Together AI Client (#2919)

* First pass together.ai client class

* Config handling, models and cost

* Added tests, moved param management to create function

* Tests, parameter, validation, logging updates

* Added use of client_utils PR 2949

* Updated to return OAI response

* Notebook example

* Improved function calling, updated tests, updated notebook with Chess example

* Tidied up together client class, better parameter handling, simpler exception capture, warning for no cost, reuse in tests, cleaner tests

* Update of documentation notebook, replacement of old version

* Fix of messages parameter for hide_tools function call

* Update autogen/oai/together.py

Co-authored-by: Qingyun Wu <qingyun0327@gmail.com>

* Update together.py to fix text

---------

Co-authored-by: Qingyun Wu <qingyun0327@gmail.com>
Co-authored-by: Yiran Wu <32823396+yiranwu0@users.noreply.github.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
This commit is contained in:
Mark Sze 2024-06-22 03:14:44 +10:00 committed by GitHub
parent 843c343383
commit b1ec3ae545
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 1701 additions and 185 deletions

View File

@ -558,3 +558,43 @@ jobs:
with:
file: ./coverage.xml
flags: unittests
TogetherTest:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, macos-latest, windows-2019]
python-version: ["3.9", "3.10", "3.11", "3.12"]
exclude:
- os: macos-latest
python-version: "3.9"
steps:
- uses: actions/checkout@v4
with:
lfs: true
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install packages and dependencies for all tests
run: |
python -m pip install --upgrade pip wheel
pip install pytest-cov>=5
- name: Install packages and dependencies for Together
run: |
pip install -e .[together,test]
- name: Set AUTOGEN_USE_DOCKER based on OS
shell: bash
run: |
if [[ ${{ matrix.os }} != ubuntu-latest ]]; then
echo "AUTOGEN_USE_DOCKER=False" >> $GITHUB_ENV
fi
- name: Coverage
run: |
pytest test/oai/test_together.py --skip-openai
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
with:
file: ./coverage.xml
flags: unittests

View File

@ -20,6 +20,7 @@ if TYPE_CHECKING:
from autogen.oai.anthropic import AnthropicClient
from autogen.oai.gemini import GeminiClient
from autogen.oai.mistral import MistralAIClient
from autogen.oai.together import TogetherClient
logger = logging.getLogger(__name__)
@ -203,7 +204,7 @@ class FileLogger(BaseLogger):
def log_new_client(
self,
client: AzureOpenAI | OpenAI | GeminiClient | AnthropicClient | MistralAIClient,
client: AzureOpenAI | OpenAI | GeminiClient | AnthropicClient | MistralAIClient | TogetherClient,
wrapper: OpenAIWrapper,
init_args: Dict[str, Any],
) -> None:

View File

@ -21,6 +21,7 @@ if TYPE_CHECKING:
from autogen.oai.anthropic import AnthropicClient
from autogen.oai.gemini import GeminiClient
from autogen.oai.mistral import MistralAIClient
from autogen.oai.together import TogetherClient
logger = logging.getLogger(__name__)
lock = threading.Lock()
@ -390,7 +391,7 @@ class SqliteLogger(BaseLogger):
def log_new_client(
self,
client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient, MistralAIClient],
client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient, MistralAIClient, TogetherClient],
wrapper: OpenAIWrapper,
init_args: Dict[str, Any],
) -> None:

View File

@ -63,6 +63,13 @@ try:
except ImportError as e:
mistral_import_exception = e
try:
from autogen.oai.together import TogetherClient
together_import_exception: Optional[ImportError] = None
except ImportError as e:
together_import_exception = e
logger = logging.getLogger(__name__)
if not logger.handlers:
# Add the console handler.
@ -473,6 +480,10 @@ class OpenAIWrapper:
raise ImportError("Please install `mistralai` to use the Mistral.AI API.")
client = MistralAIClient(**openai_config)
self._clients.append(client)
elif api_type is not None and api_type.startswith("together"):
if together_import_exception:
raise ImportError("Please install `together` to use the Together.AI API.")
self._clients.append(TogetherClient(**config))
else:
client = OpenAI(**openai_config)
self._clients.append(OpenAIClient(client))

