* add customized lgbm learner
* add comments
* fix format issue
* format
* OpenMLError
* add test
* add notebook
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* pickle the AutoML object
* get best model per estimator
* test deberta
* stateless API
* pickle the AutoML object
* get best model per estimator
* test deberta
* stateless API
* prevent divide by zero
* test roberta
* BlendSearchTuner
* sync
* version number
* update gitignore
* delta time
* reindex columns when dropping int-indexed columns
* add seed
* add seed in Args
* merge
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* pickle the AutoML object
* get best model per estimator
* test deberta
* stateless API
* prevent divide by zero
* test roberta
* BlendSearchTuner
* delta time
* reindex columns when dropping int-indexed columns
* test drop columns and small training data
* param set for ensemble builder
* fillna on copy
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
* Update automl.py
* Pass verbose-1 to tune
passing verbose-1 to tune, ensures that for verbose=1, tune is silenced (no INFO prints) and for verbose=2 we see the INFO prints, and for verbose=3 we get DEBUG level at tune, as we want. This is due to: https://github.com/microsoft/FLAML/blob/main/flaml/tune/tune.py#L227
* pickle the AutoML object
* get best model per estimator
* test deberta
* stateless API
* Add Gitter badge (#41)
* prevent divide by zero
* test roberta
* BlendSearchTuner
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
Co-authored-by: The Gitter Badger <badger@gitter.im>
* xgboost notebook
* finetuning notebook
* finetuning test
* experimental nni support
* support nested search space
* log file name
* record training_iteration
* eps
* reset times
* std set to default step size if 0
* v0.2.2
separate the HPO part into the module flaml.tune
enhanced implementation of FLOW^2, CFO and BlendSearch
support parallel tuning using ray tune
add support for sample_weight and generic fit arguments
enable mlflow logging
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
Co-authored-by: qingyun-wu <qw2ky@virginia.edu>
* set default logging level to INFO
* remove unnecessary import
* API future compatibility
* add test for customized learner
* test dependency
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>