
CodeHow: Effective Code Search based on API
Understanding and Extended Boolean Model

Fei Lv∗, Hongyu Zhang†, Jian-guang Lou†, Shaowei Wang‡, Dongmei Zhang†, and Jianjun Zhao§
∗School of Software, Shanghai Jiao Tong University, China

lvfei-sjtu@sjtu.edu.cn
†Microsoft Research, Beijing, China

{honzhang, jlou, dongmeiz}@microsoft.com
‡School of Information Systems, Singapore Management University, Singapore

shaoweiwang.2010@phdis.smu.edu.sg
§Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

zhao-jj@sjtu.edu.cn

Abstract—Over the years of software development, a vast
amount of source code has been accumulated. Many code search
tools were proposed to help programmers reuse previously-
written code by performing free-text queries over a large-scale
codebase. Our experience shows that the accuracy of these code
search tools are often unsatisfactory. One major reason is that
existing tools lack of query understanding ability. In this paper,
we propose CodeHow, a code search technique that can recognize
potential APIs a user query refers to. Having understood the
potentially relevant APIs, CodeHow expands the query with the
APIs and performs code retrieval by applying the Extended
Boolean model, which considers the impact of both text similarity
and potential APIs on code search. We deploy the backend of
CodeHow as a Microsoft Azure service and implement the front-
end as a Visual Studio extension. We evaluate CodeHow on a
large-scale codebase consisting of 26K C# projects downloaded
from GitHub. The experimental results show that when the top
1 results are inspected, CodeHow achieves a precision score
of 0.794 (i.e., 79.4% of the first returned results are relevant
code snippets). The results also show that CodeHow outperforms
conventional code search tools. Furthermore, we perform a
controlled experiment and a survey of Microsoft developers. The
results confirm the usefulness and effectiveness of CodeHow in
programming practices.

I. INTRODUCTION

Programming is sometimes hard. One of the challenges a
programmer faces when writing new code is to find out how
to implement a certain functionality (e.g., how to implement
quick sort). The other challenge a programmer faces is the
reuse of an Application Programming Interface (API, e.g.,
File.AppendText in .NET framework). A large-scale software
framework, such as the .NET framework, could contain hun-
dreds or even thousands of APIs. Programmers often do not
remember exactly how a certain API method should be reused.
In a survey conducted at Microsoft in 2009, 67.6% respondents
mentioned that there are obstacles caused by inadequate or
absent resources for learning APIs [1].

Over years a huge number of open source and industrial
software systems have been developed. The source code of
these systems is typically stored in source code repositories
and can be treated as important reusable assets for developers.
Previously written programs can help developers understand
how others addressed the similar problems and can serve as a

basis for writing new programs. Thus, there is a great demand
for automated tools that can help developers search through a
large codebase to find relevant code for a specific programming
task.

Today’s code search engines, e.g., Krugle [2], Ohloh [3],
and Sourcerer [4], treat source code as plain texts and perform
code search based on the text similarity between code snippets
and a query, utilizing information retrieval models such as the
standard Boolean model [5], the vector space model (VSM)
[5], or the Apache Lucene model (which is essentially a variant
of VSM)1. We evaluated the existing code search tools and
found that the accuracy of these tools are often unsatisfactory.
The desired code snippets are often not found in the returned
results. As shown in our user study (Section VI), developers
consider only 25.7% to 38.4% of the top 10 results returned
by Ohloh useful.

Recently a number of techniques have been proposed to
address the weakness of existing tools [6], [7], [8]. These tech-
niques tackle the problem from the angle of query refinement.
They expand a user query using semantic similar words [6],
[7], or using a reformulation strategy [8]. It was observed that
automatically expanding a query with inappropriate synonyms
may produce even worse results than not expanding the
query [9].

We believe that one major limitation of existing code search
tools is the lack of query understanding. These tools often
adopt conventional text similarity matching techniques (such as
Boolean model or vector space model) to retrieve relevant code
snippets. They do not consider query understanding and could
therefore lead to inaccurate return results. For example, given
a query “read file” and two code snippets A and B. Suppose
the code snippet A contains many irrelevant APIs such as
“Console.read()”, “File.Exist()” and “File.AppendText()” but
does not contain the relevant API “File.ReadLines()”. Code
snippet B contains only one occurrence of the relevant API
“File.ReadLines()”. Among the search results, A could be
returned by the standard Boolean model because it contains all
the query terms. A could even be ranked higher than B by the
vector space model because of its higher term frequency. If we
could know that the API “File.ReadLines()” is associated with

1http://lucene.apache.org/
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the query “read file”, we could use this information to increase
the ranking of snippet B and improve the query results. This
example shows that through API understanding, more accurate
code search could be achieved.

In this paper, we propose CodeHow, a code search ap-
proach that considers both API understanding and text sim-
ilarity matching. We understand a query by identifying the
APIs that the query may refer to. To do so, we enrich each
API with its online documentation (e.g., the documentation at
MSDN) and identify the APIs whose documentations match
the query. Having identified the potential APIs for a query, we
need to incorporate the API information into the code retrieval
process. For this, we propose to apply the Extended Boolean
model [10], which integrates the benefit of standard Boolean
model and vector space model. We expand the user query with
the identified APIs and apply the Extended Boolean model to
retrieve the code snippets that match the expanded query.

