autogen/test/oai/test_gemini.py

198 lines
7.9 KiB
Python

from unittest.mock import MagicMock, patch
import pytest
try:
from google.api_core.exceptions import InternalServerError
from autogen.oai.gemini import GeminiClient
skip = False
except ImportError:
GeminiClient = object
InternalServerError = object
skip = True
# Fixtures for mock data
@pytest.fixture
def mock_response():
class MockResponse:
def __init__(self, text, choices, usage, cost, model):
self.text = text
self.choices = choices
self.usage = usage
self.cost = cost
self.model = model
return MockResponse
@pytest.fixture
def gemini_client():
return GeminiClient(api_key="fake_api_key")
# Test compute location initialization and configuration
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
def test_compute_location_initialization():
with pytest.raises(AssertionError):
GeminiClient(
api_key="fake_api_key", location="us-west1"
) # Should raise an AssertionError due to specifying API key and compute location
@pytest.fixture
def gemini_google_auth_default_client():
return GeminiClient()
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
def test_valid_initialization(gemini_client):
assert gemini_client.api_key == "fake_api_key", "API Key should be correctly set"
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
def test_gemini_message_handling(gemini_client):
messages = [
{"role": "system", "content": "You are my personal assistant."},
{"role": "model", "content": "How can I help you?"},
{"role": "user", "content": "Which planet is the nearest to the sun?"},
{"role": "user", "content": "Which planet is the farthest from the sun?"},
{"role": "model", "content": "Mercury is the closest palnet to the sun."},
{"role": "model", "content": "Neptune is the farthest palnet from the sun."},
{"role": "user", "content": "How can we determine the mass of a black hole?"},
]
# The datastructure below defines what the structure of the messages
# should resemble after converting to Gemini format.
# Messages of similar roles are expected to be merged to a single message,
# where the contents of the original messages will be included in
# consecutive parts of the converted Gemini message
expected_gemini_struct = [
# system role is converted to user role
{"role": "user", "parts": ["You are my personal assistant."]},
{"role": "model", "parts": ["How can I help you?"]},
{
"role": "user",
"parts": ["Which planet is the nearest to the sun?", "Which planet is the farthest from the sun?"],
},
{
"role": "model",
"parts": ["Mercury is the closest palnet to the sun.", "Neptune is the farthest palnet from the sun."],
},
{"role": "user", "parts": ["How can we determine the mass of a black hole?"]},
]
converted_messages = gemini_client._oai_messages_to_gemini_messages(messages)
assert len(converted_messages) == len(expected_gemini_struct), "The number of messages is not as expected"
for i, expected_msg in enumerate(expected_gemini_struct):
assert expected_msg["role"] == converted_messages[i].role, "Incorrect mapped message role"
for j, part in enumerate(expected_msg["parts"]):
assert converted_messages[i].parts[j].text == part, "Incorrect mapped message text"
# Test error handling
@patch("autogen.oai.gemini.genai")
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
def test_internal_server_error_retry(mock_genai, gemini_client):
mock_genai.GenerativeModel.side_effect = [InternalServerError("Test Error"), None] # First call fails
# Mock successful response
mock_chat = MagicMock()
mock_chat.send_message.return_value = "Successful response"
mock_genai.GenerativeModel.return_value.start_chat.return_value = mock_chat
with patch.object(gemini_client, "create", return_value="Retried Successfully"):
response = gemini_client.create({"model": "gemini-pro", "messages": [{"content": "Hello"}]})
assert response == "Retried Successfully", "Should retry on InternalServerError"
# Test cost calculation
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
def test_cost_calculation(gemini_client, mock_response):
response = mock_response(
text="Example response",
choices=[{"message": "Test message 1"}],
usage={"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15},
cost=0.01,
model="gemini-pro",
)
assert gemini_client.cost(response) > 0, "Cost should be correctly calculated as zero"
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
@patch("autogen.oai.gemini.genai.GenerativeModel")
@patch("autogen.oai.gemini.genai.configure")
def test_create_response(mock_configure, mock_generative_model, gemini_client):
# Mock the genai model configuration and creation process
mock_chat = MagicMock()
mock_model = MagicMock()
mock_configure.return_value = None
mock_generative_model.return_value = mock_model
mock_model.start_chat.return_value = mock_chat
# Set up a mock for the chat history item access and the text attribute return
mock_history_part = MagicMock()
mock_history_part.text = "Example response"
mock_chat.history.__getitem__.return_value.parts.__getitem__.return_value = mock_history_part
# Setup the mock to return a mocked chat response
mock_chat.send_message.return_value = MagicMock(history=[MagicMock(parts=[MagicMock(text="Example response")])])
# Call the create method
response = gemini_client.create(
{"model": "gemini-pro", "messages": [{"content": "Hello", "role": "user"}], "stream": False}
)
# Assertions to check if response is structured as expected
assert response.choices[0].message.content == "Example response", "Response content should match expected output"
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
@patch("autogen.oai.gemini.genai.GenerativeModel")
@patch("autogen.oai.gemini.genai.configure")
def test_create_vision_model_response(mock_configure, mock_generative_model, gemini_client):
# Mock the genai model configuration and creation process
mock_model = MagicMock()
mock_configure.return_value = None
mock_generative_model.return_value = mock_model
# Set up a mock to simulate the vision model behavior
mock_vision_response = MagicMock()
mock_vision_part = MagicMock(text="Vision model output")
# Setting up the chain of return values for vision model response
mock_vision_response._result.candidates.__getitem__.return_value.content.parts.__getitem__.return_value = (
mock_vision_part
)
mock_model.generate_content.return_value = mock_vision_response
# Call the create method with vision model parameters
response = gemini_client.create(
{
"model": "gemini-pro-vision", # Vision model name
"messages": [
{
"content": [
{"type": "text", "text": "Let's play a game."},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
"role": "user",
}
], # Assuming a simple content input for vision
"stream": False,
}
)
# Assertions to check if response is structured as expected
assert (
response.choices[0].message.content == "Vision model output"
), "Response content should match expected output from vision model"