* categorical choice can be ordered or unordered
* ordered -> order
* move choice into utils
* version comparison
* packaging -> setuptools
* import version
* version_parse
* test order for choice
* time series forecasting with panel datasets
- integrate Temporal Fusion Transformer as a learner based on pytorchforecasting
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update setup.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update test_forecast.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update setup.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update setup.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update model.py and test_forecast.py
- remove blank lines
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update model.py to prevent errors
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update automl.py and data.py
- change forecast task name
- update documentation for fit() method
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update test_forecast.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update test_forecast.py
- add performance test
- use 'fit_kwargs_by_estimator'
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* add time index function
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update test_forecast.py performance test
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update data.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update automl.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update data.py to prevent type error
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update setup.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update for pytorch forecasting tft on panel datasets
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update automl.py documentations
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* - rename estimator
- add 'gpu_per_trial' for tft estimator
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update test_forecast.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* include ts panel forecasting as an example
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update model.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update documentations
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update automl_time_series_forecast.ipynb
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update documentations
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* "weights_summary" argument deprecated and removed for pl.Trainer()
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update model.py tft estimator prediction method
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update model.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update `fit_kwargs` documentation
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update automl.py
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* Skip transform
* Fix logic and docstring, add test
* Add period ending to skip_transform doc
* Add skip_transform to retrain_from_log method
* Update test/automl/test_classification.py
Co-authored-by: Xueqing Liu <liususan091219@users.noreply.github.com>
Co-authored-by: Xueqing Liu <liususan091219@users.noreply.github.com>
* add pipeline tuner component and dependencies.
* clean code.
* do not need force rerun.
* replace the resources.
* update metrics retrieving.
* Update test/pipeline_tuning_example/requirements.txt
* Update test/pipeline_tuning_example/train/env.yaml
* Update test/pipeline_tuning_example/tuner/env.yaml
* Update test/pipeline_tuning_example/tuner/tuner_func.py
* Update test/pipeline_tuning_example/data_prep/env.yaml
* fix issues found by lint with flake8.
* add documentation
* add data.
* do not need AML resource for local run.
* AML -> AzureML
* clean code.
* Update website/docs/Examples/Tune-AzureML pipeline.md
* rename and add pip install.
* update figure name.
* align docs with code.
* remove extra line.
* FLAML_sample_size
* clean up
* starting_points as a list
* catch AssertionError
* per estimator sample size
* import
* per estimator min_sample_size
* Update flaml/automl.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* Update test/automl/test_warmstart.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* add warnings
* adding more tests
* fix a bug in validating starting points
* improve test
* revise test
* revise test
* documentation about custom_hp
* doc and efficiency
* update test
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* support latest xgboost version
* Update test_classification.py
* Update
Exists problems when installing xgb1.6.1 in py3.6
* cleanup
* xgboost version
* remove time_budget_s in test
* remove redundancy
* stop support of python 3.6
Co-authored-by: zsk <shaokunzhang529@gmail.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>