We have implemented the backend of CodeHow as a Mi-
crosoft Azure cloud service. We evaluate CodeHow using real-
world queries over a large-scale codebase consisting of 26K C#
projects downloaded from GitHub. The evaluation results show
that when the top 1 results are inspected, CodeHow achieves a
precision score of 0.794 (i.e., 79.4% of the first returned results
are relevant code snippets). These results are better than the
results achieved by a conventional Lucene-based code search
tool. We also perform a controlled experiment and a survey of
Microsoft developers. The results confirm the usefulness and
effectiveness of CodeHow in programming practices.

The contributions of this paper are as follows:

• We propose a code search technique that could under-
stand the APIs a user query refers to and considers
both text similarity and potential APIs.

• We propose to apply Extended Boolean model to
incorporate the impact of both text similarity and
potential APIs on code search.

• We have implemented CodeHow and deployed it as a
scalable cloud service. Our experimental results show
that CodeHow outperforms conventional code search
tools.

The rest of this paper is organized as follows. We present
the overall structure of CodeHow in Section II. We describe
the API understanding component in Section III and the code
retrieval component in Section IV. Our in-house experiment
and user study are described in Section V and Section VI,
respectively. We discuss our work and present threats to
validity in Section VII. The related work is introduced in
Section VIII. We conclude the paper in Section IX.

II. THE OVERALL STRUCTURE OF CODEHOW

Figure 1 presents the overall structure of CodeHow. Code-
How constructs a codebase by collecting projects from open
source repositories (e.g., Codeplex, Github) and an organiza-
tion’s local repositories. After collecting the projects, Code-
How performs preprocessing (tokenization, stemming, etc) on
the source code and indexes the code at the method level using
Elastic Search2.

2https://www.elastic.co/
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Fig. 1. The Overall Structure of CodeHow

Given a user query, CodeHow first feeds it to the API Un-
derstanding component (Section III) to figure out the potential
APIs that are relevant to the query. The Retrieval component
(Section IV) then expands the user query with the potential
APIs and retrieves relevant code snippets from the codebase.
A raw code snippet contains source code of a class method
(function), which could be verbose and mixed with irrelevant
code. In order to make the returned code snippets compact and
easy to understand, CodeHow applies static slicing techniques
to remove the irrelevant code, and presents to users the sliced
code snippets.

The backend of CodeHow is deployed as a Microsoft
Azure cloud service3. The Elastic Search engine is running
on five Azure virtual machines (including 1 master node and
4 workers). The front-end of CodeHow is implemented as
a Microsoft Visual Studio extension, which can help Visual
Studio users search code during programming. Figure 2 gives
a screenshot of CodeHow user interface.

The distinctive features of CodeHow are its API Under-
standing and Code Retrieval components, which are described
in details in Section III and Section IV, respectively.

III. API UNDERSTANDING

CodeHow tries to understand the potential APIs that the
users would like to query. Figure 3 shows the outline of the
proposed API understanding method. For an API library (such
as Microsoft .NET framework), CodeHow first collects the
description of each API from its online documentation. After
obtaining the description of an API, CodeHow computes the
similarity between the textual description and the query as
well as the similarity between the API name and the query.
It then combines the two similarity values for each API and
returns the potentially relevant APIs that match the query. We
elaborate the API understanding process in this section.

A. API Enrichment and Preprocessing

We enrich APIs by obtaining API descriptions from their
online documents, including the full qualified API name,
summary, and the remarks (full descriptions). As an example,

3http://azure.microsoft.com/en-us/
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Fig. 2. A Screenshot of CodeHow User Interface

Fig. 3. The Framework of the API Understanding Component

TABLE I. AN EXAMPLE OF .NET API

Field Text
Full Qualified
Name

System.IO.File.ReadLines

Summary Reads the lines of a file.

Remarks The ReadLines and ReadAllLines methods differ as fol-
lows: When you use ReadLines, you can start enumerating
the collection of strings before the whole collection is
returned...

Table I shows the description of the .NET API File.ReadLines
obtained from the online MSDN document4. We treat each
API description as a document and use it for matching a user
query.

For a free-text query and a description of an API, we
perform three preprocessing steps: text normalization, stop
word removal, and stemming. The goal is to break the text
into terms that can be analyzed by an information retrieval
technique. First, we perform text normalization, which involves
the removal of punctuation marks and tokenization. Second,
we remove stop words such as “on”, “the”, “are” and so

4http://msdn.microsoft.com/en-us/library/dd383503(v=vs.110).aspx

on. Finally, we perform stemming, which reduces inflected or
derived words into a common root-form. For example the word
“reading” and “reads” are reduced to the root form “read”.
We use the standard Porter Stemmer to perform this stemming
step [11].

B. Identifying Relevant APIs

We now describe how we identify relevant APIs for a user
query. The process consists of two components: Text Matching
component and Name Matching component.

