* limit time and memory
* separate tests
* lrl1 can't be limited by limit_resource
* free memory when possible
* passthrough=False when ensemble fails;
retrain when trained_estimator is None
* use callback to for resource limit
* handle lower version of xgb with no callback
* free mem ratio
* reduce verbosity
* retrain_final when max_iter==1
* remove trained_estimator from result
* model_history
* wheel
* retrain time as best_config_train_time
* ci: libomp version for xgboost on macos
* limit_resource not working in windows
* test pickle load
* mute forecaster
* notebook update
* check hard
* preventive callback
* add use_ray
* Integrate multivariate time series forecasting, now supports
continuous and categorical variables
- update data.py to transform time series data
- update search space
- update documentations to reflect changes
- update test_forecast.py
- rename 'forecast' task to 'ts_forecast' task
* update automl.py and test_forecast.py
* update forecast notebook
* update README.md and setup.py
* update ml.py and test_forecast.py
- make "ds" and "y" constant variables
* replace constants with constant variables
* bump version to 0.7.0
* update setup.py
- support 'forecast' and 'ts_forecast'
* update automl.py and data.py
- support 'forecast' and 'ts_forecast' tasks
* warning -> info for low cost partial config
#195, #110
* when n_estimators < 0, use trained_estimator's
* log debug info
* test random seed
* remove "objective"; avoid ZeroDivisionError
* hp config to estimator params
* check type of searcher
* default n_jobs
* try import
* Update searchalgo_auto.py
* CLASSIFICATION
* auto_augment flag
* min_sample_size
* make catboost optional
* config in result
* value can be float
* pytorch notebook example
* docker, pre-commit
* max_failure (#192); early_stop
* extend starting_points (#196)
Co-authored-by: Chi Wang (MSR) <wang.chi@microsoft.com>
Co-authored-by: Qingyun Wu <qw2ky@virginia.edu>
* remove catboost training dir
* close#48
* bs for hierarchical space. close#85
* retrain for hierarchical space
* clean ml (#180)
Co-authored-by: Qingyun Wu <qxw5138@psu.edu>
* support ranking task
* examples
* cv shuffle
* forecast api and implementation cleaner
* period constraints
* delete groups after fit
* added 'forecast' task with estimators ['fbprophet', 'arima', 'sarimax']
* update setup.py
* add TimeSeriesSplit to 'regression' and 'classification' task
* add 'time' split_type for 'classification' and 'regression' task
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* feature importance
* variable name
* Update test/test_split.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* Update test/test_forecast.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* prophet installation fail in windows
* upload flaml_forecast.ipynb
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* subspace in flow2
* search space and trainable from AutoML
* experimental features: multivariate TPE, grouping, add_evaluated_points
* test experimental features
* readme
* define by run
* set time_budget_s for bs
Co-authored-by: liususan091219 <Xqq630517>
* version
* acl
* test define_by_run_func
* size
* constraints
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* pickle the AutoML object
* get best model per estimator
* test deberta
* stateless API
* pickle the AutoML object
* get best model per estimator
* test deberta
* stateless API
* prevent divide by zero
* test roberta
* BlendSearchTuner
* sync
* version number
* update gitignore
* delta time
* reindex columns when dropping int-indexed columns
* add seed
* add seed in Args
* merge
* init upload of ChaCha
* remove redundancy
* add back catboost
* improve AutoVW API
* set min_resource_lease in VWOnlineTrial
* docstr
* rename
* docstr
* add docstr
* improve API and documentation
* fix name
* docstr
* naming
* remove max_resource in scheduler
* add TODO in flow2
* remove redundancy in rearcher
* add input type
* adapt code from ray.tune
* move files
* naming
* documentation
* fix import error
* fix format issues
* remove cb in worse than test
* improve _generate_all_comb
* remove ray tune
* naming
* VowpalWabbitTrial
* import error
* import error
* merge test code
* scheduler import
* fix import
* remove
* import, minor bug and version
* Float or Categorical
* fix default
* add test_autovw.py
* add vowpalwabbit and openml
* lint
* reorg
* lint
* indent
* add autovw notebook
* update notebook
* update log msg and autovw notebook
* update autovw notebook
* update autovw notebook
* add available strings for model_select_policy
* string for metric
* Update vw format in flaml/onlineml/trial.py
Co-authored-by: olgavrou <olgavrou@gmail.com>
* make init_config optional
* add _setup_trial_runner and update notebook
* space
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
Co-authored-by: Qingyun Wu <qiw@microsoft.com>
Co-authored-by: olgavrou <olgavrou@gmail.com>
* pickle the AutoML object
* get best model per estimator
* test deberta
* stateless API
* Add Gitter badge (#41)
* prevent divide by zero
* test roberta
* BlendSearchTuner
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
Co-authored-by: The Gitter Badger <badger@gitter.im>
* xgboost notebook
* finetuning notebook
* finetuning test
* experimental nni support
* support nested search space
* log file name
* record training_iteration
* eps
* reset times
* std set to default step size if 0
* v0.2.2
separate the HPO part into the module flaml.tune
enhanced implementation of FLOW^2, CFO and BlendSearch
support parallel tuning using ray tune
add support for sample_weight and generic fit arguments
enable mlflow logging
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
Co-authored-by: qingyun-wu <qw2ky@virginia.edu>
* set default logging level to INFO
* remove unnecessary import
* API future compatibility
* add test for customized learner
* test dependency
Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>