mirror of https://github.com/microsoft/autogen.git
42 lines
1.3 KiB
Python
42 lines
1.3 KiB
Python
import os
|
|
import unittest
|
|
from tempfile import TemporaryDirectory
|
|
|
|
from sklearn.datasets import load_boston
|
|
|
|
from flaml import AutoML
|
|
from flaml.training_log import training_log_reader
|
|
|
|
|
|
class TestTrainingLog(unittest.TestCase):
|
|
|
|
def test_training_log(self):
|
|
|
|
with TemporaryDirectory() as d:
|
|
filename = os.path.join(d, 'test_training_log.log')
|
|
|
|
# Run a simple job.
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"metric": 'mse',
|
|
"task": 'regression',
|
|
"log_file_name": filename,
|
|
"log_training_metric": True,
|
|
"mem_thres": 1024*1024,
|
|
"n_jobs": 1,
|
|
"model_history": True
|
|
}
|
|
X_train, y_train = load_boston(return_X_y=True)
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
|
**automl_settings)
|
|
|
|
# Check if the training log file is populated.
|
|
self.assertTrue(os.path.exists(filename))
|
|
with training_log_reader(filename) as reader:
|
|
count = 0
|
|
for record in reader.records():
|
|
print(record)
|
|
count += 1
|
|
self.assertGreater(count, 0)
|