351
autogen/oai/together.py Normal file
View File

@ -0,0 +1,351 @@
"""Create an OpenAI-compatible client using Together.AI's API.
Example:
llm_config={
"config_list": [{
"api_type": "together",
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"api_key": os.environ.get("TOGETHER_API_KEY")
}
]}
agent = autogen.AssistantAgent("my_agent", llm_config=llm_config)
Install Together.AI python library using: pip install --upgrade together
Resources:
- https://docs.together.ai/docs/inference-python
"""
from __future__ import annotations
import base64
import copy
import os
import random
import re
import time
import warnings
from io import BytesIO
from typing import Any, Dict, List, Mapping, Tuple, Union
import requests
from openai.types.chat import ChatCompletion, ChatCompletionMessageToolCall
from openai.types.chat.chat_completion import ChatCompletionMessage, Choice
from openai.types.completion_usage import CompletionUsage
from PIL import Image
from together import Together, error
from autogen.oai.client_utils import should_hide_tools, validate_parameter
class TogetherClient:
"""Client for Together.AI's API."""
def __init__(self, **kwargs):
"""Requires api_key or environment variable to be set
Args:
api_key (str): The API key for using Together.AI (or environment variable TOGETHER_API_KEY needs to be set)
"""
# Ensure we have the api_key upon instantiation
self.api_key = kwargs.get("api_key", None)
if not self.api_key:
self.api_key = os.getenv("TOGETHER_API_KEY")
assert (
self.api_key
), "Please include the api_key in your config list entry for Together.AI or set the TOGETHER_API_KEY env variable."
def message_retrieval(self, response) -> List:
"""
Retrieve and return a list of strings or a list of Choice.Message from the response.
NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object,
since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used.
"""
return [choice.message for choice in response.choices]
def cost(self, response) -> float:
return response.cost
@staticmethod
def get_usage(response) -> Dict:
"""Return usage summary of the response using RESPONSE_USAGE_KEYS."""
# ... # pragma: no cover
return {
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens,
"cost": response.cost,
"model": response.model,
}
def parse_params(self, params: Dict[str, Any]) -> Dict[str, Any]:
"""Loads the parameters for Together.AI API from the passed in parameters and returns a validated set. Checks types, ranges, and sets defaults"""
together_params = {}
# Check that we have what we need to use Together.AI's API
together_params["model"] = params.get("model", None)
assert together_params[
"model"
], "Please specify the 'model' in your config list entry to nominate the Together.AI model to use."
# Validate allowed Together.AI parameters
# https://github.com/togethercomputer/together-python/blob/94ffb30daf0ac3e078be986af7228f85f79bde99/src/together/resources/completions.py#L44
together_params["max_tokens"] = validate_parameter(params, "max_tokens", int, True, 512, (0, None), None)
together_params["stream"] = validate_parameter(params, "stream", bool, False, False, None, None)
together_params["temperature"] = validate_parameter(params, "temperature", (int, float), True, None, None, None)
together_params["top_p"] = validate_parameter(params, "top_p", (int, float), True, None, None, None)
together_params["top_k"] = validate_parameter(params, "top_k", int, True, None, None, None)
together_params["repetition_penalty"] = validate_parameter(
params, "repetition_penalty", float, True, None, None, None
)
together_params["presence_penalty"] = validate_parameter(
params, "presence_penalty", (int, float), True, None, (-2, 2), None
)
together_params["frequency_penalty"] = validate_parameter(
