This commit is contained in:
Eric Zhu 2024-11-10 21:48:05 -08:00 committed by GitHub
parent 4786f189bc
commit e27c740961
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 363 additions and 357 deletions

View File

@ -38,6 +38,7 @@ jobs:
{ ref: "v0.4.0.dev3", dest-dir: "0.4.0.dev3" },
{ ref: "v0.4.0.dev4", dest-dir: "0.4.0.dev4" },
{ ref: "v0.4.0.dev5", dest-dir: "0.4.0.dev5" },
{ ref: "v0.4.0.dev6", dest-dir: "0.4.0.dev6" },
]
steps:
- name: Checkout

View File

@ -101,7 +101,7 @@ We look forward to your contributions!
First install the packages:
```bash
pip install 'autogen-agentchat==0.4.0.dev5' 'autogen-ext[openai]==0.4.0.dev5'
pip install 'autogen-agentchat==0.4.0.dev6' 'autogen-ext[openai]==0.4.0.dev6'
```
The following code uses OpenAI's GPT-4o model and you need to provide your

View File

@ -36,7 +36,12 @@
{
"name": "0.4.0.dev5",
"version": "0.4.0.dev5",
"url": "/autogen/0.4.0.dev5/",
"url": "/autogen/0.4.0.dev5/"
},
{
"name": "0.4.0.dev6",
"version": "0.4.0.dev6",
"url": "/autogen/0.4.0.dev6/",
"preferred": true
}
]

View File

@ -4,7 +4,7 @@ build-backend = "hatchling.build"
[project]
name = "autogen-agentchat"
version = "0.4.0.dev5"
version = "0.4.0.dev6"
license = {file = "LICENSE-CODE"}
description = "AutoGen agents and teams library"
readme = "README.md"
@ -15,7 +15,7 @@ classifiers = [
"Operating System :: OS Independent",
]
dependencies = [
"autogen-core==0.4.0.dev5",
"autogen-core==0.4.0.dev6",
]
[tool.uv]

View File

@ -61,7 +61,7 @@ AgentChat </div>
High-level API that includes preset agents and teams for building multi-agent systems.
```sh
pip install 'autogen-agentchat==0.4.0.dev5'
pip install 'autogen-agentchat==0.4.0.dev6'
```
💡 *Start here if you are looking for an API similar to AutoGen 0.2*
@ -82,7 +82,7 @@ Get Started
Provides building blocks for creating asynchronous, event driven multi-agent systems.
```sh
pip install 'autogen-core==0.4.0.dev5'
pip install 'autogen-core==0.4.0.dev6'
```
+++

View File

@ -29,10 +29,10 @@ myst:
Library that is at a similar level of abstraction as AutoGen 0.2, including default agents and group chat.
```sh
pip install 'autogen-agentchat==0.4.0.dev5'
pip install 'autogen-agentchat==0.4.0.dev6'
```
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/agentchat-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_agentchat/autogen_agentchat.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-agentchat/0.4.0.dev5/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-agentchat)
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/agentchat-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_agentchat/autogen_agentchat.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-agentchat/0.4.0.dev6/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-agentchat)
:::
(pkg-info-autogen-core)=
@ -44,10 +44,10 @@ pip install 'autogen-agentchat==0.4.0.dev5'
Implements the core functionality of the AutoGen framework, providing basic building blocks for creating multi-agent systems.
```sh
pip install 'autogen-core==0.4.0.dev5'
pip install 'autogen-core==0.4.0.dev6'
```
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/core-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_core/autogen_core.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-core/0.4.0.dev5/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-core)
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/core-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_core/autogen_core.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-core/0.4.0.dev6/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-core)
:::
(pkg-info-autogen-ext)=
@ -59,7 +59,7 @@ pip install 'autogen-core==0.4.0.dev5'
Implementations of core components that interface with external services, or use extra dependencies. For example, Docker based code execution.
```sh
pip install 'autogen-ext==0.4.0.dev5'
pip install 'autogen-ext==0.4.0.dev6'
```
Extras:
@ -69,7 +69,7 @@ Extras:
- `docker` needed for {py:class}`~autogen_ext.code_executors.DockerCommandLineCodeExecutor`
- `openai` needed for {py:class}`~autogen_ext.models.OpenAIChatCompletionClient`
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/extensions-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_ext/autogen_ext.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-ext/0.4.0.dev5/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-ext)
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/extensions-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_ext/autogen_ext.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-ext/0.4.0.dev6/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-ext)
:::
(pkg-info-autogen-magentic-one)=

