mirror of https://github.com/microsoft/autogen.git
620 lines
27 KiB
Python
620 lines
27 KiB
Python
import json
|
|
import os
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import pytest
|
|
|
|
try:
|
|
import google.auth
|
|
from google.api_core.exceptions import InternalServerError
|
|
from google.auth.credentials import Credentials
|
|
from google.cloud.aiplatform.initializer import global_config as vertexai_global_config
|
|
from vertexai.generative_models import HarmBlockThreshold as VertexAIHarmBlockThreshold
|
|
from vertexai.generative_models import HarmCategory as VertexAIHarmCategory
|
|
from vertexai.generative_models import Part as VertexAIPart
|
|
from vertexai.generative_models import SafetySetting as VertexAISafetySetting
|
|
from vertexai.generative_models import ToolConfig as VertexAIToolConfig
|
|
|
|
from autogen.oai.gemini import GeminiClient
|
|
|
|
skip = False
|
|
except ImportError:
|
|
GeminiClient = object
|
|
VertexAIHarmBlockThreshold = object
|
|
VertexAIHarmCategory = object
|
|
VertexAISafetySetting = object
|
|
VertexAIPart = object
|
|
VertexAIToolConfig = object
|
|
vertexai_global_config = object
|
|
InternalServerError = object
|
|
skip = True
|
|
|
|
|
|
# Fixtures for mock data
|
|
@pytest.fixture
|
|
def mock_response():
|
|
class MockResponse:
|
|
def __init__(self, text, choices, usage, cost, model):
|
|
self.text = text
|
|
self.choices = choices
|
|
self.usage = usage
|
|
self.cost = cost
|
|
self.model = model
|
|
|
|
return MockResponse
|
|
|
|
|
|
@pytest.fixture
|
|
def gemini_client():
|
|
system_message = [
|
|
"You are a helpful AI assistant.",
|
|
]
|
|
return GeminiClient(api_key="fake_api_key", system_message=system_message)
|
|
|
|
|
|
@pytest.fixture
|
|
def gemini_google_auth_default_client():
|
|
system_message = [
|
|
"You are a helpful AI assistant.",
|
|
]
|
|
return GeminiClient(system_message=system_message)
|
|
|
|
|
|
@pytest.fixture
|
|
def gemini_client_with_credentials():
|
|
mock_credentials = MagicMock(Credentials)
|
|
return GeminiClient(credentials=mock_credentials)
|
|
|
|
|
|
# Test compute location initialization and configuration
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_compute_location_initialization():
|
|
with pytest.raises(AssertionError):
|
|
GeminiClient(
|
|
api_key="fake_api_key", location="us-west1"
|
|
) # Should raise an AssertionError due to specifying API key and compute location
|
|
|
|
|
|
# Test project initialization and configuration
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_project_initialization():
|
|
with pytest.raises(AssertionError):
|
|
GeminiClient(
|
|
api_key="fake_api_key", project_id="fake-project-id"
|
|
) # Should raise an AssertionError due to specifying API key and compute location
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_valid_initialization(gemini_client):
|
|
assert gemini_client.api_key == "fake_api_key", "API Key should be correctly set"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_google_application_credentials_initialization():
|
|
GeminiClient(google_application_credentials="credentials.json", project_id="fake-project-id")
|
|
assert (
|
|
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] == "credentials.json"
|
|
), "Incorrect Google Application Credentials initialization"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_vertexai_initialization():
|
|
mock_credentials = MagicMock(Credentials)
|
|
GeminiClient(credentials=mock_credentials, project_id="fake-project-id", location="us-west1")
|
|
assert vertexai_global_config.location == "us-west1", "Incorrect VertexAI location initialization"
|
|
assert vertexai_global_config.project == "fake-project-id", "Incorrect VertexAI project initialization"
|
|
assert vertexai_global_config.credentials == mock_credentials, "Incorrect VertexAI credentials initialization"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_gemini_message_handling(gemini_client):
|
|
messages = [
|
|
{"role": "system", "content": "You are my personal assistant."},
|
|
{"role": "model", "content": "How can I help you?"},
|
|
{"role": "user", "content": "Which planet is the nearest to the sun?"},
|
|
{"role": "user", "content": "Which planet is the farthest from the sun?"},
|
|
{"role": "model", "content": "Mercury is the closest palnet to the sun."},
|
|
{"role": "model", "content": "Neptune is the farthest palnet from the sun."},
|
|
{"role": "user", "content": "How can we determine the mass of a black hole?"},
|
|
]