params, "frequency_penalty", (int, float), True, None, (-2, 2), None
)
together_params["min_p"] = validate_parameter(params, "min_p", (int, float), True, None, (0, 1), None)
together_params["safety_model"] = validate_parameter(
params, "safety_model", str, True, None, None, None
) # We won't enforce the available models as they are likely to change
# Check if they want to stream and use tools, which isn't currently supported (TODO)
if together_params["stream"] and "tools" in params:
warnings.warn(
"Streaming is not supported when using tools, streaming will be disabled.",
UserWarning,
)
together_params["stream"] = False
return together_params
def create(self, params: Dict) -> ChatCompletion:
messages = params.get("messages", [])
# Convert AutoGen messages to Together.AI messages
together_messages = oai_messages_to_together_messages(messages)
# Parse parameters to Together.AI API's parameters
together_params = self.parse_params(params)
# Add tools to the call if we have them and aren't hiding them
if "tools" in params:
hide_tools = validate_parameter(
params, "hide_tools", str, False, "never", None, ["if_all_run", "if_any_run", "never"]
)
if not should_hide_tools(together_messages, params["tools"], hide_tools):
together_params["tools"] = params["tools"]
together_params["messages"] = together_messages
# We use chat model by default
client = Together(api_key=self.api_key)
# Token counts will be returned
prompt_tokens = 0
completion_tokens = 0
total_tokens = 0
max_retries = 5
for attempt in range(max_retries):
ans = None
try:
response = client.chat.completions.create(**together_params)
except Exception as e:
raise RuntimeError(f"Together.AI exception occurred: {e}")
else:
if together_params["stream"]:
# Read in the chunks as they stream
ans = ""
for chunk in response:
ans = ans + (chunk.choices[0].delta.content or "")
prompt_tokens = chunk.usage.prompt_tokens
completion_tokens = chunk.usage.completion_tokens
total_tokens = chunk.usage.total_tokens
else:
ans: str = response.choices[0].message.content
prompt_tokens = response.usage.prompt_tokens
completion_tokens = response.usage.completion_tokens
total_tokens = response.usage.total_tokens
break
if response is not None:
# If we have tool calls as the response, populate completed tool calls for our return OAI response
if response.choices[0].finish_reason == "tool_calls":
together_finish = "tool_calls"
tool_calls = []
for tool_call in response.choices[0].message.tool_calls:
tool_calls.append(
ChatCompletionMessageToolCall(
id=tool_call.id,
function={"name": tool_call.function.name, "arguments": tool_call.function.arguments},
type="function",
)
)
else:
together_finish = "stop"
tool_calls = None
else:
raise RuntimeError(f"Failed to get response from Together.AI after retrying {attempt + 1} times.")
# 3. convert output
message = ChatCompletionMessage(
role="assistant",
content=response.choices[0].message.content,
function_call=None,
tool_calls=tool_calls,
)
choices = [Choice(finish_reason=together_finish, index=0, message=message)]
response_oai = ChatCompletion(
id=response.id,
model=together_params["model"],
created=int(time.time() * 1000),
object="chat.completion",
choices=choices,
usage=CompletionUsage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
),
cost=calculate_together_cost(prompt_tokens, completion_tokens, together_params["model"]),
)
return response_oai
def oai_messages_to_together_messages(messages: list[Dict[str, Any]]) -> list[dict[str, Any]]:
"""Convert messages from OAI format to Together.AI format.
We correct for any specific role orders and types.
"""
together_messages = copy.deepcopy(messages)
# If we have a message with role='tool', which occurs when a function is executed, change it to 'user'
for msg in together_messages:
if "role" in msg and msg["role"] == "tool":