View File

@ -61,7 +61,7 @@ Install the `autogen-agentchat` package using pip:
```bash
pip install 'autogen-agentchat==0.4.0.dev5'
pip install 'autogen-agentchat==0.4.0.dev6'
```
## Install OpenAI for Model Client
@ -70,7 +70,7 @@ To use the OpenAI and Azure OpenAI models, you need to install the following
extensions:
```bash
pip install 'autogen-ext[openai]==0.4.0.dev5'
pip install 'autogen-ext[openai]==0.4.0.dev6'
```
## Install Docker for Code Execution

View File

@ -1,160 +1,160 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Quickstart"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{include} warning.md\n",
"\n",
"```\n",
"\n",
":::{note}\n",
"For installation instructions, please refer to the [installation guide](./installation).\n",
":::\n",
"\n",
"In AutoGen AgentChat, you can build applications quickly using preset agents.\n",
"To illustrate this, we will begin with creating a team of a single agent\n",
"that can use tools and respond to messages.\n",
"\n",
"The following code uses the OpenAI model. If you haven't already, you need to\n",
"install the following package and extension:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install 'autogen-agentchat==0.4.0.dev5' 'autogen-ext[openai]==0.4.0.dev5'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use Azure OpenAI models and AAD authentication,\n",
"you can follow the instructions [here](./tutorial/models.ipynb#azure-openai)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---------- user ----------\n",
"What is the weather in New York?\n",
"---------- weather_agent ----------\n",
"[FunctionCall(id='call_AhTZ2q3TNL8x0qs00e3wIZ7y', arguments='{\"city\":\"New York\"}', name='get_weather')]\n",
"[Prompt tokens: 79, Completion tokens: 15]\n",
"---------- weather_agent ----------\n",
"[FunctionExecutionResult(content='The weather in New York is 73 degrees and Sunny.', call_id='call_AhTZ2q3TNL8x0qs00e3wIZ7y')]\n",
"---------- weather_agent ----------\n",
"The weather in New York is currently 73 degrees and sunny.\n",
"[Prompt tokens: 90, Completion tokens: 14]\n",
"---------- weather_agent ----------\n",
"TERMINATE\n",
"[Prompt tokens: 137, Completion tokens: 4]\n",
"---------- Summary ----------\n",
"Number of messages: 5\n",
"Finish reason: Text 'TERMINATE' mentioned\n",
"Total prompt tokens: 306\n",
"Total completion tokens: 33\n",
"Duration: 1.43 seconds\n"
]
}
],
"source": [
"from autogen_agentchat.agents import AssistantAgent\n",
"from autogen_agentchat.task import Console, TextMentionTermination\n",
"from autogen_agentchat.teams import RoundRobinGroupChat\n",
"from autogen_ext.models import OpenAIChatCompletionClient\n",
"\n",
"\n",
"# Define a tool\n",
"async def get_weather(city: str) -> str:\n",
" return f\"The weather in {city} is 73 degrees and Sunny.\"\n",
"\n",
"\n",
"async def main() -> None:\n",
" # Define an agent\n",
" weather_agent = AssistantAgent(\n",
" name=\"weather_agent\",\n",
" model_client=OpenAIChatCompletionClient(\n",
" model=\"gpt-4o-2024-08-06\",\n",
" # api_key=\"YOUR_API_KEY\",\n",
" ),\n",
" tools=[get_weather],\n",
" )\n",
"\n",
" # Define termination condition\n",
" termination = TextMentionTermination(\"TERMINATE\")\n",
"\n",
" # Define a team\n",
" agent_team = RoundRobinGroupChat([weather_agent], termination_condition=termination)\n",
"\n",
" # Run the team and stream messages to the console\n",
" stream = agent_team.run_stream(task=\"What is the weather in New York?\")\n",
" await Console(stream)\n",
"\n",
"\n",
"# NOTE: if running this inside a Python script you'll need to use asyncio.run(main()).\n",
"await main()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The code snippet above introduces two high level concepts in AgentChat: *Agent* and *Team*. An Agent helps us define what actions are taken when a message is received. Specifically, we use the {py:class}`~autogen_agentchat.agents.AssistantAgent` preset - an agent that can be given access to a model (e.g., LLM) and tools (functions) that it can then use to address tasks. A Team helps us define the rules for how agents interact with each other. In the {py:class}`~autogen_agentchat.teams.RoundRobinGroupChat` team, agents respond in a sequential round-robin fashion.\n",
"In this case, we have a single agent, so the same agent is used for each round."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What's Next?\n",
"\n",
"Now that you have a basic understanding of how to define an agent and a team, consider following the [tutorial](./tutorial/index) for a walkthrough on other features of AgentChat.\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Quickstart"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{include} warning.md\n",
"\n",
"```\n",
"\n",
":::{note}\n",
"For installation instructions, please refer to the [installation guide](./installation).\n",
":::\n",
"\n",
"In AutoGen AgentChat, you can build applications quickly using preset agents.\n",
"To illustrate this, we will begin with creating a team of a single agent\n",
"that can use tools and respond to messages.\n",
"\n",
"The following code uses the OpenAI model. If you haven't already, you need to\n",
"install the following package and extension:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install 'autogen-agentchat==0.4.0.dev6' 'autogen-ext[openai]==0.4.0.dev6'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use Azure OpenAI models and AAD authentication,\n",
