* add vw version requirement
* vw version
* version range
* add documentation
* vw version range
* skip test on py3.10
* vw version
* rephrase
* don't install vw on py 3.10
* move import location
* remove inherit
* 3.10 in version
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* support latest xgboost version
* Update test_classification.py
* Update
Exists problems when installing xgb1.6.1 in py3.6
* cleanup
* xgboost version
* remove time_budget_s in test
* remove redundancy
* stop support of python 3.6
Co-authored-by: zsk <shaokunzhang529@gmail.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
* fix checkpoint naming + trial id for non-ray mode, fix the bug in running test mode, delete all the checkpoints in non-ray mode
* finished testing for checkpoint naming, delete checkpoint, ray, max iter = 1
* adding predict_proba, address PR 293's comments
close#293#291
* limit time and memory
* separate tests
* lrl1 can't be limited by limit_resource
* free memory when possible
* passthrough=False when ensemble fails;
retrain when trained_estimator is None
* use callback to for resource limit
* handle lower version of xgb with no callback
* free mem ratio
* reduce verbosity
* retrain_final when max_iter==1
* remove trained_estimator from result
* model_history
* wheel
* retrain time as best_config_train_time
* ci: libomp version for xgboost on macos
* limit_resource not working in windows
* test pickle load
* mute forecaster
* notebook update
* check hard
* preventive callback
* add use_ray
* added 'forecast' task with estimators ['fbprophet', 'arima', 'sarimax']
* update setup.py
* add TimeSeriesSplit to 'regression' and 'classification' task
* add 'time' split_type for 'classification' and 'regression' task
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* feature importance
* variable name
* Update test/test_split.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* Update test/test_forecast.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* prophet installation fail in windows
* upload flaml_forecast.ipynb
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* v0.2.2
separate the HPO part into the module flaml.tune
enhanced implementation of FLOW^2, CFO and BlendSearch
support parallel tuning using ray tune
add support for sample_weight and generic fit arguments
enable mlflow logging
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
Co-authored-by: qingyun-wu <qw2ky@virginia.edu>
* set default logging level to INFO
* remove unnecessary import
* API future compatibility
* add test for customized learner
* test dependency
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>