mirror of https://github.com/microsoft/autogen.git
198 lines
7.9 KiB
Python
198 lines
7.9 KiB
Python
from unittest.mock import MagicMock, patch
|
|
|
|
import pytest
|
|
|
|
try:
|
|
from google.api_core.exceptions import InternalServerError
|
|
|
|
from autogen.oai.gemini import GeminiClient
|
|
|
|
skip = False
|
|
except ImportError:
|
|
GeminiClient = object
|
|
InternalServerError = object
|
|
skip = True
|
|
|
|
|
|
# Fixtures for mock data
|
|
@pytest.fixture
|
|
def mock_response():
|
|
class MockResponse:
|
|
def __init__(self, text, choices, usage, cost, model):
|
|
self.text = text
|
|
self.choices = choices
|
|
self.usage = usage
|
|
self.cost = cost
|
|
self.model = model
|
|
|
|
return MockResponse
|
|
|
|
|
|
@pytest.fixture
|
|
def gemini_client():
|
|
return GeminiClient(api_key="fake_api_key")
|
|
|
|
|
|
# Test compute location initialization and configuration
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_compute_location_initialization():
|
|
with pytest.raises(AssertionError):
|
|
GeminiClient(
|
|
api_key="fake_api_key", location="us-west1"
|
|
) # Should raise an AssertionError due to specifying API key and compute location
|
|
|
|
|
|
@pytest.fixture
|
|
def gemini_google_auth_default_client():
|
|
return GeminiClient()
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_valid_initialization(gemini_client):
|
|
assert gemini_client.api_key == "fake_api_key", "API Key should be correctly set"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_gemini_message_handling(gemini_client):
|
|
messages = [
|
|
{"role": "system", "content": "You are my personal assistant."},
|
|
{"role": "model", "content": "How can I help you?"},
|
|
{"role": "user", "content": "Which planet is the nearest to the sun?"},
|
|
{"role": "user", "content": "Which planet is the farthest from the sun?"},
|
|
{"role": "model", "content": "Mercury is the closest palnet to the sun."},
|
|
{"role": "model", "content": "Neptune is the farthest palnet from the sun."},
|
|
{"role": "user", "content": "How can we determine the mass of a black hole?"},
|
|
]
|
|
|
|
# The datastructure below defines what the structure of the messages
|
|
# should resemble after converting to Gemini format.
|
|
# Messages of similar roles are expected to be merged to a single message,
|
|
# where the contents of the original messages will be included in
|
|
# consecutive parts of the converted Gemini message
|
|
expected_gemini_struct = [
|
|
# system role is converted to user role
|
|
{"role": "user", "parts": ["You are my personal assistant."]},
|
|
{"role": "model", "parts": ["How can I help you?"]},
|
|
{
|
|
"role": "user",
|
|
"parts": ["Which planet is the nearest to the sun?", "Which planet is the farthest from the sun?"],
|
|
},
|
|
{
|
|
"role": "model",
|
|
"parts": ["Mercury is the closest palnet to the sun.", "Neptune is the farthest palnet from the sun."],
|
|
},
|
|
{"role": "user", "parts": ["How can we determine the mass of a black hole?"]},
|
|
]
|
|
|
|
converted_messages = gemini_client._oai_messages_to_gemini_messages(messages)
|
|
|
|
assert len(converted_messages) == len(expected_gemini_struct), "The number of messages is not as expected"
|
|
|
|
for i, expected_msg in enumerate(expected_gemini_struct):
|
|
assert expected_msg["role"] == converted_messages[i].role, "Incorrect mapped message role"
|
|
for j, part in enumerate(expected_msg["parts"]):
|
|
assert converted_messages[i].parts[j].text == part, "Incorrect mapped message text"
|
|
|
|
|
|
# Test error handling
|
|
@patch("autogen.oai.gemini.genai")
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_internal_server_error_retry(mock_genai, gemini_client):
|
|
mock_genai.GenerativeModel.side_effect = [InternalServerError("Test Error"), None] # First call fails
