[.Net] Add AutoGen.AzureAIInference (#3332)

* add AutoGen.AzureAIInference

* add tests

* update readme

* fix format
This commit is contained in:
Xiaoyun Zhang 2024-08-08 16:33:14 -07:00 committed by GitHub
parent 5732b3e766
commit 4dab28c769
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
22 changed files with 1900 additions and 102 deletions

View File

@ -68,6 +68,12 @@ Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "AutoGen.OpenAI.Sample", "sa
EndProject
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "AutoGen.WebAPI.Sample", "sample\AutoGen.WebAPI.Sample\AutoGen.WebAPI.Sample.csproj", "{12079C18-A519-403F-BBFD-200A36A0C083}"
EndProject
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "AutoGen.AzureAIInference", "src\AutoGen.AzureAIInference\AutoGen.AzureAIInference.csproj", "{5C45981D-1319-4C25-935C-83D411CB28DF}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "AutoGen.AzureAIInference.Tests", "test\AutoGen.AzureAIInference.Tests\AutoGen.AzureAIInference.Tests.csproj", "{5970868F-831E-418F-89A9-4EC599563E16}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "AutoGen.Tests.Share", "test\AutoGen.Test.Share\AutoGen.Tests.Share.csproj", "{143725E2-206C-4D37-93E4-9EDF699826B2}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Any CPU = Debug|Any CPU
@ -194,6 +200,18 @@ Global
{12079C18-A519-403F-BBFD-200A36A0C083}.Debug|Any CPU.Build.0 = Debug|Any CPU
{12079C18-A519-403F-BBFD-200A36A0C083}.Release|Any CPU.ActiveCfg = Release|Any CPU
{12079C18-A519-403F-BBFD-200A36A0C083}.Release|Any CPU.Build.0 = Release|Any CPU
{5C45981D-1319-4C25-935C-83D411CB28DF}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{5C45981D-1319-4C25-935C-83D411CB28DF}.Debug|Any CPU.Build.0 = Debug|Any CPU
{5C45981D-1319-4C25-935C-83D411CB28DF}.Release|Any CPU.ActiveCfg = Release|Any CPU
{5C45981D-1319-4C25-935C-83D411CB28DF}.Release|Any CPU.Build.0 = Release|Any CPU
{5970868F-831E-418F-89A9-4EC599563E16}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{5970868F-831E-418F-89A9-4EC599563E16}.Debug|Any CPU.Build.0 = Debug|Any CPU
{5970868F-831E-418F-89A9-4EC599563E16}.Release|Any CPU.ActiveCfg = Release|Any CPU
{5970868F-831E-418F-89A9-4EC599563E16}.Release|Any CPU.Build.0 = Release|Any CPU
{143725E2-206C-4D37-93E4-9EDF699826B2}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{143725E2-206C-4D37-93E4-9EDF699826B2}.Debug|Any CPU.Build.0 = Debug|Any CPU
{143725E2-206C-4D37-93E4-9EDF699826B2}.Release|Any CPU.ActiveCfg = Release|Any CPU
{143725E2-206C-4D37-93E4-9EDF699826B2}.Release|Any CPU.Build.0 = Release|Any CPU
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
@ -229,6 +247,9 @@ Global
{6B82F26D-5040-4453-B21B-C8D1F913CE4C} = {F823671B-3ECA-4AE6-86DA-25E920D3FE64}
{0E635268-351C-4A6B-A28D-593D868C2CA4} = {FBFEAD1F-29EB-4D99-A672-0CD8473E10B9}
{12079C18-A519-403F-BBFD-200A36A0C083} = {FBFEAD1F-29EB-4D99-A672-0CD8473E10B9}
{5C45981D-1319-4C25-935C-83D411CB28DF} = {18BF8DD7-0585-48BF-8F97-AD333080CE06}
{5970868F-831E-418F-89A9-4EC599563E16} = {F823671B-3ECA-4AE6-86DA-25E920D3FE64}
{143725E2-206C-4D37-93E4-9EDF699826B2} = {F823671B-3ECA-4AE6-86DA-25E920D3FE64}
EndGlobalSection
GlobalSection(ExtensibilityGlobals) = postSolution
SolutionGuid = {93384647-528D-46C8-922C-8DB36A382F0B}