|
|
|
|
# The datastructure below defines what the structure of the messages
|
|
# should resemble after converting to Gemini format.
|
|
# Messages of similar roles are expected to be merged to a single message,
|
|
# where the contents of the original messages will be included in
|
|
# consecutive parts of the converted Gemini message
|
|
expected_gemini_struct = [
|
|
# system role is converted to user role
|
|
{"role": "user", "parts": ["You are my personal assistant."]},
|
|
{"role": "model", "parts": ["How can I help you?"]},
|
|
{
|
|
"role": "user",
|
|
"parts": ["Which planet is the nearest to the sun?", "Which planet is the farthest from the sun?"],
|
|
},
|
|
{
|
|
"role": "model",
|
|
"parts": ["Mercury is the closest palnet to the sun.", "Neptune is the farthest palnet from the sun."],
|
|
},
|
|
{"role": "user", "parts": ["How can we determine the mass of a black hole?"]},
|
|
]
|
|
|
|
converted_messages = gemini_client._oai_messages_to_gemini_messages(messages)
|
|
|
|
assert len(converted_messages) == len(expected_gemini_struct), "The number of messages is not as expected"
|
|
|
|
for i, expected_msg in enumerate(expected_gemini_struct):
|
|
assert expected_msg["role"] == converted_messages[i].role, "Incorrect mapped message role"
|
|
for j, part in enumerate(expected_msg["parts"]):
|
|
assert converted_messages[i].parts[j].text == part, "Incorrect mapped message text"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_gemini_empty_message_handling(gemini_client):
|
|
messages = [
|
|
{"role": "system", "content": "You are my personal assistant."},
|
|
{"role": "model", "content": "How can I help you?"},
|
|
{"role": "user", "content": ""},
|
|
{
|
|
"role": "model",
|
|
"content": "Please provide me with some context or a request! I need more information to assist you.",
|
|
},
|
|
{"role": "user", "content": ""},
|
|
]
|
|
|
|
converted_messages = gemini_client._oai_messages_to_gemini_messages(messages)
|
|
assert converted_messages[-3].parts[0].text == "empty", "Empty message is not converted to 'empty' correctly"
|
|
assert converted_messages[-1].parts[0].text == "empty", "Empty message is not converted to 'empty' correctly"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_vertexai_safety_setting_conversion(gemini_client):
|
|
safety_settings = [
|
|
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_ONLY_HIGH"},
|
|
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_ONLY_HIGH"},
|
|
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_ONLY_HIGH"},
|
|
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_ONLY_HIGH"},
|
|
]
|
|
converted_safety_settings = GeminiClient._to_vertexai_safety_settings(safety_settings)
|
|
harm_categories = [
|
|
VertexAIHarmCategory.HARM_CATEGORY_HARASSMENT,
|
|
VertexAIHarmCategory.HARM_CATEGORY_HATE_SPEECH,
|
|
VertexAIHarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
|
|
VertexAIHarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
|
|
]
|
|
expected_safety_settings = [
|
|
VertexAISafetySetting(category=category, threshold=VertexAIHarmBlockThreshold.BLOCK_ONLY_HIGH)
|
|
for category in harm_categories
|
|
]
|
|
|
|
def compare_safety_settings(converted_safety_settings, expected_safety_settings):
|
|
for i, expected_setting in enumerate(expected_safety_settings):
|
|
converted_setting = converted_safety_settings[i]
|
|
yield expected_setting.to_dict() == converted_setting.to_dict()
|
|
|
|
assert len(converted_safety_settings) == len(
|
|
expected_safety_settings
|
|
), "The length of the safety settings is incorrect"
|
|