"you can follow the instructions [here](./tutorial/models.ipynb#azure-openai)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---------- user ----------\n",
"What is the weather in New York?\n",
"---------- weather_agent ----------\n",
"[FunctionCall(id='call_AhTZ2q3TNL8x0qs00e3wIZ7y', arguments='{\"city\":\"New York\"}', name='get_weather')]\n",
"[Prompt tokens: 79, Completion tokens: 15]\n",
"---------- weather_agent ----------\n",
"[FunctionExecutionResult(content='The weather in New York is 73 degrees and Sunny.', call_id='call_AhTZ2q3TNL8x0qs00e3wIZ7y')]\n",
"---------- weather_agent ----------\n",
"The weather in New York is currently 73 degrees and sunny.\n",
"[Prompt tokens: 90, Completion tokens: 14]\n",
"---------- weather_agent ----------\n",
"TERMINATE\n",
"[Prompt tokens: 137, Completion tokens: 4]\n",
"---------- Summary ----------\n",
"Number of messages: 5\n",
"Finish reason: Text 'TERMINATE' mentioned\n",
"Total prompt tokens: 306\n",
"Total completion tokens: 33\n",
"Duration: 1.43 seconds\n"
]
}
],
"source": [
"from autogen_agentchat.agents import AssistantAgent\n",
"from autogen_agentchat.task import Console, TextMentionTermination\n",
"from autogen_agentchat.teams import RoundRobinGroupChat\n",
"from autogen_ext.models import OpenAIChatCompletionClient\n",
"\n",
"\n",
"# Define a tool\n",
"async def get_weather(city: str) -> str:\n",
" return f\"The weather in {city} is 73 degrees and Sunny.\"\n",
"\n",
"\n",
"async def main() -> None:\n",
" # Define an agent\n",
" weather_agent = AssistantAgent(\n",
" name=\"weather_agent\",\n",
" model_client=OpenAIChatCompletionClient(\n",
" model=\"gpt-4o-2024-08-06\",\n",
" # api_key=\"YOUR_API_KEY\",\n",
" ),\n",
" tools=[get_weather],\n",
" )\n",
"\n",
" # Define termination condition\n",
" termination = TextMentionTermination(\"TERMINATE\")\n",
"\n",
" # Define a team\n",
" agent_team = RoundRobinGroupChat([weather_agent], termination_condition=termination)\n",
"\n",
" # Run the team and stream messages to the console\n",
" stream = agent_team.run_stream(task=\"What is the weather in New York?\")\n",
" await Console(stream)\n",
"\n",
"\n",
"# NOTE: if running this inside a Python script you'll need to use asyncio.run(main()).\n",
"await main()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The code snippet above introduces two high level concepts in AgentChat: *Agent* and *Team*. An Agent helps us define what actions are taken when a message is received. Specifically, we use the {py:class}`~autogen_agentchat.agents.AssistantAgent` preset - an agent that can be given access to a model (e.g., LLM) and tools (functions) that it can then use to address tasks. A Team helps us define the rules for how agents interact with each other. In the {py:class}`~autogen_agentchat.teams.RoundRobinGroupChat` team, agents respond in a sequential round-robin fashion.\n",
"In this case, we have a single agent, so the same agent is used for each round."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What's Next?\n",
"\n",
"Now that you have a basic understanding of how to define an agent and a team, consider following the [tutorial](./tutorial/index) for a walkthrough on other features of AgentChat.\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -1,181 +1,181 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Models\n",
"\n",
"In many cases, agents need access to model services such as OpenAI, Azure OpenAI, and local models.\n",
"AgentChat utilizes model clients provided by the\n",
"[`autogen-ext`](../../core-user-guide/framework/model-clients.ipynb) package."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## OpenAI\n",
"\n",
"To access OpenAI models, you need to install the `openai` extension to use the {py:class}`~autogen_ext.models.OpenAIChatCompletionClient`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install 'autogen-ext[openai]==0.4.0.dev5'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will also need to obtain an [API key](https://platform.openai.com/account/api-keys) from OpenAI."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from autogen_ext.models import OpenAIChatCompletionClient\n",
"\n",
"opneai_model_client = OpenAIChatCompletionClient(\n",
" model=\"gpt-4o-2024-08-06\",\n",
" # api_key=\"sk-...\", # Optional if you have an OPENAI_API_KEY environment variable set.\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To test the model client, you can use the following code:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CreateResult(finish_reason='stop', content='The capital of France is Paris.', usage=RequestUsage(prompt_tokens=15, completion_tokens=7), cached=False, logprobs=None)\n"
]
}
],
"source": [
"from autogen_core.components.models import UserMessage\n",
"\n",
"result = await opneai_model_client.create([UserMessage(content=\"What is the capital of France?\", source=\"user\")])\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Azure OpenAI\n",
"\n",
"Install the `azure` and `openai` extensions to use the {py:class}`~autogen_ext.models.AzureOpenAIChatCompletionClient`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install 'autogen-ext[openai,azure]==0.4.0.dev5'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use the client, you need to provide your deployment id, Azure Cognitive Services endpoint, api version, and model capabilities.\n",
"For authentication, you can either provide an API key or an Azure Active Directory (AAD) token credential.\n",