In the Text Matching component, for each API apii in
a library, we compute the text similarity score apiti.score
between the query and the API’s description using the standard
Vector Space Model (VSM). Each document d is treated as a
vector. Each value in the vector corresponds to the weight of a
term t in d. The weight is calculated based on term frequency
and inverse document frequency. The similarity is computed
as cosine similarity. The top k APIs that have the highest
textual similarity are returned as candidate results. We define
the resultant APIs obtained from the calculation of the Text
Matching component as APItext:

APItext = {apit1, apit2, ..., apitk}

In the Name Matching component, we compute the sim-
ilarity between the user query and the APIs’ Full Qualified
Name (FQN). For each API apii in a library, we calculate the
similarity scores apini .score between the query and the API’s
FQN using VSM, and return the top k candidate APIs. We
define the resultant APIs obtained from the calculation of the
Name Matching component as APIname:

APIname = {apin1 , apin2 , ..., apink}

We define the APIs appearing in both APItext and
APIname as APIoverlap, and define the APIs appearing
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only in APItext or APIname as APInotOverlap. We rank
the APIs appearing in APIoverlap higher than the APIs in
APInotOverlap, because we assume the APIs appearing in both
candidate lists are more relevant than the ones only appearing
in one candidate list. We calculate the combined scores of the
APIs as follows:

apii.score =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

apiti.score+ apini .score

(if apii ∈ APIoverlap)

MinOverlapScore×api
t/n
i .score

maxNotOverlapScore+a

(if apii /∈ APIoverlap)

(1)

where MinOverlapScore is the minimum score of all APIs
in APIoverlap, and maxNotOverlapScore is the maximum
score of all APIs in APInotOverlap. If apii only appears in

APItext, then api
t/n
i .score equals to apiti.score. If apii only

appears in APIname, then api
t/n
i .score equals to apini .score.

The parameter a is an adjustment factor to make sure that the
score of APIoverlap is larger than that of APInotOverlap. In
this study, we empirically set a to 0.1.

Equation (1) says that, if apii appears in both APIname

and APItext candidate lists, its score is the sum of the two
scores. Otherwise, its score is calculated based the similarity
score in corresponding candidate list. We compute the scores
in above way to make sure that all APIs are ranked according
to the following criteria:

1) APIoverlap ranks higher than APInotOverlap.
2) The API with higher similarity score ranks higher than

the one with lower similarity score.

Finally, we rank all APIs according to their scores and
obtain the top k potentially relevant APIs:

APIrelevant = {api1, api2, ..., apik}

Example: suppose for the query how to read file
line by line, the Name Matching component identifies
the following potentially relevant APIs (APItext) with
similarity scores: {File.ReadLines=0.5, File.ReadAllText=0.4,
File.ReadAllLines=0.4}. The Text Matching component iden-
tifies the following APIs (APIname) with similarity scores:
{FileIO.TextFieldParser.ReadLine= 0.9, File.ReadLines=0.6,
File.ReadAllLines=0.5}. The overlapping APIs (APIOverlap)
are File.ReadLines and File.ReadAllLines. We compute their
score as 0.5 + 0.6 = 1.1, and 0.4 + 0.5 = 0.9, re-
spectively. The non-overlapping APIs (APInotOverlap) are
ReadLinesFromFile.File and File.ReadAllText. Thus, we get
MinOverlapScore value 0.9 and maxNotOverlapScore
value 0.9. Thus the scores for FileIO.TextFieldParser.ReadLine
and File.ReadAllText are 0.81 and 0.36, respectively. Finally,
the rank of potentially relevant APIs (APIrelevant) are as
follows: 1) File.ReadLines (score=1.1); 2) File.ReadAllLines
(score=0.9); 3) FileIO.TextFieldParser.ReadLine (score=0.81);
4) File.ReadAllText (score=0.36).

IV. CODE RETRIEVAL

Source code can be treated as texts. Conventional infor-
mation retrieval techniques can be applied to search for code
snippets that are relevant to a given user query based on the

text similarity between the query and code snippets. Through
API understanding, the APIs that are potentially relevant to a
user query are identified. The API information can complement
the conventional text-based code retrieval.

In our work, we propose an integrated retrieval method
that considers both text similarity and API information. In
this section, we describe the construction of queries and the
retrieval of code snippets given the queries.

A. Query Expansion

A query Qt containing n terms is defined as:

Qt = (t1, t2, ..., tn)

For a code snippet, we consider the following three fea-
tures:

• Relevant APIs: The APIs that the code snippet con-
tains.

• Method Body: the method body, which contains
source code that implements a functionality.

• Method Name: the method’s Full Qualified Name
(FQN), which gives a brief summarization of the
method’s functionality.

We define the three code snippet features as follows:

F = (f1, f2, f3)

where f1 stands for “API”, f2 stands for “Method Body”, f3
stands for “Method Name”. A query can thus be expressed in
terms of fi : ti where ti ∈ Qt and fi ∈ Ft. It means to search
a field fi that contains the term ti.

We construct a Boolean query expression for retrieving
code snippets that matches to the query in terms of text
similarity:

qtext = (f2 : t1 ∨ f3 : t1) ∧ (f2 : t2 ∨ f3 : t2)...

∧ (f2 : tn ∨ f3 : tn)

This query expression searches for code snippets that contain
the terms t1, t2, ... , tn in fields f2 (Method Body) and f3
(Method Name).

After the API understanding phrase (Section III), we get
k potentially relevant APIs APIrelevant. In our work, we set
k to 10. For each API apii in APIrelevant, we tokenize its
name and get a keyword list Ai. We then construct Boolean
query expressions for each API as follows:

qapii = f1 : apii ∧ (f2 : t1 ∨ f3 : t1) ∧ (f2 : t2 ∨ f3 : t2)...