msg["role"] = "user"
return together_messages
# MODELS AND COSTS
chat_lang_code_model_sizes = {
"zero-one-ai/Yi-34B-Chat": 34,
"allenai/OLMo-7B-Instruct": 7,
"allenai/OLMo-7B-Twin-2T": 7,
"allenai/OLMo-7B": 7,
"Austism/chronos-hermes-13b": 13,
"deepseek-ai/deepseek-coder-33b-instruct": 33,
"deepseek-ai/deepseek-llm-67b-chat": 67,
"garage-bAInd/Platypus2-70B-instruct": 70,
"google/gemma-2b-it": 2,
"google/gemma-7b-it": 7,
"Gryphe/MythoMax-L2-13b": 13,
"lmsys/vicuna-13b-v1.5": 13,
"lmsys/vicuna-7b-v1.5": 7,
"codellama/CodeLlama-13b-Instruct-hf": 13,
"codellama/CodeLlama-34b-Instruct-hf": 34,
"codellama/CodeLlama-70b-Instruct-hf": 70,
"codellama/CodeLlama-7b-Instruct-hf": 7,
"meta-llama/Llama-2-70b-chat-hf": 70,
"meta-llama/Llama-2-13b-chat-hf": 13,
"meta-llama/Llama-2-7b-chat-hf": 7,
"meta-llama/Llama-3-8b-chat-hf": 8,
"meta-llama/Llama-3-70b-chat-hf": 70,
"mistralai/Mistral-7B-Instruct-v0.1": 7,
"mistralai/Mistral-7B-Instruct-v0.2": 7,
"mistralai/Mistral-7B-Instruct-v0.3": 7,
"NousResearch/Nous-Capybara-7B-V1p9": 7,
"NousResearch/Nous-Hermes-llama-2-7b": 7,
"NousResearch/Nous-Hermes-Llama2-13b": 13,
"NousResearch/Nous-Hermes-2-Yi-34B": 34,
"openchat/openchat-3.5-1210": 7,
"Open-Orca/Mistral-7B-OpenOrca": 7,
"Qwen/Qwen1.5-0.5B-Chat": 0.5,
"Qwen/Qwen1.5-1.8B-Chat": 1.8,
"Qwen/Qwen1.5-4B-Chat": 4,
"Qwen/Qwen1.5-7B-Chat": 7,
"Qwen/Qwen1.5-14B-Chat": 14,
"Qwen/Qwen1.5-32B-Chat": 32,
"Qwen/Qwen1.5-72B-Chat": 72,
"Qwen/Qwen1.5-110B-Chat": 110,
"Qwen/Qwen2-72B-Instruct": 72,
"snorkelai/Snorkel-Mistral-PairRM-DPO": 7,
"togethercomputer/alpaca-7b": 7,
"teknium/OpenHermes-2-Mistral-7B": 7,
"teknium/OpenHermes-2p5-Mistral-7B": 7,
"togethercomputer/Llama-2-7B-32K-Instruct": 7,
"togethercomputer/RedPajama-INCITE-Chat-3B-v1": 3,
"togethercomputer/RedPajama-INCITE-7B-Chat": 7,
"togethercomputer/StripedHyena-Nous-7B": 7,
"Undi95/ReMM-SLERP-L2-13B": 13,
"Undi95/Toppy-M-7B": 7,
"WizardLM/WizardLM-13B-V1.2": 13,
"upstage/SOLAR-10.7B-Instruct-v1.0": 11,
}
# Cost per million tokens based on up to X Billion parameters, e.g. up 4B is $0.1/million
chat_lang_code_model_costs = {4: 0.1, 8: 0.2, 21: 0.3, 41: 0.8, 80: 0.9, 110: 1.8}
mixture_model_sizes = {
"cognitivecomputations/dolphin-2.5-mixtral-8x7b": 56,
"databricks/dbrx-instruct": 132,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 47,
"mistralai/Mixtral-8x22B-Instruct-v0.1": 141,
"NousResearch/Nous-Hermes-2-Mistral-7B-DPO": 7,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 47,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT": 47,
"Snowflake/snowflake-arctic-instruct": 480,
}
# Cost per million tokens based on up to X Billion parameters, e.g. up 56B is $0.6/million
mixture_costs = {56: 0.6, 176: 1.2, 480: 2.4}
def calculate_together_cost(input_tokens: int, output_tokens: int, model_name: str) -> float:
"""Cost calculation for inference"""
if model_name in chat_lang_code_model_sizes or model_name in mixture_model_sizes:
cost_per_mil = 0
# Chat, Language, Code models
if model_name in chat_lang_code_model_sizes:
size_in_b = chat_lang_code_model_sizes[model_name]
for top_size in chat_lang_code_model_costs.keys():
if size_in_b <= top_size:
cost_per_mil = chat_lang_code_model_costs[top_size]
break
else:
# Mixture-of-experts
size_in_b = mixture_model_sizes[model_name]
for top_size in mixture_costs.keys():
if size_in_b <= top_size:
cost_per_mil = mixture_costs[top_size]
break
if cost_per_mil == 0:
warnings.warn("Model size doesn't align with cost structure.", UserWarning)
return cost_per_mil * ((input_tokens + output_tokens) / 1e6)
else:
# Model is not in our list of models, can't determine the cost
warnings.warn(
"The model isn't catered for costing, to apply costs you can use the 'price' key on your config_list.",
UserWarning,
)
return 0

