

In this part, we describe the query set, the Q&A 
collection, and the code snippet corpus used in three 
experiments. These datasets can be found in our 
webpage [5]. 

4.2.1 Query Set 

In our experiments, we employ 20 programming tasks 
to form the original queries. These tasks are real-world 
programming tasks collected from Stack Overflow [7].  

For collecting these programming tasks, we first 
manually rank the posts with the “android” tag on 
Stack Overflow. Then, we check the posts one by one 
based on some criteria until we collect 20 tasks. The 
criteria [28] are that the tasks should belong to the 
framework of Android app development and be 
viewed several times. Meanwhile, there are solutions 
along with these programming tasks in the webpages, 
as these solutions can provide assists for evaluating the 

relevance scores of code snippets. 
Each programming task contains a title and a 

description. We find that the structure of descriptions 
are different for different tasks. Some contain only 
textual description, whereas some contain both code 
context and text description. In our experiments, for 
each of 20 programming tasks, we simply extract the 
words in the title as the query. For example, for the 
programming task in the Fig. 2 (a), we extract the 
words “take a screenshot in Android” as the query. In 
this process, the extracted words may not always 
represent actual developer queries as some words in 
the description may be neglected. This will be a threat 
to our results. 

Table 1 shows 20 queries. The column “Tags” shows 
the categories of these queries. Note that our queries 
belong to different categories. The column “Viewed 
Times” indicates the number of times a query has been 
viewed by visitors. These values are all comparatively 
large, which means that the developers desire to 
achieve the solutions of these programming tasks. 

4.2.2 Q&A Pair Collection 

We download a release of Stack Overflow public data 
dump (the version of August 2015), posts.xml. This 
dataset stores all questions and their answers (denoted 
as posts) on Stack Overflow until the dump is built. 
Following the steps in Section 3.2, we construct 
5,108,770 Q&A pairs from total of 24,120,522 posts in 
this dump. Finally, we achieve a collection containing 
312,941 Q&A pairs that are labeled with the “android” 
tag. Notably, to avoid introducing bias, in Q&A pair 
collection, we remove the Q&A pairs corresponding to 
our programming tasks. 

4.2.3 Code Snippet Corpus 

Following the steps in Section 3.4, until August 2015, 
we collect totally 1,538 Android app projects from F-
droid. By segmenting the Java files in these projects, 

TABLE 1 

QUERIES FOR TEST 

ID Query Tags Viewed times 

1 Record audio sound android 4783 
2 Get screen dimensions in pixels android, layout, screen 720031 
3 Take a screenshot in Android android, screenshot 107071 
4 Get the memory used android, memory, memory-management 217026 
5 Get the list of activities/applications installed android 180820 
6 Import the system time android, operating-system 36113 
7 Open a URL in Android's web browser  android, url, android-intent, android-browser 342424 
8 Use android Timer in Android activity android, multithreading, timer,  scheduled-tasks 18998 
9 Capture Image from Camera and Display in Activity android, image, camera, capture 157947 
10 Handle right to left swipe gestures android, swipe, gesture-recognition 152674 
11 Converting pixels to dp android 264672 
12 Draw a line in android android 182837 
13 Get cpu usage android, cpu-usage 72209 
14 Detect network connection status android, networking, wifi, connectivity 69553 
15 Check if an application is installed or not in Android android, apk 46174 
16 Convert an image into Base64 string android, base64 80049 
17 Get the web page contents from a WebView android, android-webwiew 52124 
18 Cancel an executing AsyncTask android, android-asynctask 85973 
19 Detect if a Bluetooth device is connected android 39245 
20 Retrieve incoming call's phone number android, telephonymanager,  phone-state-listener 50134 
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we construct a corpus containing 921,713 code snippets. 

4.3 Evaluation 

4.3.1 Steps of Evaluation 

After achieving the recommendation results from three 
experiments, we need to manually label each code 
snippet in the results, and calculate the metrics for 
each comparative algorithm. 

Specifically, we set up the evaluation as follows [65].  
For a given query, first, we obtain the Top-k (k=10 in 
our study) code snippets returned by each 
comparative algorithm in three experiments. Then, we 
merge all code snippets into a pool, which includes 
only unique code snippets. For each code snippet in 
this pool, we recruit two participants to label the 
relevance scores with Four-level Likert scale. 
Participants judge the relevance scores by the solutions 
appearing with the programming tasks on the 
webpages and their programming experience. As 
regards the inconsistencies of labeling, we recruit an 
expert to arbitrate the score. Finally, based on the 
scores, we exploit two popular metrics to inspect the 
performance of each algorithm. In the whole process, 
about which algorithm is a code snippet from, it is 
invisible for the participants and expert as the code 
snippets are merged into a pool. Meanwhile, two 
participants and the expert could view the queries and 
the corresponding programming tasks on Stack 
Overflow. 