∧ (f2 : tk ∨ f3 : tk)

where apii ∈ APIrelevant and tk ∈ (Qt − Ai). This
query expression searches for code snippets that contain the
potentially relevant API apii in fields f1 (API) as well as
other query terms in fields f2 (Method Body) and f3 (Method
Name). Note that we remove the terms that appear in Ai from
the query Qt. This is because the impact of these terms have
already been considered in the apii item.

Each query expression defined above can be used to search
for the code snippets. A code snippet may be thus retrieved by
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more than one query expressions. We consider a code snippet
that can be retrieved by multiple query expressions more
important. In our approach we combine the query expressions
and obtain an expanded query for retrieving code snippets:

qexpand = (qapi1 , qapi2 , ..., qapik , qtext)

Example: For the following query: how to save an image
in png format?

The query terms Qt = (save, image, png, format).
The potentially relevant APIs APIrelevant we
obtain from the API Understanding component
(Section III) are System.Drawing.Image.Save and
System.Drawing.Imaging.ImageFormat.Png. The
associated query expressions are as follows:

qapi1 =(f1 : System.Drawing.Image.Save)∧
(f2 : png ∨ f3 : png) ∧ (f2 : format ∨ f3 : format)

qapi2 =(f1 : System.Drawing.Imaging.ImageFormat.Png)∧
(f2 : save ∨ f3 : save)

qtext =(f2 : save ∨ f3 : save) ∧ (f2 : image ∨ f3 : image)∧
(f2 : png ∨ f3 : png) ∧ (f2 : format ∨ f3 : format)

The resulting expanded query is therefore:
qexpand = (qapi1 , qapi2 , qtext).

B. Applying Extended Boolean Model to Code Search

1) Extended Boolean Model: To retrieve relevant code
snippets based on the queries, we adopt the Extended Boolean
model [10], which is an intermediate between the standard
Boolean model and the vector space model. In a standard
Boolean model, when two query terms are related by an AND
connective, both terms must be present in order to retrieve a
document. When an OR connective is used, at least one of the
query term must be present. Therefore, a standard Boolean
model is often too strict (no results returned), or too general
(too many results returned). Furthermore it does not consider
the term weight and the ranking of the results. A vector space
model eliminates many disadvantages of the standard Boolean
model by weighting both query and document terms and by
computing the similarity between query and documents. VSM
has been implemented by many text search engines such as
Apache Lucene. However, VSM has limitation too. It does not
support structural queries consisting of complex AND and OR
relations. Furthermore, VSM may lead to inaccurate results
in the context of code search due to the differences in term
frequencies. For example, given a two-term query “A B”, VSM
may prefer a code snippet containing A frequently and B less
frequently, over a code snippet that contains both A and B,
which both appear less frequently. However, the term A could
be irrelevant to the code search.

An Extended Boolean model [10] combines the character-
istics of the vector space model and Boolean model, and ranks
the similarity between queries and documents. In the Extended
Boolean model, a document d is represented as a vector. Given
query expressions Q = (q1, q2, ...qt), a generalized disjunctive
and a generalized conjunctive query are defined as follows:

qor = q1 ∨p q2 ∨p ... ∨p qt

qand = q1 ∧p q2 ∧p ... ∧p qt

In an Extended Boolean model, the similarity between a
Boolean query expression and d is computed using p-norm (a
general form of normalized Euclidean distance):

sim(qor, d) = (
wp

t1,qw
p
t1,d+wp

t2,qw
p
t2,d+...+wp

tn,qw
p
tn,d

wp
t1,q+wp

t2,q+...+wp
tn,q

)
1
p (2)

sim(qand, d) = 1− (
wp

t1,q(1−wt1,d)
p+...+wp

tn,q(1−wtn,d)
p

wp
t1,q+wp

t2,q+...+wp
tn,q

)
1
p (3)

where wti,q represents the weight of query term qi, wti,d

represents the weight of query term qi in document d. The
parameter p is the parameter used in p-norm. We set the value
of p empirically (with a default value of 3). More details on
these equations can be obtained from [10].

2) Retrieval of Code Snippets based on Expanded Query:
In our approach, the weight of a term t in an expanded query
with respect to a code snippet d is defined as follows:

wt,d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

api.score(if term t is an API)

0.5 + (1− 0.5)× ft,d × Idft
maxiIdfi

(if term t is not an API)

(4)

In Equation (4), if the term is an API (such as Sys-
tem.Drawing.Image.Save), its weight is the API score obtained
from Equation (1). If the term is not an API (such as png), its
weight is measured by its normalized term frequency. ft,d is
the frequency of the term t in code snippet d, and Idft is the
inverse document frequency of the term t, The constant 0.5 is
used for balancing the term weight.

In our approach, matches in the fields f1 (API) or f3
(Method Name) are considered more important than matches
in f2 (Method Body). Therefore, we set the weight of term
wt,q in an expanded query q as follows: for the query term
related to (f2 : t), its weight is set to 1. For the term related
to (f1 : API) or (f3 : t), its weight is set to 1.5.

The similarity between the expanded query qexpand and a
document d is defined as follows:

sim(qexpand, d) =

k∑
i=1

sim(qapii , d) + sim(qtext, d) (5)

where sim(qapii , d) is the similarity between an API query
expression and the code snippet d. sim(qtext, d) is the simi-
larity between the text query expression and the code snippet d.
These similarity values are computed according to Equations
(2) and (3) defined by the Extended Boolean model.