settings_comparison = compare_safety_settings(converted_safety_settings, expected_safety_settings)
|
|
assert all(settings_comparison), "Converted safety settings are incorrect"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_vertexai_default_safety_settings_dict(gemini_client):
|
|
safety_settings = {
|
|
VertexAIHarmCategory.HARM_CATEGORY_HARASSMENT: VertexAIHarmBlockThreshold.BLOCK_ONLY_HIGH,
|
|
VertexAIHarmCategory.HARM_CATEGORY_HATE_SPEECH: VertexAIHarmBlockThreshold.BLOCK_ONLY_HIGH,
|
|
VertexAIHarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: VertexAIHarmBlockThreshold.BLOCK_ONLY_HIGH,
|
|
VertexAIHarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: VertexAIHarmBlockThreshold.BLOCK_ONLY_HIGH,
|
|
}
|
|
converted_safety_settings = GeminiClient._to_vertexai_safety_settings(safety_settings)
|
|
|
|
expected_safety_settings = {
|
|
category: VertexAIHarmBlockThreshold.BLOCK_ONLY_HIGH for category in safety_settings.keys()
|
|
}
|
|
|
|
def compare_safety_settings(converted_safety_settings, expected_safety_settings):
|
|
for expected_setting_key in expected_safety_settings.keys():
|
|
expected_setting = expected_safety_settings[expected_setting_key]
|
|
converted_setting = converted_safety_settings[expected_setting_key]
|
|
yield expected_setting == converted_setting
|
|
|
|
assert len(converted_safety_settings) == len(
|
|
expected_safety_settings
|
|
), "The length of the safety settings is incorrect"
|
|
settings_comparison = compare_safety_settings(converted_safety_settings, expected_safety_settings)
|
|
assert all(settings_comparison), "Converted safety settings are incorrect"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_vertexai_safety_setting_list(gemini_client):
|
|
harm_categories = [
|
|
VertexAIHarmCategory.HARM_CATEGORY_HARASSMENT,
|
|
VertexAIHarmCategory.HARM_CATEGORY_HATE_SPEECH,
|
|
VertexAIHarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
|
|
VertexAIHarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
|
|
]
|
|
|
|
expected_safety_settings = safety_settings = [
|
|
VertexAISafetySetting(category=category, threshold=VertexAIHarmBlockThreshold.BLOCK_ONLY_HIGH)
|
|
for category in harm_categories
|
|
]
|
|
|
|
converted_safety_settings = GeminiClient._to_vertexai_safety_settings(safety_settings)
|
|
|
|
def compare_safety_settings(converted_safety_settings, expected_safety_settings):
|
|
for i, expected_setting in enumerate(expected_safety_settings):
|
|
converted_setting = converted_safety_settings[i]
|
|
yield expected_setting.to_dict() == converted_setting.to_dict()
|
|
|
|
assert len(converted_safety_settings) == len(
|
|
expected_safety_settings
|
|
), "The length of the safety settings is incorrect"
|
|
settings_comparison = compare_safety_settings(converted_safety_settings, expected_safety_settings)
|
|
assert all(settings_comparison), "Converted safety settings are incorrect"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_vertexai_tool_config(gemini_client):
|
|
|
|
tools = [{"function_name": "calculator"}]
|
|
|
|
tool_config = {"function_calling_config": {"mode": "ANY"}}
|
|
|
|
expected_tool_config = VertexAIToolConfig(
|
|
function_calling_config=VertexAIToolConfig.FunctionCallingConfig(
|
|
mode=VertexAIToolConfig.FunctionCallingConfig.Mode.ANY,
|
|
allowed_function_names=["calculator"],
|
|
)
|
|
)
|
|
|
|
converted_tool_config = GeminiClient._to_vertexai_tool_config(tool_config, tools)
|
|
|
|
converted_mode = converted_tool_config._gapic_tool_config.function_calling_config.mode
|
|
expected_mode = expected_tool_config._gapic_tool_config.function_calling_config.mode