Two participants are graduate students from Dalian 
University of Technology who have at least four years 
of Java experience. Moreover, the expert, one author of 
this paper, is a doctoral student who has more than 
nine years of Java experience. Both two participants 
and the expert have at least three years of Android 
application development experience. Before the 
labeling process, we give them a 30-minutes training 
about labeling. 

The guidelines of labeling code snippets are as 
follows [28]:  

Score 4: Highly relevant. The code snippet is 
perfectly suitable for the programming task.  

Score 3: Mostly relevant. The code snippet or the 
APIs contained in this snippet can be reused for the 
programming task with some changes. 

 Score 2: Mostly irrelevant. The code snippet only 
contains a little relevant code lines, which is not 
enough to solve the programming task.  

Score 1: Completely irrelevant. The code snippet 
cannot solve the programming task.  

In simple terms, a code snippet labeled with 3 or 4 
means that this code snippet should contain the useful 
code lines or APIs to solve the programming task.  

Totally, two participants label 3251 code snippets in our 
three experiments. Among these code snippets, two 
participants label same scores for 2756 code snippets. The 
degree of consensus is 84.8%. 

4.3.2 Metrics 

An ideal recommendation algorithm should hit more 

of the relevant answers and place them at the top of 
the results. Following the previous work [28], we 
adopt two types of metrics to evaluate the 
performance of each algorithm in three experiments, 
namely, Precision and Normalized Discounted 
Cumulative Gain (NDCG). In this paper, the 
performance of algorithms refers to the effectiveness of 
algorithms. We also discuss the efficiency of 
algorithms in Section 6. For comparing the 
performance of different algorithms, following [22], 
[28], we calculate the mean value of two metrics for the 
queries. 

Specifically, the Precision@K is defined as the 
proportion of the true positives (i.e. the code snippets 
with score 3 or 4) in Top-k recommended results (both 
true positives and false positives) for a given query 
[28].  

The Precision@K is calculated as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 =   
(|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒|)

(|𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|)
                   (6) 

Where the denominator |Retrieved| is the total 
number of results recommended by an algorithm, 
which equals to 10 in our study. The numerator 
|Relevance| is the number of relevant code snippets in 
the result.  

NDCG is commonly used in the information 
retrieval to measure the ranking capability of a 
recommendation algorithm. A algorithm is more 
useful when there are more relevant results in higher 
positions in the hit list than irrelevant results. We 
calculate NDCG@K of each algorithm for a given 
query, as: 

𝑁𝐷𝐶𝐺@𝐾 =
𝐷𝐶𝐺@𝐾

𝐼𝐷𝐶𝐺@𝐾
                              (7) 

𝐷𝐶𝐺@𝐾 = 𝑅1 + ∑
𝑅𝑖

𝑙𝑜𝑔2𝑖

𝐾
𝑖=2                           (8) 

where NDCG@K is the DCG@K normalized by 
IDCG@K. IDCG@K is the ideal DCG@K, where the 
results are sorted by relevance scores. R1 is the 
relevance score at the first position in the list. Ri is the 
relevance score at the i-th position. 
  Notably, in the experiments, we observe that the 
value of NDCG cannot show the real performance for 
recommendation. For example, there are two results 
from two algorithms for a given query, respectively. 
The result A is 4, 1, 1, and 1. The result B is 2, 2, 2, and 
2. Here, we recommend Top-4 code snippets in the 
results. The values of NDCG for two results are all 
equal to 1. However, we find that there are no relevant 
code snippets for the given query in the result B, as a 
snippet with score 3 or 4 is considered to be relevant. 
To solve this problem, we set the score 1 and score 2 to 
score 0 in the returned results. Then, the NDCG value 
of the result B equals to 0. The NDCG value of the 
result A still equals to 1. 

5 RESULTS AND ANALYSIS 

The section provides three experimental results to 
answer the RQs mentioned in Section 4.1, respectively. 