V. IN-HOUSE EXPERIMENT

To evaluate the effectiveness of CodeHow in retrieving
relevant code snippets, we perform an in-house evaluation. In
this section, we present our experimental setting, evaluation
metrics, and experimental results.

A. Experimental Setting

The codebase we use in our experiments consists of 26K
C# projects downloaded from Github5 (an open source project
repository). The total size of these projects is around 629

5https://github.com/explore
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TABLE II. THE LIST OF QUERIES USED IN IN-HOUSE EXPERIMENT

ID Query

1 copy paste data from clipboard
2 open url in html browser
3 track mouse hover
4 highlight text range in editor
5 convert utc time to local time
6 converting String to DateTime
7 get current date and time
8 get file name without extension
9 how can I decode HTML characters
10 how can I download HTML source
11 how do I round a decimal value to 2 decimal places
12 how to change RGB color to HSV
13 how to convert an IPv4 address into a integer
14 how to delete all files and folders in a directory
15 how to execute a sql select
16 how to generate random int number
17 how to get Color from Hexadecimal color code
18 how to get temporary folder for current user
19 if a folder does not exist create it
20 ping a hostname on the network
21 Process.start: how to get the output
22 sending email through Gmail
23 append string to file
24 calculate md5 checksum
25 how to Deserialize XML document
26 how to get mac address
27 how to play a sound
28 how to save image in png format
29 read file line by line
30 remove cookie
31 verify folder exists
32 how to reverse a string
33 quick sort
34 how to split string into words

GB, containing about 8.3 million C# source code files, and
11.4 million methods. The code search workload (including
indexing and retrieving) is performed by the Elastic Search
engine running on Microsoft Azure. The client side is an
extension of Microsoft Visual Studio Ultimate 2013.

We have used 34 real-world queries in the in-house experi-
ment, as shown in Table II. Among them, 4 queries (1-4) come
from previous study6 [12], 18 queries (5-22) are widely viewed
queries collected from the StackOverflow website7. The rest
of the queries (23-34) are collected from the actual Microsoft
Bing search logs8.

B. Research Questions

The objective of the in-house experiment is to investigate
the overall effectiveness of our approach. We also want to
investigate the benefit of distinctive features of our approach.
We have identified the following research questions:

RQ1: How effective is CodeHow?

This RQ evaluates the effectiveness of CodeHow in retriev-
ing relevant code snippets based on user queries. To answer
this question, we run CodeHow using the queries specified in
Table II. Two authors of this paper manually inspect the top
20 results returned from each query to judge whether they are
relevant or not. Only the results receiving relevant feedback
from both authors are labeled as relevant.

6Most of queries in [12] come from Eclipse FAQ website and they are Java
programming language specific. We filter out those Java specific queries and
obtain 4 language insensitive queries.

7http://stackoverflow.com/
8http://www.bing.com/

In our experiments, we also compare our approach with
a conventional Lucene-based code search approach. Apache
Lucene implements a variant of VSM and is behind many
existing code search tools such as Sourcerer [4]. Sourcerer
also incorporates several heuristics to rank the code snippets,
including code-as-text (text similarity), FQN of entities, and
code popularity. In our implementation of the Lucene-based
code search tool, we consider both text similarity and FQN
of the methods. We do not include code popularity (computed
using PageRank) in our implementation as adding PageRank
does not significantly improve the code search accuracy [4].
No API understanding nor Extended Boolean model is used
in the Lucene implementation of code search. Therefore, the
accuracy of our Lucene-based code search tool should be
similar to what Sourcerer could achieve.

RQ2: Is the proposed API understanding method effective?

One distinctive feature of our approach versus existing code
search approaches is the API Understanding component that
is described in Section III. It tries to understand the potential
APIs that are related to the query before performing code
retrieval. Answers to this research question help us evaluate
whether this feature is useful for code search or not. To answer
this question, we compare two versions of CodeHow, one with
query understanding and the other without query understanding
(referred to as CodeHownoQU ). In the implementation of
CodeHownoQU , we omit the API understanding component
and feed the user query to the Retrieval component (described
in Section IV) directly. That is, we do not identify any
potentially relevant APIs. We consider only the impact of text
similarity on code search.

RQ3: Is the proposed Extended Boolean model effective?

Another distinctive feature of our approach versus existing
code search approaches is the Extended Boolean model used in
code retrieval (Section IV). Answers to this research question
will shed light on whether this feature is useful for code
search or not. To answer this question, we implement a variant
of CodeHow (referred to as CodeHownoEB), which uses
Apache Lucene to retrieve code snippets based on an expanded
query. We compare CodeHow (using Extended Boolean model)
and CodeHownoEB (using Lucene). The API Understanding
component remains the same for both implementations.

C. Evaluation Metrics

To evaluate the effectiveness of CodeHow, we make use of
the Precision@k metric:

Precision@k =
1

|Q|
|Q|∑
i=1

|relevanti,k|
k

where relevanti,k represents the relevant code snippets for
query i in the top k returned results, Q is a set of queries.
Precision@k takes an average on all queries whose relevant
answers could be found by inspecting the top k (k = 1, 5,
10, 20) of the returned code snippets. A better code search
tool should allow developers to discover the needed code by
examining fewer returned results. Thus, the higher the metric
values, the better the code search performance.