|
|
converted_allowed_func = converted_tool_config._gapic_tool_config.function_calling_config.allowed_function_names
|
|
expected_allowed_func = expected_tool_config._gapic_tool_config.function_calling_config.allowed_function_names
|
|
|
|
assert converted_mode == expected_mode, "Function calling mode is not converted correctly"
|
|
assert (
|
|
converted_allowed_func == expected_allowed_func
|
|
), "Function calling allowed function names is not converted correctly"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_vertexai_tool_config_no_functions(gemini_client):
|
|
|
|
tools = []
|
|
|
|
tool_config = {"function_calling_config": {"mode": "ANY"}}
|
|
|
|
expected_tool_config = VertexAIToolConfig(
|
|
function_calling_config=VertexAIToolConfig.FunctionCallingConfig(
|
|
mode=VertexAIToolConfig.FunctionCallingConfig.Mode.ANY,
|
|
)
|
|
)
|
|
|
|
converted_tool_config = GeminiClient._to_vertexai_tool_config(tool_config, tools)
|
|
|
|
converted_mode = converted_tool_config._gapic_tool_config.function_calling_config.mode
|
|
expected_mode = expected_tool_config._gapic_tool_config.function_calling_config.mode
|
|
converted_allowed_func = converted_tool_config._gapic_tool_config.function_calling_config.allowed_function_names
|
|
expected_allowed_func = expected_tool_config._gapic_tool_config.function_calling_config.allowed_function_names
|
|
|
|
assert converted_mode == expected_mode, "Function calling mode is not converted correctly"
|
|
assert (
|
|
converted_allowed_func == expected_allowed_func
|
|
), "Function calling allowed function names is not converted correctly"
|
|
|
|
|
|
# Test error handling
|
|
@patch("autogen.oai.gemini.genai")
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_internal_server_error_retry(mock_genai, gemini_client):
|
|
mock_genai.GenerativeModel.side_effect = [InternalServerError("Test Error"), None] # First call fails
|
|
# Mock successful response
|
|
mock_chat = MagicMock()
|
|
mock_chat.send_message.return_value = "Successful response"
|
|
mock_genai.GenerativeModel.return_value.start_chat.return_value = mock_chat
|
|
|
|
with patch.object(gemini_client, "create", return_value="Retried Successfully"):
|
|
response = gemini_client.create({"model": "gemini-pro", "messages": [{"content": "Hello"}]})
|
|
assert response == "Retried Successfully", "Should retry on InternalServerError"
|
|
|
|
|
|
# Test cost calculation
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
def test_cost_calculation(gemini_client, mock_response):
|
|
response = mock_response(
|
|
text="Example response",
|
|
choices=[{"message": "Test message 1"}],
|
|
usage={"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15},
|
|
cost=0.01,
|
|
model="gemini-pro",
|
|
)
|
|
assert gemini_client.cost(response) > 0, "Cost should be correctly calculated as zero"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
@patch("autogen.oai.gemini.Content")
|
|
@patch("autogen.oai.gemini.genai.GenerativeModel")
|
|
@patch("autogen.oai.gemini.genai.configure")
|
|
def test_create_response(mock_configure, mock_generative_model, mock_content, gemini_client):
|
|
# Mock the genai model configuration and creation process
|
|
mock_chat = MagicMock()
|
|
mock_model = MagicMock()
|
|
mock_configure.return_value = None
|
|
mock_generative_model.return_value = mock_model
|
|
mock_model.start_chat.return_value = mock_chat
|
|
|
|
# Set up a mock for the chat history item access and the text attribute return
|
|
mock_history_part = MagicMock()
|
|
mock_history_part.text = "Example response"