View File

@ -16,6 +16,7 @@ if TYPE_CHECKING:
from autogen.oai.anthropic import AnthropicClient
from autogen.oai.gemini import GeminiClient
from autogen.oai.mistral import MistralAIClient
from autogen.oai.together import TogetherClient
logger = logging.getLogger(__name__)
@ -109,7 +110,7 @@ def log_new_wrapper(wrapper: OpenAIWrapper, init_args: Dict[str, Union[LLMConfig
def log_new_client(
client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient, MistralAIClient],
client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient, MistralAIClient, TogetherClient],
wrapper: OpenAIWrapper,
init_args: Dict[str, Any],
) -> None:

View File

@ -81,6 +81,7 @@ extra_require = {
"lmm": ["replicate", "pillow"],
"graph": ["networkx", "matplotlib"],
"gemini": ["google-generativeai>=0.5,<1", "google-cloud-aiplatform", "google-auth", "pillow", "pydantic"],
"together": ["together>=1.2"],
"websurfer": ["beautifulsoup4", "markdownify", "pdfminer.six", "pathvalidate"],
"redis": ["redis"],
"cosmosdb": ["azure-cosmos>=4.2.0"],

264
test/oai/test_together.py Normal file
View File

@ -0,0 +1,264 @@
from unittest.mock import MagicMock, patch
import pytest
try:
from openai.types.chat.chat_completion import ChatCompletionMessage, Choice
from autogen.oai.together import TogetherClient, calculate_together_cost
skip = False
except ImportError:
TogetherClient = object
InternalServerError = object
skip = True
# Fixtures for mock data
@pytest.fixture
def mock_response():
class MockResponse:
def __init__(self, text, choices, usage, cost, model):
self.text = text
self.choices = choices
self.usage = usage
self.cost = cost
self.model = model
return MockResponse
@pytest.fixture
def together_client():
return TogetherClient(api_key="fake_api_key")
# Test initialization and configuration
@pytest.mark.skipif(skip, reason="Together.AI dependency is not installed")
def test_initialization():
# Missing any api_key
with pytest.raises(AssertionError) as assertinfo:
TogetherClient() # Should raise an AssertionError due to missing api_key
assert (
"Please include the api_key in your config list entry for Together.AI or set the TOGETHER_API_KEY env variable."
in str(assertinfo.value)
)
# Creation works
TogetherClient(api_key="fake_api_key") # Should create okay now.
# Test standard initialization
@pytest.mark.skipif(skip, reason="Together.AI dependency is not installed")
def test_valid_initialization(together_client):
assert together_client.api_key == "fake_api_key", "Config api_key should be correctly set"
# Test parameters
@pytest.mark.skipif(skip, reason="Together.AI dependency is not installed")
def test_parsing_params(together_client):
# All parameters
params = {
"model": "Qwen/Qwen2-72B-Instruct",
"max_tokens": 1000,
"stream": False,
"temperature": 1,
"top_p": 0.8,
"top_k": 50,
"repetition_penalty": 0.5,
"presence_penalty": 1.5,
"frequency_penalty": 1.5,
"min_p": 0.2,
"safety_model": "Meta-Llama/Llama-Guard-7b",
}
expected_params = {
"model": "Qwen/Qwen2-72B-Instruct",
"max_tokens": 1000,
"stream": False,
"temperature": 1,
"top_p": 0.8,
"top_k": 50,
"repetition_penalty": 0.5,
"presence_penalty": 1.5,
"frequency_penalty": 1.5,
"min_p": 0.2,
"safety_model": "Meta-Llama/Llama-Guard-7b",
}
result = together_client.parse_params(params)
assert result == expected_params
# Only model, others set as defaults
params = {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
}
expected_params = {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"max_tokens": 512,
"stream": False,
"temperature": None,
"top_p": None,
"top_k": None,
"repetition_penalty": None,
"presence_penalty": None,
"frequency_penalty": None,
"min_p": None,
"safety_model": None,
}
result = together_client.parse_params(params)
assert result == expected_params
# Incorrect types, defaults should be set, will show warnings but not trigger assertions
params = {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"max_tokens": "512",
"stream": "Yes",
"temperature": "0.5",
"top_p": "0.8",
"top_k": "50",
"repetition_penalty": "0.5",
"presence_penalty": "1.5",
"frequency_penalty": "1.5",
"min_p": "0.2",
"safety_model": False,
}
result = together_client.parse_params(params)
assert result == expected_params
# Values outside bounds, should warn and set to defaults
params = {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"max_tokens": -200,
