autogen/test/oai/test_client.py

398 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3 -m pytest
import os
import shutil
import sys
import time
from types import SimpleNamespace
import pytest
from autogen import OpenAIWrapper, config_list_from_json
from autogen.cache.cache import Cache
from autogen.oai.client import LEGACY_CACHE_DIR, LEGACY_DEFAULT_CACHE_SEED
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from conftest import skip_openai # noqa: E402
TOOL_ENABLED = False
try:
import openai
from openai import OpenAI
if openai.__version__ >= "1.1.0":
TOOL_ENABLED = True
from openai.types.chat.chat_completion import ChatCompletionMessage
except ImportError:
skip = True
else:
skip = False or skip_openai
KEY_LOC = "notebook"
OAI_CONFIG_LIST = "OAI_CONFIG_LIST"
class _MockClient:
def __init__(self, config, **kwargs):
pass
def create(self, params):
# can create my own data response class
# here using SimpleNamespace for simplicity
# as long as it adheres to the ModelClientResponseProtocol
response = SimpleNamespace()
response.choices = []
response.model = "mock_model"
text = "this is a dummy text response"
choice = SimpleNamespace()
choice.message = SimpleNamespace()
choice.message.content = text
choice.message.function_call = None
response.choices.append(choice)
return response
def message_retrieval(self, response):
choices = response.choices
return [choice.message.content for choice in choices]
def cost(self, response) -> float:
response.cost = 0
return 0
@staticmethod
def get_usage(response):
return {}
# @pytest.mark.skipif(skip, reason="openai>=1 not installed")
@pytest.mark.skip(reason="This test is not working until Azure settings are updated")
def test_aoai_chat_completion():
config_list = config_list_from_json(
env_or_file=OAI_CONFIG_LIST,
file_location=KEY_LOC,
filter_dict={"api_type": ["azure"], "tags": ["gpt-3.5-turbo"]},
)
client = OpenAIWrapper(config_list=config_list)
response = client.create(messages=[{"role": "user", "content": "2+2="}], cache_seed=None)
print(response)
print(client.extract_text_or_completion_object(response))
# test dialect
config = config_list[0]
config["azure_deployment"] = config["model"]
config["azure_endpoint"] = config.pop("base_url")
client = OpenAIWrapper(**config)
response = client.create(messages=[{"role": "user", "content": "2+2="}], cache_seed=None)
print(response)
print(client.extract_text_or_completion_object(response))
# @pytest.mark.skipif(skip or not TOOL_ENABLED, reason="openai>=1.1.0 not installed")
@pytest.mark.skip(reason="This test is not working until Azure settings are updated")
def test_oai_tool_calling_extraction():
config_list = config_list_from_json(
env_or_file=OAI_CONFIG_LIST,
file_location=KEY_LOC,
filter_dict={"api_type": ["azure"], "tags": ["gpt-3.5-turbo"]},
)
client = OpenAIWrapper(config_list=config_list)
response = client.create(
messages=[
{
"role": "user",
"content": "What is the weather in San Francisco?",
},
],
tools=[
{
"type": "function",
"function": {
"name": "getCurrentWeather",
"description": "Get the weather in location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
"unit": {"type": "string", "enum": ["c", "f"]},
},
"required": ["location"],
},
},
}
],
)
print(response)
print(client.extract_text_or_completion_object(response))
@pytest.mark.skipif(skip, reason="openai>=1 not installed")
def test_chat_completion():
config_list = config_list_from_json(
env_or_file=OAI_CONFIG_LIST,
file_location=KEY_LOC,
)
client = OpenAIWrapper(config_list=config_list)
response = client.create(messages=[{"role": "user", "content": "1+1="}])
print(response)
print(client.extract_text_or_completion_object(response))
@pytest.mark.skipif(skip, reason="openai>=1 not installed")
def test_completion():
config_list = config_list_from_json(
env_or_file=OAI_CONFIG_LIST,
file_location=KEY_LOC,
filter_dict={"tags": ["gpt-35-turbo-instruct", "gpt-3.5-turbo-instruct"]},
)
client = OpenAIWrapper(config_list=config_list)
response = client.create(prompt="1+1=")
print(response)
print(client.extract_text_or_completion_object(response))
@pytest.mark.skipif(skip, reason="openai>=1 not installed")
@pytest.mark.parametrize(
"cache_seed",
[
None,
42,
],
)
def test_cost(cache_seed):
config_list = config_list_from_json(
env_or_file=OAI_CONFIG_LIST,
file_location=KEY_LOC,
filter_dict={"tags": ["gpt-35-turbo-instruct", "gpt-3.5-turbo-instruct"]},
)
