autogen/notebook/agentchat_sql_spider.ipynb

318 lines
11 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# SQL Agent for Spider text-to-SQL benchmark"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook demonstrates a basic SQL agent that translates natural language questions into SQL queries."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Environment\n",
"\n",
"For this demo, we use a SQLite database environment based on a standard text-to-sql benchmark called [Spider](https://yale-lily.github.io/spider). The environment provides a gym-like interface and can be used as follows."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading cached Spider dataset from /home/wangdazhang/.cache/spider\n",
"Schema file not found for /home/wangdazhang/.cache/spider/spider/database/flight_4\n",
"Schema file not found for /home/wangdazhang/.cache/spider/spider/database/small_bank_1\n",
"Schema file not found for /home/wangdazhang/.cache/spider/spider/database/icfp_1\n",
"Schema file not found for /home/wangdazhang/.cache/spider/spider/database/twitter_1\n",
"Schema file not found for /home/wangdazhang/.cache/spider/spider/database/epinions_1\n",
"Schema file not found for /home/wangdazhang/.cache/spider/spider/database/chinook_1\n",
"Schema file not found for /home/wangdazhang/.cache/spider/spider/database/company_1\n"
]
}
],
"source": [
"# %pip install spider-env\n",
"import json\n",
"import os\n",
"from typing import Annotated, Dict\n",
"\n",
"from spider_env import SpiderEnv\n",
"\n",
"from autogen import ConversableAgent, UserProxyAgent, config_list_from_json\n",
"\n",
"gym = SpiderEnv()\n",
"\n",
"# Randomly select a question from Spider\n",
"observation, info = gym.reset()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Find the famous titles of artists that do not have any volume.\n"
]
}
],
"source": [
"# The natural language question\n",
"question = observation[\"instruction\"]\n",
"print(question)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CREATE TABLE \"artist\" (\n",
"\"Artist_ID\" int,\n",
"\"Artist\" text,\n",
"\"Age\" int,\n",
"\"Famous_Title\" text,\n",
"\"Famous_Release_date\" text,\n",
"PRIMARY KEY (\"Artist_ID\")\n",
");\n",
"CREATE TABLE \"volume\" (\n",
"\"Volume_ID\" int,\n",
"\"Volume_Issue\" text,\n",
"\"Issue_Date\" text,\n",
"\"Weeks_on_Top\" real,\n",
"\"Song\" text,\n",
"\"Artist_ID\" int,\n",
"PRIMARY KEY (\"Volume_ID\"),\n",
"FOREIGN KEY (\"Artist_ID\") REFERENCES \"artist\"(\"Artist_ID\")\n",
");\n",
"CREATE TABLE \"music_festival\" (\n",
"\"ID\" int,\n",
"\"Music_Festival\" text,\n",
"\"Date_of_ceremony\" text,\n",
"\"Category\" text,\n",
"\"Volume\" int,\n",
"\"Result\" text,\n",
"PRIMARY KEY (\"ID\"),\n",
"FOREIGN KEY (\"Volume\") REFERENCES \"volume\"(\"Volume_ID\")\n",
");\n",
"\n"
]
}
],
"source": [
"# The schema of the corresponding database\n",
"schema = info[\"schema\"]\n",
"print(schema)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Agent Implementation\n",
"\n",
"Using AutoGen, a SQL agent can be implemented with a ConversableAgent. The gym environment executes the generated SQL query and the agent can take execution results as feedback to improve its generation in multiple rounds of conversations."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"AUTOGEN_USE_DOCKER\"] = \"False\"\n",
"config_list = config_list_from_json(env_or_file=\"OAI_CONFIG_LIST\")\n",
"\n",
"\n",
"def check_termination(msg: Dict):\n",
" if \"tool_responses\" not in msg:\n",
" return False\n",
" json_str = msg[\"tool_responses\"][0][\"content\"]\n",
" obj = json.loads(json_str)\n",
" return \"error\" not in obj or obj[\"error\"] is None and obj[\"reward\"] == 1\n",
"\n",
"\n",
"sql_writer = ConversableAgent(\n",
" \"sql_writer\",\n",
" llm_config={\"config_list\": config_list},\n",
" system_message=\"You are good at writing SQL queries. Always respond with a function call to execute_sql().\",\n",
" is_termination_msg=check_termination,\n",
")\n",
"user_proxy = UserProxyAgent(\"user_proxy\", human_input_mode=\"NEVER\", max_consecutive_auto_reply=5)\n",
"\n",
"\n",
"@sql_writer.register_for_llm(description=\"Function for executing SQL query and returning a response\")\n",
"@user_proxy.register_for_execution()\n",
"def execute_sql(\n",
" reflection: Annotated[str, \"Think about what to do\"], sql: Annotated[str, \"SQL query\"]\n",
") -> Annotated[Dict[str, str], \"Dictionary with keys 'result' and 'error'\"]:\n",