"presence_penalty": -5,
"frequency_penalty": 5,
"min_p": -0.5,
}
result = together_client.parse_params(params)
assert result == expected_params
# Test cost calculation
@pytest.mark.skipif(skip, reason="Together.AI dependency is not installed")
def test_cost_calculation(mock_response):
response = mock_response(
text="Example response",
choices=[{"message": "Test message 1"}],
usage={"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15},
cost=None,
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
)
assert (
calculate_together_cost(response.usage["prompt_tokens"], response.usage["completion_tokens"], response.model)
== 0.000018
), "Cost for this should be $0.000018"
# Test text generation
@pytest.mark.skipif(skip, reason="Together.AI dependency is not installed")
@patch("autogen.oai.together.TogetherClient.create")
def test_create_response(mock_create, together_client):
# Mock TogetherClient.chat response
mock_together_response = MagicMock()
mock_together_response.choices = [
MagicMock(finish_reason="stop", message=MagicMock(content="Example Llama response", tool_calls=None))
]
mock_together_response.id = "mock_together_response_id"
mock_together_response.model = "meta-llama/Llama-3-8b-chat-hf"
mock_together_response.usage = MagicMock(prompt_tokens=10, completion_tokens=20) # Example token usage
mock_create.return_value = mock_together_response
# Test parameters
params = {
"messages": [{"role": "user", "content": "Hello"}, {"role": "assistant", "content": "World"}],
"model": "meta-llama/Llama-3-8b-chat-hf",
}
# Call the create method
response = together_client.create(params)
# Assertions to check if response is structured as expected
assert (
response.choices[0].message.content == "Example Llama response"
), "Response content should match expected output"
assert response.id == "mock_together_response_id", "Response ID should match the mocked response ID"
assert response.model == "meta-llama/Llama-3-8b-chat-hf", "Response model should match the mocked response model"
assert response.usage.prompt_tokens == 10, "Response prompt tokens should match the mocked response usage"
assert response.usage.completion_tokens == 20, "Response completion tokens should match the mocked response usage"
# Test functions/tools
@pytest.mark.skipif(skip, reason="Together.AI dependency is not installed")
@patch("autogen.oai.together.TogetherClient.create")
def test_create_response_with_tool_call(mock_create, together_client):
# Define the mock response directly within the patch
mock_function = MagicMock(name="currency_calculator")
mock_function.name = "currency_calculator"
mock_function.arguments = '{"base_currency": "EUR", "quote_currency": "USD", "base_amount": 123.45}'
# Define the mock response directly within the patch
mock_create.return_value = MagicMock(
choices=[
MagicMock(
finish_reason="tool_calls",
message=MagicMock(
content="", # Message is empty for tool responses
tool_calls=[MagicMock(id="gdRdrvnHh", function=mock_function)],
),
)
],
id="mock_together_response_id",
model="meta-llama/Llama-3-8b-chat-hf",
usage=MagicMock(prompt_tokens=10, completion_tokens=20),
)
# Test parameters
converted_functions = [
{
"type": "function",
"function": {
"description": "Currency exchange calculator.",
"name": "currency_calculator",
"parameters": {
"type": "object",
"properties": {
"base_amount": {"type": "number", "description": "Amount of currency in base_currency"},
"base_currency": {
"enum": ["USD", "EUR"],
"type": "string",
"default": "USD",
"description": "Base currency",
},
"quote_currency": {
"enum": ["USD", "EUR"],
"type": "string",
"default": "EUR",
"description": "Quote currency",
},
},
"required": ["base_amount"],
},
},
}
]
together_messages = [
{
"role": "user",
"content": "How much is 123.45 EUR in USD?",
"name": None,
"tool_calls": None,
"tool_call_id": None,
},
]
# Call the create method (which is now mocked)
response = together_client.create(
{"messages": together_messages, "tools": converted_functions, "model": "meta-llama/Llama-3-8b-chat-hf"}
)
# Assertions to check if response is structured as expected
assert response.choices[0].message.content == ""
assert response.choices[0].message.tool_calls[0].function.name == "currency_calculator"