|
|
mock_history_part.function_call = None
|
|
mock_chat.history.__getitem__.return_value.parts.__iter__.return_value = iter([mock_history_part])
|
|
mock_chat.history.__getitem__.return_value.parts.__getitem__.return_value = mock_history_part
|
|
|
|
# Setup the mock to return a mocked chat response
|
|
mock_chat.send_message.return_value = MagicMock(history=[MagicMock(parts=[MagicMock(text="Example response")])])
|
|
|
|
# Call the create method
|
|
response = gemini_client.create(
|
|
{"model": "gemini-pro", "messages": [{"content": "Hello", "role": "user"}], "stream": False}
|
|
)
|
|
|
|
# Assertions to check if response is structured as expected
|
|
assert response.choices[0].message.content == "Example response", "Response content should match expected output"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
@patch("autogen.oai.gemini.Part")
|
|
@patch("autogen.oai.gemini.Content")
|
|
@patch("autogen.oai.gemini.genai.GenerativeModel")
|
|
@patch("autogen.oai.gemini.genai.configure")
|
|
def test_create_function_call_response(mock_configure, mock_generative_model, mock_content, mock_part, gemini_client):
|
|
# Mock the genai model configuration and creation process
|
|
mock_chat = MagicMock()
|
|
mock_model = MagicMock()
|
|
mock_configure.return_value = None
|
|
mock_generative_model.return_value = mock_model
|
|
mock_model.start_chat.return_value = mock_chat
|
|
|
|
mock_part.to_dict.return_value = {
|
|
"function_call": {"name": "function_name", "args": {"arg1": "value1", "arg2": "value2"}}
|
|
}
|
|
|
|
# Set up a mock for the chat history item access and the text attribute return
|
|
mock_history_part = MagicMock()
|
|
mock_history_part.text = None
|
|
mock_history_part.function_call.name = "function_name"
|
|
mock_history_part.function_call.args = {"arg1": "value1", "arg2": "value2"}
|
|
mock_chat.history.__getitem__.return_value.parts.__iter__.return_value = iter([mock_history_part])
|
|
|
|
# Setup the mock to return a mocked chat response
|
|
mock_chat.send_message.return_value = MagicMock(
|
|
history=[
|
|
MagicMock(
|
|
parts=[
|
|
MagicMock(
|
|
function_call=MagicMock(name="function_name", arguments='{"arg1": "value1", "arg2": "value2"}')
|
|
)
|
|
]
|
|
)
|
|
]
|
|
)
|
|
|
|
# Call the create method
|
|
response = gemini_client.create(
|
|
{"model": "gemini-pro", "messages": [{"content": "Hello", "role": "user"}], "stream": False}
|
|
)
|
|
|
|
# Assertions to check if response is structured as expected
|
|
assert (
|
|
response.choices[0].message.tool_calls[0].function.name == "function_name"
|
|
and json.loads(response.choices[0].message.tool_calls[0].function.arguments)["arg1"] == "value1"
|
|
), "Response content should match expected output"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
@patch("autogen.oai.gemini.GenerativeModel")
|
|
@patch("autogen.oai.gemini.vertexai.init")
|
|
def test_vertexai_create_response(mock_init, mock_generative_model, gemini_client_with_credentials):
|
|
# Mock the genai model configuration and creation process
|
|
mock_chat = MagicMock()
|
|
mock_model = MagicMock()
|
|
mock_init.return_value = None
|
|
mock_generative_model.return_value = mock_model
|
|
mock_model.start_chat.return_value = mock_chat
|
|
|
|
# Set up a mock for the chat history item access and the text attribute return
|
|
mock_history_part = MagicMock()
|
|
mock_history_part.text = "Example response"
|
|
mock_history_part.function_call = None
|
|
mock_history_part.role = "model"
|
|
mock_chat.history.__getitem__.return_value.parts.__iter__.return_value = iter([mock_history_part])