In the first and third experiment, for drawing 
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confident conclusions whether one recommendation 
result outperforms another, we conduct a statistical 
test to compare the mean values of two metrics (i.e. 
Precision and NDCG) for two results. Specifically, we 
conduct the two-sided Wilcoxon’s signed rank test 
between two results. When comparing each pair of 
results, the primary null hypothesis is that there is no 
statistical difference in the performance between two 
results. In this section, we adopt the 95% confidence 
level (i.e. the p−values below 0.05 are considered 
significant). 

5.1 RQ1 

The first experiment is conducted to identify the 
effectiveness of QECK for improving the retrieval 
performance. 

Table 2 contains the details of extremal values, 
median, mean, and standard deviation of Precision 
and NDCG, also shows the performance comparisons 
of three code search algorithms before and after QECK 
is applied. In this table, the "+" refers to that the p-
value is less than 0.05 among the pairwise comparison 
for each algorithm. From this table, we can observe 
that the p-values are all less than 0.05 among the 
pairwise comparisons. For each code search algorithm 
before and after QECK is applied, we reject the null 
hypothesis and accept the alternative hypothesis that 
there is a statistically significant difference in the mean 
values of Precision and NDCG, respectively. 

Fig. 3 shows the statistical summary of the 
performance comparisons of two metrics for three 
code search algorithms. In Table 2 and Fig. 3, we can 
observe that, after using QECK, the performance is 
improved for each algorithm. Specifically, for the mean 
value of Precision, the improvement of IR is 38%, 
Portfolio is 33%, and VF is 64%. For the mean value of 
NDCG, the improvement of IR is 20%, Portfolio is 16%, 
and VF is 35%. The foremost reason for these 
improvements is the usage of the software-specific 
words that are extracted from PRF Q&A pairs. QECK 
increases the possibility of searching more relevant 
code snippets. 

Answer RQ1: After using our proposed QECK 
technique, query expansion based on crowd 

knowledge, the performance of three code search 
algorithms are all improved.  

5.2 RQ2 

We conduct the second experiment to further explore 
the influence of parameters variation on performance 
of QECK. Following the first experiment, we compare 
the performance trends of three code search algorithms 
by changing the number of PRF documents and the 
number of expansion words.  

Fig. 4 and Fig. 5 show the trends of three code search 
algorithms before and after QECK is applied by means 
of two metrics (Precision@10 and NDCG@10) when we 

TABLE 2 
THE STATISTICAL SUMMARY OF THREE CODE SEARCH ALGORITHMS (IR, PORTFOLIO, AND VF) BEFORE AND AFTER 

QECK IS APPLIED 

Metrics Approaches Samples Min Max Median Mean StdDev 

Precision 

IR 20 0% 100% 60% 57.5% 0.2552 
IRQECK 20 30% 100% 85% 79.5%+(0.007) 0.2164 

Portfolio 20 0% 90% 60% 55.5% 0.2350 
PortfolioQECK 20 10% 100% 80% 74%+(0.014) 0.2664 

VF 20 0% 100% 50% 47% 0.3278 
VFQECK 20 20% 100% 90% 77%+(0.013) 0.2774 

NDCG 

IR 20 0 1 0.7772 0.7551 0.2407 
IRQECK 20 0.4864 1 0.9461 0.9030+(0.033) 0.1271 

Portfolio 20 0 1 0.7795 0.7445 0.2325 
PortfolioQECK 20 0.3562 1 0.9328 0.8661+(0.020) 0.1761 

VF 20 0 0.9816 0.8220 0.6347 0.3526 
VFQECK 20 0.5089 1 0.9221 0.8599+(0.033) 0.1493 

The "+" refers to the p-value is less than 0.05 among the pairwise comparison for each algorithm. The p-values are surrounded by parentheses. The 

better mean values among the pairwise comparisons are shown in bold font. 

       

(a) 

     
(b) 

Fig. 3. The statistical results of Precision (a) and NDCG (b) for three 
code search algorithms (IR, Portfolio (P), VF) before and after 
QECK is applied. Here, IR_C refers to QECK based IR, P_C refers 
to QECK based Portfolio, VF_C refers to QECK based VF. The x 
axes indicate two code search algorithms, respectively. The y axes 
indicate the range for two metrics, respectively. The red line 
represents the median. And the blue rhombus represents the mean. 
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fix a parameter and change another. In the subfigures 
of two figures, three curves refer to three code search 
algorithms, respectively. The value "0" on the 
horizontal axes refers to the situation using original 
query. The other values on the horizontal axes refer to 
the situations using query expansion when selecting 
different values of the number of PRF documents or 
the number of the expansion words. Fig. 4 shows that 
the performance of three code search algorithms reach 
the optimum state when the number of expansion 
words equals to 9, and the number of PRF documents 
is fixed as 5. In contrast, Fig. 5 shows that the 
performance of three code search algorithms almost 
reach the optimum state when the number of PRF 
documents equals to 5, and the number of expansion 
words is fixed as 9. 