File diff suppressed because one or more lines are too long

View File

@ -1,182 +0,0 @@
# Together AI
This cloud-based proxy server example, using [together.ai](https://www.together.ai/), is a group chat between a Python developer
and a code reviewer, who are given a coding task.
Start by [installing AutoGen](/docs/installation/) and getting your [together.ai API key](https://api.together.xyz/settings/profile).
Put your together.ai API key in an environment variable, TOGETHER_API_KEY.
Linux / Mac OSX:
```bash
export TOGETHER_API_KEY=YourTogetherAIKeyHere
```
Windows (command prompt):
```powershell
set TOGETHER_API_KEY=YourTogetherAIKeyHere
```
Create your LLM configuration, with the [model you want](https://docs.together.ai/docs/inference-models).
```python
import os
config_list = [
{
# Available together.ai model strings:
# https://docs.together.ai/docs/inference-models
"model": "mistralai/Mistral-7B-Instruct-v0.1",
"api_key": os.environ['TOGETHER_API_KEY'],
"base_url": "https://api.together.xyz/v1"
}
]
```
## Construct Agents
```python
from pathlib import Path
from autogen import AssistantAgent, UserProxyAgent
from autogen.coding import LocalCommandLineCodeExecutor
work_dir = Path("groupchat")
work_dir.mkdir(exist_ok=True)
# Create local command line code executor.
code_executor = LocalCommandLineCodeExecutor(work_dir=work_dir)
# User Proxy will execute code and finish the chat upon typing 'exit'
user_proxy = UserProxyAgent(
name="UserProxy",
system_message="A human admin",
code_execution_config={
"last_n_messages": 2,
"executor": code_executor,
},
human_input_mode="TERMINATE",
is_termination_msg=lambda x: "TERMINATE" in x.get("content"),
)
# Python Coder agent
coder = AssistantAgent(
name="softwareCoder",
description="Software Coder, writes Python code as required and reiterates with feedback from the Code Reviewer.",
system_message="You are a senior Python developer, a specialist in writing succinct Python functions.",
llm_config={"config_list": config_list},
)
# Code Reviewer agent
reviewer = AssistantAgent(
name="codeReviewer",
description="Code Reviewer, reviews written code for correctness, efficiency, and security. Asks the Software Coder to address issues.",
system_message="You are a Code Reviewer, experienced in checking code for correctness, efficiency, and security. Review and provide feedback to the Software Coder until you are satisfied, then return the word TERMINATE",
is_termination_msg=lambda x: "TERMINATE" in x.get("content"),
llm_config={"config_list": config_list},
)
```
## Establish the group chat
```python
from autogen import GroupChat, GroupChatManager
# Establish the Group Chat and disallow a speaker being selected consecutively
groupchat = GroupChat(agents=[user_proxy, coder, reviewer], messages=[], max_round=12, allow_repeat_speaker=False)
# Manages the group of multiple agents
manager = GroupChatManager(groupchat=groupchat, llm_config={"config_list": config_list})
```
## Start Chat
```python
from autogen.cache import Cache
# Cache LLM responses.
with Cache.disk() as cache:
# Start the chat with a request to write a function
user_proxy.initiate_chat(
manager,