"\n",
"The following code snippet shows how to use AAD authentication.\n",
"The identity used must be assigned the [Cognitive Services OpenAI User](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/role-based-access-control#cognitive-services-openai-user) role."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from autogen_ext.models import AzureOpenAIChatCompletionClient\n",
"from azure.identity import DefaultAzureCredential, get_bearer_token_provider\n",
"\n",
"# Create the token provider\n",
"token_provider = get_bearer_token_provider(DefaultAzureCredential(), \"https://cognitiveservices.azure.com/.default\")\n",
"\n",
"az_model_client = AzureOpenAIChatCompletionClient(\n",
" model=\"{your-azure-deployment}\",\n",
" api_version=\"2024-06-01\",\n",
" azure_endpoint=\"https://{your-custom-endpoint}.openai.azure.com/\",\n",
" azure_ad_token_provider=token_provider, # Optional if you choose key-based authentication.\n",
" # api_key=\"sk-...\", # For key-based authentication.\n",
" model_capabilities={\n",
" \"vision\": True,\n",
" \"function_calling\": True,\n",
" \"json_output\": True,\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See [here](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/managed-identity#chat-completions) for how to use the Azure client directly or for more info."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Local Models\n",
"\n",
"We are working on it. Stay tuned!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Models\n",
"\n",
"In many cases, agents need access to model services such as OpenAI, Azure OpenAI, and local models.\n",
"AgentChat utilizes model clients provided by the\n",
"[`autogen-ext`](../../core-user-guide/framework/model-clients.ipynb) package."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## OpenAI\n",
"\n",
"To access OpenAI models, you need to install the `openai` extension to use the {py:class}`~autogen_ext.models.OpenAIChatCompletionClient`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install 'autogen-ext[openai]==0.4.0.dev6'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will also need to obtain an [API key](https://platform.openai.com/account/api-keys) from OpenAI."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from autogen_ext.models import OpenAIChatCompletionClient\n",
"\n",
"opneai_model_client = OpenAIChatCompletionClient(\n",
" model=\"gpt-4o-2024-08-06\",\n",
" # api_key=\"sk-...\", # Optional if you have an OPENAI_API_KEY environment variable set.\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To test the model client, you can use the following code:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CreateResult(finish_reason='stop', content='The capital of France is Paris.', usage=RequestUsage(prompt_tokens=15, completion_tokens=7), cached=False, logprobs=None)\n"
]
}
],
"source": [
"from autogen_core.components.models import UserMessage\n",
"\n",
"result = await opneai_model_client.create([UserMessage(content=\"What is the capital of France?\", source=\"user\")])\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Azure OpenAI\n",
"\n",
"Install the `azure` and `openai` extensions to use the {py:class}`~autogen_ext.models.AzureOpenAIChatCompletionClient`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install 'autogen-ext[openai,azure]==0.4.0.dev6'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use the client, you need to provide your deployment id, Azure Cognitive Services endpoint, api version, and model capabilities.\n",
"For authentication, you can either provide an API key or an Azure Active Directory (AAD) token credential.\n",
"\n",
"The following code snippet shows how to use AAD authentication.\n",
"The identity used must be assigned the [Cognitive Services OpenAI User](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/role-based-access-control#cognitive-services-openai-user) role."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from autogen_ext.models import AzureOpenAIChatCompletionClient\n",
"from azure.identity import DefaultAzureCredential, get_bearer_token_provider\n",
"\n",
"# Create the token provider\n",
"token_provider = get_bearer_token_provider(DefaultAzureCredential(), \"https://cognitiveservices.azure.com/.default\")\n",
"\n",
"az_model_client = AzureOpenAIChatCompletionClient(\n",
" model=\"{your-azure-deployment}\",\n",
" api_version=\"2024-06-01\",\n",
" azure_endpoint=\"https://{your-custom-endpoint}.openai.azure.com/\",\n",
" azure_ad_token_provider=token_provider, # Optional if you choose key-based authentication.\n",
" # api_key=\"sk-...\", # For key-based authentication.\n",
" model_capabilities={\n",
" \"vision\": True,\n",
" \"function_calling\": True,\n",
" \"json_output\": True,\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See [here](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/managed-identity#chat-completions) for how to use the Azure client directly or for more info."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Local Models\n",
"\n",
"We are working on it. Stay tuned!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -4,7 +4,7 @@ build-backend = "hatchling.build"
[project]
name = "autogen-core"
version = "0.4.0.dev5"
version = "0.4.0.dev6"
license = {file = "LICENSE-CODE"}
description = "Foundational interfaces and agent runtime implementation for AutoGen"
readme = "README.md"