Here, we show and analyze some interesting 
findings in two figures: 
 After employing our QECK technique, the 

performance of three algorithms are generally 
better. This indicts that our proposed technique 
can make use of Q&A pairs and add useful 
expansion words to generate more useful 
expansion queries. 

 The performance of all code search algorithms 
increase at the beginning when the value of each 
of two parameter grows up. There is a unique 
optimal value for each of two parameters. This 
trends can be explained by considering the 
percentage of truly useful documents and 
expansion words in the PRF documents and the 
adding expansion words, respectively [9]. Taking 
the number of expansion words as example, on 
the one hand, if we select a very small number of 

expansion words, it is more likely that we will get 
little useful words for some queries. On the other 
hand, if we select a larger number of expansion 
words, it is more likely that some irrelevant 
words will be added, and the performance 
deteriorates [44]. 

 The performance of IR is better than that of 
Portfolio and VF in most cases for two metrics. 
Therefore, we consider QECK based IR method 
(i.e. QECK based Rocchio’s model) as our total 
solution to search code. 

Based on the findings and analysis above, we 
recommend that, in QECK, the default value for the 
number of PRF documents is 5, and the default value 
for the number of expansion words is 9.  

Answer RQ2: When fixing the number of PRF 
documents and varying the number of expansion 
words, there is a unique optimal value of performance 
for each code search algorithm. Too many or too less 
expansion words is not desirable. 

5.3 RQ3 

The third experiment is conducted to compare our 
code search method QECKRocchio against PWordNet [29]. 
Table 3 shows the details of extremal values, median, 
mean, and standard deviation of Precision and NDCG, 
and presents the performance comparisons of two 
methods. 

We can observe that the p-values are all less than 
0.05 among the pairwise comparisons for two metrics. 
Then, we reject the null hypothesis and accept the 
alternative hypothesis that there is a statistically 
significant difference in the mean values of Precision 
and NDCG for QECKRocchio and PWordNet, respectively. 

                                  
(a)                                                                                                                       (b) 

Fig. 4. The trends of Precision@10 (a) and NDCG@10 (b) when the number of expansion words equals to different values, and the number 
of PRF documents is set as 5. 

                          
(a)                                                                                                                       (b) 

Fig. 5. The trends of Precision@10 (a) and NDCG@10 (b) when the number of PRF documents equals to different values, and the number of 
expansion words is set as 9. 
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Fig. 6 shows the statistical summary of the 
performance comparisons of two metrics for two 
methods. In Table 3 and Fig. 6, we can observe that the 
performance of QECKRocchio is better than PWordNet. 
Specifically, for Precision, the improvement is 22% (p-
value = 0.045). For NDCG, the improvement is 16% (p-
value = 0.005). The results further verify our 
conclusion that the utilization of software-specific 
words from QECK is effective for code search based on 
query expansion. 

Answer RQ3: Based on the observations and 
analysis above, we can argue that our method 
QECKRocchio is a better method for code search than the 
state-of-the-art method. This result clearly validates 
the ability of QECK for providing useful expansion 
words. 

6 THREATS TO VALIDITY 

This section discusses the threats to the validity of our 
work. We list them as follows. 

Labeling: As mentioned in Section 4.3, in the process 
of labeling the relevance scores for code snippets, we 
recruit two participants. They have three years of 
experience in Android app development, and four 
years of experience in Java development. We believe 
that they can assign the correct relevance scores with 
the help of their experience and the solutions that 
appearing with the programming tasks in the webpage. 
However, they still have different programming levels 
and may label the same code snippet with different 
scores. This threat is minimized by recruiting an expert 
to arbitrate the score.  

The query set: In our three experiments, we use 20 
queries to evaluate our technique. The size is the same 
as the previous researches [8], [22]. However, it may 
still threaten the validity of the conclusion. We will test 
more queries in our further work. Moreover, in the 
process of generating the query set, we simply extract 
the words in the titles of programming tasks as the 
queries. Obviously, some words in the descriptions 
will be neglected, which means that queries may not 
be representative of actual developer queries. This will 
be a threat to validity. In our future work, we will 
employ the whole programming task (i.e., the title and 
description) as the query, and explore the impact of the 
description on results. 