" observation, reward, _, _, info = gym.step(sql)\n",
" error = observation[\"feedback\"][\"error\"]\n",
" if not error and reward == 0:\n",
" error = \"The SQL query returned an incorrect result\"\n",
" if error:\n",
" return {\n",
" \"error\": error,\n",
" \"wrong_result\": observation[\"feedback\"][\"result\"],\n",
" \"correct_result\": info[\"gold_result\"],\n",
" }\n",
" else:\n",
" return {\n",
" \"result\": observation[\"feedback\"][\"result\"],\n",
" }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The agent can then take as input the schema and the text question, and generate the SQL query."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33muser_proxy\u001b[0m (to sql_writer):\n",
"\n",
"Below is the schema for a SQL database:\n",
"CREATE TABLE \"artist\" (\n",
"\"Artist_ID\" int,\n",
"\"Artist\" text,\n",
"\"Age\" int,\n",
"\"Famous_Title\" text,\n",
"\"Famous_Release_date\" text,\n",
"PRIMARY KEY (\"Artist_ID\")\n",
");\n",
"CREATE TABLE \"volume\" (\n",
"\"Volume_ID\" int,\n",
"\"Volume_Issue\" text,\n",
"\"Issue_Date\" text,\n",
"\"Weeks_on_Top\" real,\n",
"\"Song\" text,\n",
"\"Artist_ID\" int,\n",
"PRIMARY KEY (\"Volume_ID\"),\n",
"FOREIGN KEY (\"Artist_ID\") REFERENCES \"artist\"(\"Artist_ID\")\n",
");\n",
"CREATE TABLE \"music_festival\" (\n",
"\"ID\" int,\n",
"\"Music_Festival\" text,\n",
"\"Date_of_ceremony\" text,\n",
"\"Category\" text,\n",
"\"Volume\" int,\n",
"\"Result\" text,\n",
"PRIMARY KEY (\"ID\"),\n",
"FOREIGN KEY (\"Volume\") REFERENCES \"volume\"(\"Volume_ID\")\n",
");\n",
"\n",
"Generate a SQL query to answer the following question:\n",
"Find the famous titles of artists that do not have any volume.\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
"\u001b[33msql_writer\u001b[0m (to user_proxy):\n",
"\n",
"\u001b[32m***** Suggested tool Call (call_eAu0OEzS8l3QvN3jQSn4w0hJ): execute_sql *****\u001b[0m\n",
"Arguments: \n",
"{\"reflection\":\"Generating SQL to find famous titles of artists without any volume\",\"sql\":\"SELECT a.Artist, a.Famous_Title FROM artist a WHERE NOT EXISTS (SELECT 1 FROM volume v WHERE v.Artist_ID = a.Artist_ID)\"}\n",
"\u001b[32m****************************************************************************\u001b[0m\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[35m\n",
">>>>>>>> EXECUTING FUNCTION execute_sql...\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to sql_writer):\n",
"\n",
"\u001b[33muser_proxy\u001b[0m (to sql_writer):\n",
"\n",
"\u001b[32m***** Response from calling tool \"call_eAu0OEzS8l3QvN3jQSn4w0hJ\" *****\u001b[0m\n",
"{\"error\": \"The SQL query returned an incorrect result\", \"wrong_result\": [[\"Ophiolatry\", \"Antievangelistical Process (re-release)\"], [\"Triumfall\", \"Antithesis of All Flesh\"]], \"correct_result\": [[\"Antievangelistical Process (re-release)\"], [\"Antithesis of All Flesh\"]]}\n",
"\u001b[32m**********************************************************************\u001b[0m\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
"\u001b[33msql_writer\u001b[0m (to user_proxy):\n",
"\n",
"\u001b[32m***** Suggested tool Call (call_5LXoKqdZ17kPCOHJbbpSz2yk): execute_sql *****\u001b[0m\n",
"Arguments: \n",
"{\"reflection\":\"Adjusting SQL to only select famous titles and exclude artist names for artists without any volume.\",\"sql\":\"SELECT a.Famous_Title FROM artist a WHERE NOT EXISTS (SELECT 1 FROM volume v WHERE v.Artist_ID = a.Artist_ID)\"}\n",
"\u001b[32m****************************************************************************\u001b[0m\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[35m\n",
">>>>>>>> EXECUTING FUNCTION execute_sql...\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to sql_writer):\n",
"\n",
"\u001b[33muser_proxy\u001b[0m (to sql_writer):\n",
"\n",
"\u001b[32m***** Response from calling tool \"call_5LXoKqdZ17kPCOHJbbpSz2yk\" *****\u001b[0m\n",
"{\"result\": [[\"Antievangelistical Process (re-release)\"], [\"Antithesis of All Flesh\"]]}\n",
"\u001b[32m**********************************************************************\u001b[0m\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n"
]
}
],
"source": [
"message = f\"\"\"Below is the schema for a SQL database:\n",
"{schema}\n",
"Generate a SQL query to answer the following question:\n",
"{question}\n",
"\"\"\"\n",
"\n",
"user_proxy.initiate_chat(sql_writer, message=message)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}