import os import unittest from tempfile import TemporaryDirectory from sklearn.datasets import load_boston from flaml import AutoML from flaml.training_log import training_log_reader class TestTrainingLog(unittest.TestCase): def test_training_log(self): with TemporaryDirectory() as d: filename = os.path.join(d, 'test_training_log.log') # Run a simple job. automl_experiment = AutoML() automl_settings = { "time_budget": 2, "metric": 'mse', "task": 'regression', "log_file_name": filename, "log_training_metric": True, "mem_thres": 1024*1024, "n_jobs": 1, "model_history": True } X_train, y_train = load_boston(return_X_y=True) automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings) # Check if the training log file is populated. self.assertTrue(os.path.exists(filename)) with training_log_reader(filename) as reader: count = 0 for record in reader.records(): print(record) count += 1 self.assertGreater(count, 0)