client = OpenAIWrapper(config_list=config_list, cache_seed=cache_seed)
response = client.create(prompt="1+3=")
print(response.cost)
@pytest.mark.skipif(skip, reason="openai>=1 not installed")
def test_customized_cost():
config_list = config_list_from_json(
env_or_file=OAI_CONFIG_LIST, file_location=KEY_LOC, filter_dict={"tags": ["gpt-3.5-turbo-instruct"]}
)
for config in config_list:
config.update({"price": [1000, 1000]})
client = OpenAIWrapper(config_list=config_list, cache_seed=None)
response = client.create(prompt="1+3=")
assert (
response.cost >= 4
), f"Due to customized pricing, cost should be > 4. Message: {response.choices[0].message.content}"
@pytest.mark.skipif(skip, reason="openai>=1 not installed")
def test_usage_summary():
config_list = config_list_from_json(
env_or_file=OAI_CONFIG_LIST,
file_location=KEY_LOC,
filter_dict={"tags": ["gpt-35-turbo-instruct", "gpt-3.5-turbo-instruct"]},
)
client = OpenAIWrapper(config_list=config_list)
response = client.create(prompt="1+3=", cache_seed=None)
# usage should be recorded
assert client.actual_usage_summary["total_cost"] > 0, "total_cost should be greater than 0"
assert client.total_usage_summary["total_cost"] > 0, "total_cost should be greater than 0"
# check print
client.print_usage_summary()
# check clear
client.clear_usage_summary()
assert client.actual_usage_summary is None, "actual_usage_summary should be None"
assert client.total_usage_summary is None, "total_usage_summary should be None"
# actual usage and all usage should be different
response = client.create(prompt="1+3=", cache_seed=42)
assert client.total_usage_summary["total_cost"] > 0, "total_cost should be greater than 0"
client.clear_usage_summary()
response = client.create(prompt="1+3=", cache_seed=42)
assert client.actual_usage_summary is None, "No actual cost should be recorded"
# check update
response = client.create(prompt="1+3=", cache_seed=42)
assert (
client.total_usage_summary["total_cost"] == response.cost * 2
), "total_cost should be equal to response.cost * 2"
@pytest.mark.skipif(skip, reason="openai>=1 not installed")
def test_legacy_cache():
config_list = config_list_from_json(
env_or_file=OAI_CONFIG_LIST,
file_location=KEY_LOC,
filter_dict={"tags": ["gpt-3.5-turbo"]},
)
# Prompt to use for testing.
prompt = "Write a 100 word summary on the topic of the history of human civilization."
# Clear cache.
if os.path.exists(LEGACY_CACHE_DIR):
shutil.rmtree(LEGACY_CACHE_DIR)
# Test default cache seed.
client = OpenAIWrapper(config_list=config_list)
start_time = time.time()
cold_cache_response = client.create(messages=[{"role": "user", "content": prompt}])
end_time = time.time()
duration_with_cold_cache = end_time - start_time
start_time = time.time()
warm_cache_response = client.create(messages=[{"role": "user", "content": prompt}])
end_time = time.time()
duration_with_warm_cache = end_time - start_time
assert cold_cache_response == warm_cache_response
assert duration_with_warm_cache < duration_with_cold_cache
assert os.path.exists(os.path.join(LEGACY_CACHE_DIR, str(LEGACY_DEFAULT_CACHE_SEED)))
# Test with cache seed set through constructor
client = OpenAIWrapper(config_list=config_list, cache_seed=13)
start_time = time.time()
cold_cache_response = client.create(messages=[{"role": "user", "content": prompt}])
end_time = time.time()
duration_with_cold_cache = end_time - start_time
start_time = time.time()
warm_cache_response = client.create(messages=[{"role": "user", "content": prompt}])
end_time = time.time()
duration_with_warm_cache = end_time - start_time
assert cold_cache_response == warm_cache_response
assert duration_with_warm_cache < duration_with_cold_cache
assert os.path.exists(os.path.join(LEGACY_CACHE_DIR, str(13)))
# Test with cache seed set through create method
client = OpenAIWrapper(config_list=config_list)
start_time = time.time()
cold_cache_response = client.create(messages=[{"role": "user", "content": prompt}], cache_seed=17)
end_time = time.time()
duration_with_cold_cache = end_time - start_time
start_time = time.time()
warm_cache_response = client.create(messages=[{"role": "user", "content": prompt}], cache_seed=17)
end_time = time.time()
duration_with_warm_cache = end_time - start_time
assert cold_cache_response == warm_cache_response
assert duration_with_warm_cache < duration_with_cold_cache
assert os.path.exists(os.path.join(LEGACY_CACHE_DIR, str(17)))