message="Write a Python function for the Fibonacci sequence, the function will have one parameter for the number in the sequence, which the function will return the Fibonacci number for.",
cache=cache,
)
# type exit to terminate the chat
```
Output:
```` text
UserProxy (to chat_manager):
Write a Python function for the Fibonacci sequence, the function will have one parameter for the number in the sequence, which the function will return the Fibonacci number for.
--------------------------------------------------------------------------------
softwareCoder (to chat_manager):
Sure, here is a simple Python function that uses recursion to calculate the Fibonacci number:
```python
def fibonacci(n):
if n <= 0:
return "Input should be a positive integer."
elif n == 1:
return 0
elif n == 2:
return 1
else:
return fibonacci(n-1) + fibonacci(n-2)
```
This function takes an integer `n` as input and returns the `n`th number in the Fibonacci sequence. The Fibonacci sequence is a series of numbers in which each number is the sum of the two preceding ones, usually starting with 0 and 1.
Note that this implementation uses recursion and may not be efficient for large values of `n`. In such cases, an iterative approach or memoization would be more appropriate.
--------------------------------------------------------------------------------
codeReviewer (to chat_manager):
I see a couple of issues with the current implementation of the `fibonacci` function:
1. The function does not handle negative inputs correctly. Currently, it returns a string message for any input less than or equal to 0. It would be better to raise a `ValueError` or return a more informative message.
2. The function uses recursion to calculate the Fibonacci number, which can be inefficient for large inputs. A more efficient approach would be to use an iterative approach or memoization.
Here's an updated implementation that addresses these issues:
```python
def fibonacci(n):
if n <= 0:
raise ValueError("Input should be a positive integer.")
elif n == 1:
return 0
elif n == 2:
return 1
else:
a, b = 0, 1
for _ in range(n - 2):
a, b = b, a + b
return b
```
This implementation uses a loop to calculate the Fibonacci number iteratively, which is more efficient than the recursive approach. It also raises a `ValueError` for negative inputs, which is a more appropriate way to handle invalid inputs.
--------------------------------------------------------------------------------
>>>>>>>> USING AUTO REPLY...
>>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...
UserProxy (to chat_manager):
exitcode: 0 (execution succeeded)
Code output:
--------------------------------------------------------------------------------
codeReviewer (to chat_manager):
I'm glad the updated implementation addresses the issues with the original code. Let me know if you have any further questions or if there's anything else I can help you with.
To terminate the conversation, please type "TERMINATE".
--------------------------------------------------------------------------------
Please give feedback to chat_manager. Press enter or type 'exit' to stop the conversation: exit
````