We also make use of Mean Reciprocal Rank (MRR), which
is a statistic for evaluating a process that produces a list of
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TABLE III. THE COMPARISON BETWEEN CODEHOW AND

LUCENE-BASED CODE SEARCH

CodeHow Lucene-based
Precision@1 0.794 0.618
Precision@5 0.823 0.476
Precision@10 0.776 0.435
Precision@20 0.706 0.372
MRR 0.867 0.704

32%

53%

15%

Percentage of Queries
When Top 1 Results are Examined

CodeHow>Lucene-based CodeHow=Lucene-based CodeHow<Lucene-based

59%
32%

9%

Percentage of Queries
When Top 5 Results are Examined

Fig. 4. The Percentage of Queries that CodeHow Performs Better/Worse than
Lucene-based Code Search

possible responses to a query [13]. The reciprocal rank of
a query is the multiplicative inverse of the rank of the first
relevant answer. The mean reciprocal rank is the average of
the reciprocal ranks of results of a set of queries Q and could
be calculated as follows:

MRR =
1

|Q|
|Q|∑
i=1

1

ranki

The value of MRR is between 0 and 1. The higher the MRR
value, the better the code search performance.

D. Experimental Results

RQ1: The Overall Effectiveness of CodeHow

We evaluate CodeHow using the queries specified in Ta-
ble II. We also compare our approach with a conventional
Lucene-based code search tool. Table III presents the over-
all results. When the top 1 results are inspected, CodeHow
achieves a precision score of 0.794, which means that 79.4%
of the first returned results are relevant code snippets. When
the top 5 results are inspected, CodeHow achieves a precision
score of 0.823. These results are considered satisfactory. Note
that some queries in Table II are associated with explicit .NET
APIs (e.g., the query how to save image in png format), while
some queries are not (e.g., the query quick sort). CodeHow
can effectively handle both of these queries.

Table III shows that the Lucene-based code search tool
achieves a score of 0.618 when the top 1 results are inspected.
CodeHow achieves 28.5%, 72.8%, 78.3%, and 89.7% improve-
ments in terms of Precision@1, Precision@5, Precision@10,
and Precision@20, respectively. In terms of MRR, CodeHow
obtains a score of 0.867, which also outperforms the Lucene-
based code search tool (0.704) by 23.2%.

Figure 4 shows the percentage of queries that CodeHow
performs better/worse than the Lucene-based code search tool.

Fig. 5. The Comparison between CodeHow and CodeHownoQU

Fig. 6. The Comparison between CodeHow and CodeHownoEB

We can see that when the top 1 returned results are examined,
CodeHow wins in 32% of the queries and loses in 15% of the
queries. In terms of the top 5 results, CodeHow outperforms
the Lucene-based tool in 59% queries and loses in only 9% of
the queries. We also perform a Wilcoxon signed-rank test [14].
The p-values are all less than 0.05, when the top 5, 10, and
20 returned results are examined. The results confirm that the
improvement achieved by CodeHow is statistically significant.

RQ2: The Effectiveness of API Understanding

To answer this question, we compare two versions of Code-
How: CodeHow and CodeHownoQU . We present the overall
comparison results in Figure 5. CodeHownoQU achieves pre-
cision scores of 0.412, 0.394, 0.376, and 0.397 when the top 1,
5, 10, 20 results are inspected, respectively. CodeHow achieves
79.4%, 82.3%, 77.6%, and 70.6% improvement in terms of
Precision@1, Precision@5, Precision@10, and Precision@20,
respectively. In terms of MRR, CodeHow achieves a 41.3%
improvement compared with CodeHownoQU . We also perform
a Wilcoxon signed-rank test and the result indicates that the
improvement achieved by API understanding is statistically
significant.

RQ3: The Effectiveness of the Extended Boolean Model

To answer this question, we compare the complete im-
plementation of CodeHow and CodeHownoEB . We present
the results in Figure 6. CodeHownoEB achieves precision
scores of 0.676, 0.618, 0.582, and 0.496 when the top 1, 5,
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10, 20 returned results are inspected, respectively. CodeHow
outperforms CodeHownoEB in terms of these metrics. In terms
of MRR, CodeHow achieves a 12.7% improvement compared
with CodeHownoEB . A Wilcoxon signed-rank test confirms
that the improvement achieved by the Extended Boolean model
is statistically significant.

VI. USER STUDY

A. A Controlled Experiment

To evaluate the effectiveness of code search tools in prac-
tice, we design a user study involving 20 Microsoft developers
and interns. The developers are software development engi-
neers (SDEs), whose programming experiences ranging from
3 to 17 years. The interns are undergraduate and postgraduate
students, who are majored in computer science or information
technology.

We first design three programming tasks and each partici-
pant is required to complete these three tasks using two code
search tools: CodeHow and Ohloh 9. Ohloh is chosen as it is
one of the most popular commercial code search engines. The
three tasks are as follows:

• Task 1: Sending emails - write a program to read
a list of email addresses from a text file, and then
send an email with an attachment file to all the email
addresses.

• Task 2: Converting text files to XML documents -
write a program to transform structured customer
information recorded in a text file to an xml document.

• Task 3: Image format conversion - write a program to
read an image in JPEG format, rotate it 180, and then
convert it to PNG format.