The Q&A collection and the Code snippet corpus: In 
three experiments, we return PRF documents from a 
Q&A collection in the first-pass retrieval of QECKRocchio, 
and retrieve code snippets on a code snippet corpus in 
the second-pass retrieval. Two datasets are all real-

world, and have a certain scale. Based on two datasets, 
the effectiveness of our QECK technique has been 
demonstrated. However, these datasets are just about 
Android, and the scale is still smaller than other sets 
[1], [3], [6]. In future work, we plan to explore the 
effectiveness of QECK on larger datasets. 

The Comparative methods: We reproduce two code 
search algorithms [22], [28] in our first and second 
experiments and a comparative method [29] in our 
third experiment. There are certain gaps in the 
performance between our reproduced methods and 
the original ones. The reasons may be the differences 
of queries or the code snippet corpora. Specifically, our 
queries are all about Android app development, and 
the corpus is collected from Android app projects 
rather than traditional software projects. 

Parameters: In our experiments, as it is a time-
consuming task for labeling code snippets, we only 
discuss the situation when fixing a parameter and 
adjusting another parameter. Furthermore, we 
arbitrarily add the expansion words into original 
queries to generate the expansion queries. It means 
that the weights of the words in the original queries 
and the expansion words are viewed as equal. Actually, 
different weights may produce different 
recommendation performances [10]. In our future 
work, we plan to automatically adjust two parameters 
and the weights of words to achieve better performance. 

Efficiency: In this paper, we focus on improving the 
effectiveness of recommendation method. Similar to 

TABLE 3 

THE STATISTICAL SUMMARY OF TWO METHODS 

Metrics Approaches Samples Min Max Median Mean StdDev 

Precision@10 
PWordNet 20 30% 90% 65% 65% 0.2037 
QECKRocchio 20 30% 100% 85% 79.5% 0.2109 

NDCG@10 
PWordNet 20 0.3992 0.9818 0.7688 0.7794 0.1543 
QECKRocchio 20 0.4864 1 0.9461 0.9030 0.1239 

 

(a) (b) 

Fig. 6. The statistical results of Precision (a) and NDCG (b) for two 
query expansion based code search methods: our method 
QECKRocchio denoted as QECK, and WordNet based method 
(PWordNet) denoted as PW. The x axes indicate two code search 
algorithms, respectively. The y axes indicate the range for two 
metrics, respectively. The red line represents the median. And the 
blue rhombus represents the mean. 
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the previous studies [22], [28], we employ two metrics 
(i.e., Precision and NDCG) to measure the effectiveness. 
However, the efficiency of a recommendation method 
is also crucial, which depends on the quality of code, 
the size of data, and the algorithm itself. Currently, our 
method finishes a recommendation within 3 seconds 
averagely. This will be a threat for using in practice. In 
the future work, we will improve the quality of code 
and build a plug-in for Eclipse. 

7 RELATED WORK 

The literatures related with our research involve two 
aspects: code search based on query expansion and 
Q&A pairs recommendation on Stack Overflow. 

7.1 Query Expansion based Code Search 

In this part, we first introduce the studies about code 
search and query expansion, and explain the 
relationship between our method and two types of 
researches as shown in Table 4. Then, we show the 
researches about code search based on query 
expansion, and the differences between these 
researches and our work.  

For the studies about code search, according to input 
types, there are several categories: test cases, free-form 
queries, and others. Specifically, Lemos et al. [23], [24] 
propose CodeGenie to perform the code search by 
employing queries generated from the information (i.e., 
names of classes and methods, and interfaces) 
available on test cases. Except the test cases, free-form 
queries represented with several words are employed 
as the inputs to retrieve a ranked list of relevant code 
snippets [8], [22], [28]. Moreover, other kinds of input 
for code search contain: the names of API methods [31], 
[35], [64], the pairs of class types [26], the examples of 
desired code [50], the pairs with source and 
destination types [52], the structural context [19], [42], 
the code under editing [14], [34], and so on. Our work 
focusses on the studies taking free-form queries as 
input. 

For the studies about query expansion, there are two 
major classes: global approaches and local approaches 
[10], [27], [60]. Specifically, the global approaches 
reformulate queries with a thesaurus, like WordNet, 
by leveraging related words and synonyms from this 
thesaurus. In contrast, based on the documents 
initially appearing to match the original queries, the 
local approaches leverage the user' marks on these 
documents (Relevance Feedback, RF) or automatically 

extract expansion words (Pseudo Relevance Feedback, 
PRF) from these documents. Our method employs the 
pseudo relevance feedback, one of the local 
approaches, to expand queries. 