View File

@ -4,7 +4,7 @@ build-backend = "hatchling.build"
[project]
name = "autogen-ext"
version = "0.4.0.dev5"
version = "0.4.0.dev6"
license = {file = "LICENSE-CODE"}
description = "AutoGen extensions library"
readme = "README.md"
@ -15,7 +15,7 @@ classifiers = [
"Operating System :: OS Independent",
]
dependencies = [
"autogen-core==0.4.0.dev5",
"autogen-core==0.4.0.dev6",
]

View File

@ -330,7 +330,7 @@ wheels = [
[[package]]
name = "autogen-agentchat"
version = "0.4.0.dev5"
version = "0.4.0.dev6"
source = { editable = "packages/autogen-agentchat" }
dependencies = [
{ name = "autogen-core" },
@ -341,7 +341,7 @@ requires-dist = [{ name = "autogen-core", editable = "packages/autogen-core" }]
[[package]]
name = "autogen-core"
version = "0.4.0.dev5"
version = "0.4.0.dev6"
source = { editable = "packages/autogen-core" }
dependencies = [
{ name = "aiohttp" },
@ -454,7 +454,7 @@ dev = [
[[package]]
name = "autogen-ext"
version = "0.4.0.dev5"
version = "0.4.0.dev6"
source = { editable = "packages/autogen-ext" }
dependencies = [
{ name = "autogen-core" },