# Test using a different cache seed through create method.
start_time = time.time()
cold_cache_response = client.create(messages=[{"role": "user", "content": prompt}], cache_seed=21)
end_time = time.time()
duration_with_cold_cache = end_time - start_time
assert duration_with_warm_cache < duration_with_cold_cache
assert os.path.exists(os.path.join(LEGACY_CACHE_DIR, str(21)))
@pytest.mark.skipif(skip, reason="openai>=1 not installed")
def test_cache():
config_list = config_list_from_json(
env_or_file=OAI_CONFIG_LIST,
file_location=KEY_LOC,
filter_dict={"tags": ["gpt-3.5-turbo"]},
)
# Prompt to use for testing.
prompt = "Write a 100 word summary on the topic of the history of artificial intelligence."
# Clear cache.
if os.path.exists(LEGACY_CACHE_DIR):
shutil.rmtree(LEGACY_CACHE_DIR)
cache_dir = ".cache_test"
assert cache_dir != LEGACY_CACHE_DIR
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
# Test cache set through constructor.
with Cache.disk(cache_seed=49, cache_path_root=cache_dir) as cache:
client = OpenAIWrapper(config_list=config_list, cache=cache)
start_time = time.time()
cold_cache_response = client.create(messages=[{"role": "user", "content": prompt}])
end_time = time.time()
duration_with_cold_cache = end_time - start_time
start_time = time.time()
warm_cache_response = client.create(messages=[{"role": "user", "content": prompt}])
end_time = time.time()
duration_with_warm_cache = end_time - start_time
assert cold_cache_response == warm_cache_response
assert duration_with_warm_cache < duration_with_cold_cache
assert os.path.exists(os.path.join(cache_dir, str(49)))
# Test legacy cache is not used.
assert not os.path.exists(os.path.join(LEGACY_CACHE_DIR, str(49)))
assert not os.path.exists(os.path.join(cache_dir, str(LEGACY_DEFAULT_CACHE_SEED)))
# Test cache set through method.
client = OpenAIWrapper(config_list=config_list)
with Cache.disk(cache_seed=312, cache_path_root=cache_dir) as cache:
start_time = time.time()
cold_cache_response = client.create(messages=[{"role": "user", "content": prompt}], cache=cache)
end_time = time.time()
duration_with_cold_cache = end_time - start_time
start_time = time.time()
warm_cache_response = client.create(messages=[{"role": "user", "content": prompt}], cache=cache)
end_time = time.time()
duration_with_warm_cache = end_time - start_time
assert cold_cache_response == warm_cache_response
assert duration_with_warm_cache < duration_with_cold_cache
assert os.path.exists(os.path.join(cache_dir, str(312)))
# Test legacy cache is not used.
assert not os.path.exists(os.path.join(LEGACY_CACHE_DIR, str(312)))
assert not os.path.exists(os.path.join(cache_dir, str(LEGACY_DEFAULT_CACHE_SEED)))
# Test different cache seed.
with Cache.disk(cache_seed=123, cache_path_root=cache_dir) as cache:
start_time = time.time()
cold_cache_response = client.create(messages=[{"role": "user", "content": prompt}], cache=cache)
end_time = time.time()
duration_with_cold_cache = end_time - start_time
assert duration_with_warm_cache < duration_with_cold_cache
# Test legacy cache is not used.
assert not os.path.exists(os.path.join(LEGACY_CACHE_DIR, str(123)))
assert not os.path.exists(os.path.join(cache_dir, str(LEGACY_DEFAULT_CACHE_SEED)))
def test_throttled_api_calls():
# Api calling limited at 0.2 request per second, or 1 request per 5 seconds
rate = 1 / 5.0
config_list = [
{
"model": "mock_model",
"model_client_cls": "_MockClient",
# Adding a timeout to catch false positives
"timeout": 1 / rate,
"api_rate_limit": rate,
}
]
client = OpenAIWrapper(config_list=config_list, cache_seed=None)
client.register_model_client(_MockClient)
n_loops = 2
current_time = time.time()
for _ in range(n_loops):
client.create(messages=[{"role": "user", "content": "hello"}])
min_expected_time = (n_loops - 1) / rate
assert time.time() - current_time > min_expected_time
if __name__ == "__main__":
# test_aoai_chat_completion()
# test_oai_tool_calling_extraction()
# test_chat_completion()
test_completion()
# # test_cost()
# test_usage_summary()
test_legacy_cache()
test_cache()
test_throttled_api_calls()