As query expansion can solve the term mismatch 
problem, it has been shown to be effective on many 
natural language processing (NLP) tasks [10], [27], [60]. 
For improving the performance of code search, some 
query expansion based methods are presented in 
recent years. For example, Wang et al. [58] integrate 
the users' feedbacks to make the more relevant code 
snippets appearing earlier in the list. However, this 
work need human intervention. For automating this 
process, Hill et al. [18], [40], [46] propose a source code 
search technique, CONQUER, which refines the 
queries by suggesting the most highly co-occurring 
words that appearing in the source code as alternative 
query words. In 2015, Lu et al. [29] provide a query 
reformulation technique, which is denoted as PWordNet 
in our experiment, based on part-of-speech of each 
word in queries and WordNet. The results of PWordNet 

show that it can help recommend good alternative 
queries, and outperform CONQUER. In our study, we 
employ PWordNet as a comparative method in our third 
experiment. Lemos et al. [25] present an automatic 
query expansion approach, AQE, which uses test cases 
as inputs, and leverages WordNet and a code-related 
thesaurus [62] to expand queries.  

These approaches mentioned above either use test 
cases as inputs rather than free-form queries, or have 
not employed the software-specific words to expand 
queries. Different from these researches, in our study, 
QECK automatically extracts software-specific 
expansion words from PRF Q&A pairs on Stack 
Overflow, and takes the free-form queries as the inputs.  

7.2 Q&A Pairs Recommendation 

Many studies have been conducted on solving the 
software engineering tasks by leveraging the 
discussions on Stack Overflow, for example, mining 
source code description [56], extracting cookbooks for 
APIs [12], helping developers debugging their code 
[11], assisting software comprehension and 
development [38], [39], [48], locating method 
definitions on Stack Overflow [57], and so on. We focus 
on the studies about recommending Q&A pairs on 
Stack Overflow. 

In 2013, Ponzaneli et al. [38] present Seahawk, which 
automatically generates queries by extracting words 

TABLE 4 
 COMPARISON BETWEEN QECKROCCHIO WITH RELATED METHODS 
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from the code entities in the integrated development 
environment (IDE), and displays the Q&A pairs on 
Stack Overflow to developers for software 
comprehension. Seahawk employs the textual 
similarity between queries and Q&A documents. 
Based on Seahawk, Ponzanelli et al. [39] propose a tool, 
Prompter, which automatically retrieves discussions 
on Stack Overflow by using several combined aspects. 
Souza et al. [48] improve Seahawk by integrating the 
textual similarity and the scores of Q&A pairs that are 
voted by crowd. They combine two types of scores by 
performing a normalization step to generate the final 
score. Using the same strategy in [48], we retrieve PRF 
Q&A pairs for given queries in our paper. The 
different is, to assure the quality of Q&A pairs, we 
only select the answers with the label 
“AcceptedAnswer” rather than each answer.  

8 CONCLUSION AND FUTURE WORK 

For improving the performance of code search, in 
this paper, we propose query expansion based on 
crowd knowledge (QECK) to solve the vocabulary 
problem. To evaluate the effectiveness of QECK, we 
explore three Research Questions (RQs) in three 
experiments on real-world datasets on the Android 
platform. The results of three experiments state that: 
first, after using QECK, the performance of three code 
search algorithms are improved by up to 64% in 
Precision, and 35% in NDCG. Second, too many or too 
less expansion words are not desirable for code search 
based on query expansion. Third, comparing to the 
state-of-the-art query expansion method, our method 
QECKRocchio, the implementation of QECK in the 
Rocchio’s model, improves 22% for Precision and 16% 
for NDCG. These results verify the effectiveness of 
QECK for code search in aiding mobile app 
development. It also means that the utilization of 
software-specific words in QECK is effective for code 
search. 

We consider two aspects as our future work. First is 
analyzing queries based on its features, which includes 
automatically assessing performance of a query [16], 
[37] and automatically recommending a reformulation 
strategy for a given query [17]. Second, for improving 
the performance of the automatic query expansion, 
there are some efforts, for example, heuristic term 
frequency transformation model [63] to capture the 
local saliency of a candidate term in the feedback 
documents, general solution to improve the efficiency 
of pseudo relevance feedback methods [59], and so on. 
These techniques could be employed by our QECK 
technique to further enhance the effectiveness. 
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