Our goal is to evaluate the accuracy of two code search
tools in retrieving code snippets based on user queries. During
the experiment, participants entered a series of queries that
described the given tasks, and searched for the code snippets
that are needed to complete the tasks, using both code search
tools. We recorded the number of queries the participants used,
as well as the code snippets they examined for completing the
tasks. We also asked them to examine the top 10 returned
results for each query, and mark which of them are helpful for
completing the tasks.

Our results show that the participants entered in total
95 queries to each code search tool during the experiment.
Table IV shows the percentage of relevant code snippets
the participants marked for each code search tool. CodeHow
returns around 10%-20% more relevant results than Ohloh for
all the three tasks. CodeHow also outperforms Ohloh in terms
of MRR, which measures the rank of the first relevant returned
result.

B. A User Survey

In March 2015, we demonstrated CodeHow in a company-
wide technology exhibition held in Microsoft Redmond cam-
pus. We conducted a survey of 45 Microsoft developers who

9http://code.ohloh.net/

TABLE IV. THE USER STUDY RESULTS

Percentage of Useful Results MRR
Ohloh CodeHow Ohloh CodeHow

Task 1 37.9% 57.9% 0.734 0.834
Task 2 25.7% 36.5% 0.401 0.592
Task 3 38.4% 54.5% 0.577 0.782

tried our tool in the event. In the survey, we asked them if
CodeHow is helpful for their programming tasks, by giving
a score on a five-point Likert scale (strongly agree is 5 and
strongly disagree is 1). For the 45 participants, the average
Likert score was 4.15 (with standard deviation of 0.83). 40
(88.89%) participants stated that the search results returned by
CodeHow are mostly or partially correct.

In the survey, we asked the participants in which scenarios
they think CodeHow is more effective (helping figure out
how to use an API, or helping figure out how a functionality
can be implemented, or none of them). 26 out 45 (57.78%)
participants marked that CodeHow is more effective in helping
with API usage, and the rest of the participants considered that
CodeHow is more effective in helping with a functionality. All
except 2 participants (95.56%) expressed that they would like
to search and reuse open source code such as those in GitHub
(when licenses are in compliance).

Overall, the user study confirms the usefulness of Code-
How in programming practice.

VII. DISCUSSIONS

A. The Incorrect Return Results

Although CodeHow is effective, it still cannot locate rele-
vant code snippets for all the queries. One unsuccessful query
example is Convert utc time to local time. We find that some
returned results are actually about Convert local time to utc
time. Similar examples include How to change RGB color to
HSV. This is because our approach cannot distinguish semantic
meanings of different orders of words.

Another query example that leads to incorrect results is
How to get Color from Hexadecimal color code. Some code
snippets contain color code strings such as “#FFDFD991”.
However, our approach cannot recognize these strings. If there
are no identifiers or comments describing the code, CodeHow
would miss these code snippets. The same problem also ap-
pears when searching for SQL, LINQ and regular expressions.

The above examples show the importance of understanding
the semantic meanings of query and code. Currently CodeHow
can only understand the relevant APIs a query implies. In the
future, we plan to perform deeper natural language analysis of
query and code, aiming for achieving better understanding of
query and code and more accurate search results.

B. The Usefulness of Code Search Tools

Through our experiments, especially the user study, we
have obtained the following insights. Although these obser-
vations are obtained from our experience on CodeHow, they
may be applicable to other code search tools and can be used
to guide the future development of these tools.
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• Targeted problems: Code search can be considered
as an opportunistic problem solving, where develop-
ers need to find missing information for completing
software development tasks [15]. Gallardo-Valencia
and Sim [16] further proposed three types of oppor-
tunistic problems that code search could help resolve:
Remembering (developers knew exactly what they
are looking for and only wanted to remember syn-
tax details or find facts), Clarification (developers
had a high-level understanding of what they want to
implement, but did not know precisely how to do
it), and Learning (developers wanted to acquire new
concepts). Through our experiments, we find that code
search tools such as CodeHow is effective in solving
these three problems. We also find that experienced
developers can better use our tool as they could enter
queries that are directly related to their problems,
while inexperienced developers may not realize some
relevant code snippets even they contain APIs that are
useful for their tasks. One user study participant also
pointed out that CodeHow is more useful for querying
a local codebase, where a general search engine cannot
reach.

• Code comprehension: we observe that developers, es-
pecially inexperienced developers, often have difficul-
ties in comprehending the returned code snippets. This
becomes an obstacle for using code search tools such
as CodeHow. Developers may turn to a general search
engine such as Bing or Google to study the API usage
from online materials. This problem could be partially
mitigated by a better code summarization method [17],
[18], which can automatically summarize necessary
code fragments associated with the query. Designing
a better User Interface (e.g, highlighting matching
code, linking API to online documentation/discussion
forum, etc) could also increase the usability of the
code search tools in practice.

• Reuse granularity: we observe that the code search
tools are more effective when used at a fine-granularity
level. Large code snippets that contain many lines
of code may hinder program comprehension and are
more likely to cause the “architecture mismatch” prob-
lem, which occurs when the code snippet to be reused
requires a different software architecture or a different
object-oriented framework.

C. Threats to Validity

We have identified the following threats to validity:

Threats to internal validity: our empirical study involves
human subjects. The limited number and the programming
capabilities of the human subjects may bias the results. The
process of determining the relevance of a code snippet could be
also subjective. In the future, we plan to conduct experiments
and user studies involving more subjects, API methods, and
programming tasks to further reduce this threat.