|
|
|
|
# Setup the mock to return a mocked chat response
|
|
mock_chat.send_message.return_value = MagicMock(history=[MagicMock(parts=[MagicMock(text="Example response")])])
|
|
|
|
# Call the create method
|
|
response = gemini_client_with_credentials.create(
|
|
{"model": "gemini-pro", "messages": [{"content": "Hello", "role": "user"}], "stream": False}
|
|
)
|
|
|
|
assert response.choices[0].message.content == "Example response", "Response content should match expected output"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
@patch("autogen.oai.gemini.VertexAIPart")
|
|
@patch("autogen.oai.gemini.VertexAIContent")
|
|
@patch("autogen.oai.gemini.GenerativeModel")
|
|
@patch("autogen.oai.gemini.vertexai.init")
|
|
def test_vertexai_create_function_call_response(
|
|
mock_init, mock_generative_model, mock_content, mock_part, gemini_client_with_credentials
|
|
):
|
|
# Mock the genai model configuration and creation process
|
|
mock_chat = MagicMock()
|
|
mock_model = MagicMock()
|
|
mock_init.return_value = None
|
|
mock_generative_model.return_value = mock_model
|
|
mock_model.start_chat.return_value = mock_chat
|
|
|
|
mock_part.to_dict.return_value = {
|
|
"function_call": {"name": "function_name", "args": {"arg1": "value1", "arg2": "value2"}}
|
|
}
|
|
|
|
# Set up a mock for the chat history item access and the text attribute return
|
|
mock_history_part = MagicMock()
|
|
mock_history_part.text = None
|
|
mock_history_part.function_call.name = "function_name"
|
|
mock_history_part.function_call.args = {"arg1": "value1", "arg2": "value2"}
|
|
mock_chat.history.__getitem__.return_value.parts.__iter__.return_value = iter([mock_history_part])
|
|
|
|
# Setup the mock to return a mocked chat response
|
|
mock_chat.send_message.return_value = MagicMock(
|
|
history=[
|
|
MagicMock(
|
|
parts=[
|
|
MagicMock(
|
|
function_call=MagicMock(name="function_name", arguments='{"arg1": "value1", "arg2": "value2"}')
|
|
)
|
|
]
|
|
)
|
|
]
|
|
)
|
|
|
|
# Call the create method
|
|
response = gemini_client_with_credentials.create(
|
|
{"model": "gemini-pro", "messages": [{"content": "Hello", "role": "user"}], "stream": False}
|
|
)
|
|
|
|
# Assertions to check if response is structured as expected
|
|
assert (
|
|
response.choices[0].message.tool_calls[0].function.name == "function_name"
|
|
and json.loads(response.choices[0].message.tool_calls[0].function.arguments)["arg1"] == "value1"
|
|
), "Response content should match expected output"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
@patch("autogen.oai.gemini.GenerativeModel")
|
|
@patch("autogen.oai.gemini.vertexai.init")
|
|
def test_vertexai_default_auth_create_response(mock_init, mock_generative_model, gemini_google_auth_default_client):
|
|
# Mock the genai model configuration and creation process
|
|
mock_chat = MagicMock()
|
|
mock_model = MagicMock()
|
|
mock_init.return_value = None
|
|
mock_generative_model.return_value = mock_model
|
|
mock_model.start_chat.return_value = mock_chat
|
|
|
|
# Set up a mock for the chat history item access and the text attribute return
|
|
mock_history_part = MagicMock()
|
|
mock_history_part.text = "Example response"
|
|
mock_history_part.function_call = None
|
|
mock_chat.history.__getitem__.return_value.parts.__iter__.return_value = iter([mock_history_part])
|
|
mock_chat.history.__getitem__.return_value.parts.__getitem__.return_value = mock_history_part
|
|
|
|
# Setup the mock to return a mocked chat response
|
|
mock_chat.send_message.return_value = MagicMock(history=[MagicMock(parts=[MagicMock(text="Example response")])])
