mirror of https://github.com/microsoft/autogen.git
Noctus contribute (#961)
* indentation space #884 changing indentation of python code blocks * indentation space #884 changing indentation of python code blocks 2
This commit is contained in:
parent
45641000c0
commit
5616ce0a54
|
@ -144,36 +144,36 @@ import rgf
|
|||
|
||||
|
||||
class MyRegularizedGreedyForest(SKLearnEstimator):
|
||||
def __init__(self, task="binary", **config):
|
||||
super().__init__(task, **config)
|
||||
def __init__(self, task="binary", **config):
|
||||
super().__init__(task, **config)
|
||||
|
||||
if task in CLASSIFICATION:
|
||||
from rgf.sklearn import RGFClassifier
|
||||
if task in CLASSIFICATION:
|
||||
from rgf.sklearn import RGFClassifier
|
||||
|
||||
self.estimator_class = RGFClassifier
|
||||
else:
|
||||
from rgf.sklearn import RGFRegressor
|
||||
self.estimator_class = RGFClassifier
|
||||
else:
|
||||
from rgf.sklearn import RGFRegressor
|
||||
|
||||
self.estimator_class = RGFRegressor
|
||||
self.estimator_class = RGFRegressor
|
||||
|
||||
@classmethod
|
||||
def search_space(cls, data_size, task):
|
||||
space = {
|
||||
"max_leaf": {
|
||||
"domain": tune.lograndint(lower=4, upper=data_size),
|
||||
"low_cost_init_value": 4,
|
||||
},
|
||||
"n_iter": {
|
||||
"domain": tune.lograndint(lower=1, upper=data_size),
|
||||
"low_cost_init_value": 1,
|
||||
},
|
||||
"learning_rate": {"domain": tune.loguniform(lower=0.01, upper=20.0)},
|
||||
"min_samples_leaf": {
|
||||
"domain": tune.lograndint(lower=1, upper=20),
|
||||
"init_value": 20,
|
||||
},
|
||||
}
|
||||
return space
|
||||
@classmethod
|
||||
def search_space(cls, data_size, task):
|
||||
space = {
|
||||
"max_leaf": {
|
||||
"domain": tune.lograndint(lower=4, upper=data_size),
|
||||
"low_cost_init_value": 4,
|
||||
},
|
||||
"n_iter": {
|
||||
"domain": tune.lograndint(lower=1, upper=data_size),
|
||||
"low_cost_init_value": 1,
|
||||
},
|
||||
"learning_rate": {"domain": tune.loguniform(lower=0.01, upper=20.0)},
|
||||
"min_samples_leaf": {
|
||||
"domain": tune.lograndint(lower=1, upper=20),
|
||||
"init_value": 20,
|
||||
},
|
||||
}
|
||||
return space
|
||||
```
|
||||
|
||||
In the constructor, we set `self.estimator_class` as `RGFClassifier` or `RGFRegressor` according to the task type. If the estimator you want to tune does not have a scikit-learn style `fit()` and `predict()` API, you can override the `fit()` and `predict()` function of `flaml.model.BaseEstimator`, like [XGBoostEstimator](../reference/automl/model#xgboostestimator-objects). Importantly, we also add the `task="binary"` parameter in the signature of `__init__` so that it doesn't get grouped together with the `**config` kwargs that determines the parameters with which the underlying estimator (`self.estimator_class`) is constructed. If your estimator doesn't use one of the parameters that it is passed, for example some regressors in `scikit-learn` don't use the `n_jobs` parameter, it is enough to add `n_jobs=None` to the signature so that it is ignored by the `**config` dict.
|
||||
|
@ -208,18 +208,18 @@ from flaml.automl.model import XGBoostEstimator
|
|||
|
||||
|
||||
def logregobj(preds, dtrain):
|
||||
labels = dtrain.get_label()
|
||||
preds = 1.0 / (1.0 + np.exp(-preds)) # transform raw leaf weight
|
||||
grad = preds - labels
|
||||
hess = preds * (1.0 - preds)
|
||||
return grad, hess
|
||||
labels = dtrain.get_label()
|
||||
preds = 1.0 / (1.0 + np.exp(-preds)) # transform raw leaf weight
|
||||
grad = preds - labels
|
||||
hess = preds * (1.0 - preds)
|
||||
return grad, hess
|
||||
|
||||
|
||||
class MyXGB1(XGBoostEstimator):
|
||||
"""XGBoostEstimator with logregobj as the objective function"""
|
||||
"""XGBoostEstimator with logregobj as the objective function"""
|
||||
|
||||
def __init__(self, **config):
|
||||
super().__init__(objective=logregobj, **config)
|
||||
def __init__(self, **config):
|
||||
super().__init__(objective=logregobj, **config)
|
||||
```
|
||||
|
||||
We override the constructor and set the training objective as a custom function `logregobj`. The hyperparameters and their search range do not change. For another example,
|
||||
|
|
Loading…
Reference in New Issue