Threats to external validity: we have used 34 queries in
our in-house experiment. Although these queries are real-world
queries collected from the StackOverflow website, Bing search
logs, and the related work, admittedly they do not cover all

types of queries that a developer may ask. Also, although our
codebase consists of 26K projects and 11.4 million methods,
it is just a tiny sample of all available source code. In the
future, we plan to reduce the threats to external threats by
investigating more queries over a much larger codebase.

VIII. RELATED WORK

A. Code Search

Currently, many code search approaches have been pro-
posed to help users find relevant code. Ohloh [3], Krugle [2],
and Sando [19] are code search engines that can return code
snippets containing the keywords (or Regular Expressions)
specified in a query. Strathcona [20] is a code snippet rec-
ommender, which locates a set of relevant code snippets by
matching the structure of the code under development with
the code snippets in codebase. Sourcerer [4] is a Lucene-
based infrastructure for large-scale code search. Bajracharya
et al. [12] performed code search using Structural Semantic
Indexing, which associates words to source code entities based
on similarities of API usage. S6 [21] is a test-driven code
search engine that can map high-level queries into relevant
code fragments through a set of program transformations.
SNIFF [22] annotates a code snippet with the documentation
of Java APIs the code snippet contains, and then performs
free-text queries over the annotated source code. Unlike the
above work, our approach performs API understanding before
retrieving relevant code.

Web search engines, such as Bing or Google, could also
help developers reuse APIs. However, Stylos and Myers [23]
observed many problems and inefficiencies in using general
Web search engines for code reuse, because these search
engines are not designed to specifically support programming
tasks. Tools such as Mica [23], Blueprint [24] and As-
sisme [25] use general search engines to search for results and
automatically extract relevant code snippets from the returned
results. eXoaDocs [26] facilitates API reuse by embedding API
documents with code examples mined from the Web.

Our approach supports free-text queries. There are also
many approaches that treat an object, a function, or a partial
program as a query, and search for matching code snip-
pets [20], [27], [28], [29], [30]. Furthermore, our work focuses
on the selection of code snippets that answer user’s queries.
There are many tools that focus on recommending a group of
connected functions. For example, Portfolio visualizes relevant
functions and their usages and uses PageRank to mine the
relationship of functions [31].

Exemplar [32] is a tool that finds relevant applications
from a large archive of applications. Similar to our work,
Exemplar also performs search over a large-scale codebase
based on user queries and utilizes API document information.
However Exemplar returns executable projects while our tool
returns code snippets.

Our work is also related to concept location, which is the
process of linking textual descriptions to corresponding source
code files. Concept location may also be referred to as feature
location [33], [34], bug localization [35], or trace recovery [36]
in different contexts. For example, Antoniol et al. [37] applied
both a probabilistic and a vector space model to recover links
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between source code units and free text documents (such as
manual pages or requirements). Marcus and Maletic [38] used
Latent Semantic Indexing (LSI) for the similar purpose. The
underlying assumption is that programmers use meaningful
words for code units, and these words capture application-
specific knowledge. Therefore, text retrieval techniques can be
used to link concepts expressed in natural language with code
units.

B. Query Refinement

Recently, several methods have been proposed to improve
the effectiveness of code search or concept location via query
refinement. For example, Gay et al. [39] improved the effec-
tiveness of concept location by incorporating user feedback us-
ing the Rocchio algorithm. Haiduc et al. [8] proposed Refoqus,
a tool that can predict the quality of a query and automatically
recommend a query reformulation strategy. Wang et al. [40]
proposed an active code search approach, which incorporates
user feedback to refine the query. Dietrich et al. [41] proposed
an approach that utilizes feedback captured from a validated
set of queries and traceability links to improve the efficacy
of future queries. Many methods have also been proposed
to expand a user query by retrieving the semantic similar
words from websites [42] or software [9], [6], [7]. Hill et
al. [43] proposed to automatically extract natural language
phrases from source code identifiers and categorize them into a
hierarchy, which helps developers recognize alternative words
for query reformulation. It was observed that automatically
expanding a query with inappropriate synonyms may produce
even worse results than not expanding the query [9]. Different
from the above work, our work identifies potentially relevant
APIs that a user query refers to, expands the query with the
APIs, and utilizes the Extended Boolean model to handle the
expanded query. It is also interesting to explore the synergy
between our work and the existing query refinement work.

IX. CONCLUSION

In this paper, we propose CodeHow, a code search tech-
nique that applies Extended Boolean model to retrieve code
snippets that match users’ free-text queries. CodeHow could
recognize the potential APIs a query refers to and incorporates
the API information to improve the accuracy of the search
results. We have implemented the backend of CodeHow as
a Azure cloud service and the front-end as a Visual Studio
extension. We have conducted experiments over a codebase
containing 26K C# projects. Our evaluation results show that
CodeHow is effective and outperforms conventional Lucene-
based code search. We have also performed a controlled
experiment and a user survey involving Microsoft developers
and interns. The results confirm the usefulness of the tool.

In the future, we plan to address the issues discussed in
Section VII. Currently, the CodeHow tool only supports code
search for C# programs. We are planning to support more
programming languages such as Java. We will also work on
methods for synthesizing sample usage code from the code
search results.
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