|
|
|
|
# Call the create method
|
|
response = gemini_google_auth_default_client.create(
|
|
{"model": "gemini-pro", "messages": [{"content": "Hello", "role": "user"}], "stream": False}
|
|
)
|
|
|
|
# Assertions to check if response is structured as expected
|
|
assert response.choices[0].message.content == "Example response", "Response content should match expected output"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
@patch("autogen.oai.gemini.genai.GenerativeModel")
|
|
@patch("autogen.oai.gemini.genai.configure")
|
|
def test_create_vision_model_response(mock_configure, mock_generative_model, gemini_client):
|
|
# Mock the genai model configuration and creation process
|
|
mock_model = MagicMock()
|
|
mock_configure.return_value = None
|
|
mock_generative_model.return_value = mock_model
|
|
|
|
# Set up a mock to simulate the vision model behavior
|
|
mock_vision_response = MagicMock()
|
|
mock_vision_part = MagicMock(text="Vision model output", function_call=None)
|
|
|
|
# Setting up the chain of return values for vision model response
|
|
mock_vision_response._result.candidates.__getitem__.return_value.content.parts.__iter__.return_value = iter(
|
|
[mock_vision_part]
|
|
)
|
|
mock_model.generate_content.return_value = mock_vision_response
|
|
|
|
# Call the create method with vision model parameters
|
|
response = gemini_client.create(
|
|
{
|
|
"model": "gemini-pro-vision", # Vision model name
|
|
"messages": [
|
|
{
|
|
"content": [
|
|
{"type": "text", "text": "Let's play a game."},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": ""
|
|
},
|
|
},
|
|
],
|
|
"role": "user",
|
|
}
|
|
], # Assuming a simple content input for vision
|
|
"stream": False,
|
|
}
|
|
)
|
|
|
|
# Assertions to check if response is structured as expected
|
|
assert (
|
|
response.choices[0].message.content == "Vision model output"
|
|
), "Response content should match expected output from vision model"
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
|
@patch("autogen.oai.gemini.GenerativeModel")
|
|
@patch("autogen.oai.gemini.vertexai.init")
|
|
def test_vertexai_create_vision_model_response(mock_init, mock_generative_model, gemini_google_auth_default_client):
|
|
# Mock the genai model configuration and creation process
|
|
mock_model = MagicMock()
|
|
mock_init.return_value = None
|
|
mock_generative_model.return_value = mock_model
|
|
|
|
# Set up a mock to simulate the vision model behavior
|
|
mock_vision_response = MagicMock()
|
|
mock_vision_part = MagicMock(text="Vision model output", function_call=None)
|
|
|
|
# Setting up the chain of return values for vision model response
|
|
mock_vision_response.candidates.__getitem__.return_value.content.parts.__iter__.return_value = iter(
|
|
[mock_vision_part]
|
|
)
|
|
|
|
mock_model.generate_content.return_value = mock_vision_response
|
|
|
|
# Call the create method with vision model parameters
|
|
response = gemini_google_auth_default_client.create(
|
|
{
|
|
"model": "gemini-pro-vision", # Vision model name
|
|
"messages": [
|
|
{
|
|
"content": [
|
|
{"type": "text", "text": "Let's play a game."},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": ""
|
|
},
|
|
},
|
|
],
|
|
"role": "user",
|
|
}
|
|
], # Assuming a simple content input for vision
|
|
"stream": False,
|
|
}
|
|
)
|
|
|
|
# Assertions to check if response is structured as expected
|
|
assert (
|
|
response.choices[0].message.content == "Vision model output"
|
|
), "Response content should match expected output from vision model"
|