|
|
# Mock successful response
|
|
mock_chat = MagicMock()
|
|
mock_chat.send_message.return_value = "Successful response"
|
|
mock_genai.GenerativeModel.return_value.start_chat.return_value = mock_chat
|
|
|
|
with patch.object(gemini_client, "create", return_value="Retried Successfully"):
|
|
response = gemini_client.create({"model": "gemini-pro", "messages": [{"content": "Hello"}]})
|
|
assert response == "Retried Successfully", "Should retry on InternalServerError"
|
|
|
|
|
|
# Test cost calculation
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_cost_calculation(gemini_client, mock_response):
|
|
response = mock_response(
|
|
text="Example response",
|
|
choices=[{"message": "Test message 1"}],
|
|
usage={"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15},
|
|
cost=0.01,
|
|
model="gemini-pro",
|
|
)
|
|
assert gemini_client.cost(response) > 0, "Cost should be correctly calculated as zero"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
@patch("autogen.oai.gemini.genai.GenerativeModel")
|
|
@patch("autogen.oai.gemini.genai.configure")
|
|
def test_create_response(mock_configure, mock_generative_model, gemini_client):
|
|
# Mock the genai model configuration and creation process
|
|
mock_chat = MagicMock()
|
|
mock_model = MagicMock()
|
|
mock_configure.return_value = None
|
|
mock_generative_model.return_value = mock_model
|
|
mock_model.start_chat.return_value = mock_chat
|
|
|
|
# Set up a mock for the chat history item access and the text attribute return
|
|
mock_history_part = MagicMock()
|
|
mock_history_part.text = "Example response"
|
|
mock_chat.history.__getitem__.return_value.parts.__getitem__.return_value = mock_history_part
|
|
|
|
# Setup the mock to return a mocked chat response
|
|
mock_chat.send_message.return_value = MagicMock(history=[MagicMock(parts=[MagicMock(text="Example response")])])
|
|
|
|
# Call the create method
|
|
response = gemini_client.create(
|
|
{"model": "gemini-pro", "messages": [{"content": "Hello", "role": "user"}], "stream": False}
|
|
)
|
|
|
|
# Assertions to check if response is structured as expected
|
|
assert response.choices[0].message.content == "Example response", "Response content should match expected output"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
@patch("autogen.oai.gemini.genai.GenerativeModel")
|
|
@patch("autogen.oai.gemini.genai.configure")
|
|
def test_create_vision_model_response(mock_configure, mock_generative_model, gemini_client):
|
|
# Mock the genai model configuration and creation process
|
|
mock_model = MagicMock()
|
|
mock_configure.return_value = None
|
|
mock_generative_model.return_value = mock_model
|
|
|
|
# Set up a mock to simulate the vision model behavior
|
|
mock_vision_response = MagicMock()
|
|
mock_vision_part = MagicMock(text="Vision model output")
|
|
|
|
# Setting up the chain of return values for vision model response
|
|
mock_vision_response._result.candidates.__getitem__.return_value.content.parts.__getitem__.return_value = (
|
|
mock_vision_part
|
|
)
|
|
mock_model.generate_content.return_value = mock_vision_response
|
|
|
|
# Call the create method with vision model parameters
|
|
response = gemini_client.create(
|
|
{
|
|
"model": "gemini-pro-vision", # Vision model name
|
|
"messages": [
|
|
{
|
|
"content": [
|
|
{"type": "text", "text": "Let's play a game."},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": ""
|
|
},
|
|
},
|
|
],
|
|
"role": "user",
|
|
}
|
|
], # Assuming a simple content input for vision
|
|
"stream": False,
|
|
}
|
|
)
|
|
|
|
# Assertions to check if response is structured as expected
|
|
assert (
|
|
response.choices[0].message.content == "Vision model output"
|
|
), "Response content should match expected output from vision model"
|