View File

@ -15,6 +15,7 @@
<MicrosoftASPNETCoreVersion>8.0.4</MicrosoftASPNETCoreVersion>
<GoogleCloudAPIPlatformVersion>3.0.0</GoogleCloudAPIPlatformVersion>
<JsonSchemaVersion>4.3.0.2</JsonSchemaVersion>
<AzureAIInferenceVersion>1.0.0-beta.1</AzureAIInferenceVersion>
<PowershellSDKVersion>7.4.4</PowershellSDKVersion>
</PropertyGroup>
</Project>

View File

@ -0,0 +1,202 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// ChatCompletionsClientAgent.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Text.Json;
using System.Threading;
using System.Threading.Tasks;
using AutoGen.AzureAIInference.Extension;
using AutoGen.Core;
using Azure.AI.Inference;
namespace AutoGen.AzureAIInference;
/// <summary>
/// ChatCompletions client agent. This agent is a thin wrapper around <see cref="ChatCompletionsClient"/> to provide a simple interface for chat completions.
/// <para><see cref="ChatCompletionsClientAgent" /> supports the following message types:</para>
/// <list type="bullet">
/// <item>
/// <see cref="MessageEnvelope{T}"/> where T is <see cref="ChatRequestMessage"/>: chat request message.
/// </item>
/// </list>
/// <para><see cref="ChatCompletionsClientAgent" /> returns the following message types:</para>
/// <list type="bullet">
/// <item>
/// <see cref="MessageEnvelope{T}"/> where T is <see cref="ChatResponseMessage"/>: chat response message.
/// <see cref="MessageEnvelope{T}"/> where T is <see cref="StreamingChatCompletionsUpdate"/>: streaming chat completions update.
/// </item>
/// </list>
/// </summary>
public class ChatCompletionsClientAgent : IStreamingAgent
{
private readonly ChatCompletionsClient chatCompletionsClient;
private readonly ChatCompletionsOptions options;
private readonly string systemMessage;
/// <summary>
/// Create a new instance of <see cref="ChatCompletionsClientAgent"/>.
/// </summary>
/// <param name="chatCompletionsClient">chat completions client</param>
/// <param name="name">agent name</param>
/// <param name="modelName">model name. e.g. gpt-turbo-3.5</param>
/// <param name="systemMessage">system message</param>
/// <param name="temperature">temperature</param>
/// <param name="maxTokens">max tokens to generated</param>
/// <param name="responseFormat">response format, set it to <see cref="ChatCompletionsResponseFormatJSON"/> to enable json mode.</param>
/// <param name="seed">seed to use, set it to enable deterministic output</param>
/// <param name="functions">functions</param>
public ChatCompletionsClientAgent(
ChatCompletionsClient chatCompletionsClient,
string name,
string modelName,
string systemMessage = "You are a helpful AI assistant",
float temperature = 0.7f,
int maxTokens = 1024,
int? seed = null,
ChatCompletionsResponseFormat? responseFormat = null,
IEnumerable<FunctionDefinition>? functions = null)
: this(
chatCompletionsClient: chatCompletionsClient,
name: name,
options: CreateChatCompletionOptions(modelName, temperature, maxTokens, seed, responseFormat, functions),
systemMessage: systemMessage)
{
}
/// <summary>
/// Create a new instance of <see cref="ChatCompletionsClientAgent"/>.
/// </summary>
/// <param name="chatCompletionsClient">chat completions client</param>
/// <param name="name">agent name</param>
/// <param name="systemMessage">system message</param>
/// <param name="options">chat completion option. The option can't contain messages</param>
public ChatCompletionsClientAgent(
ChatCompletionsClient chatCompletionsClient,
string name,
ChatCompletionsOptions options,
string systemMessage = "You are a helpful AI assistant")
{
if (options.Messages is { Count: > 0 })
{
throw new ArgumentException("Messages should not be provided in options");
}
this.chatCompletionsClient = chatCompletionsClient;
this.Name = name;
this.options = options;
this.systemMessage = systemMessage;
}
public string Name { get; }
public async Task<IMessage> GenerateReplyAsync(
IEnumerable<IMessage> messages,
GenerateReplyOptions? options = null,
CancellationToken cancellationToken = default)
{
var settings = this.CreateChatCompletionsOptions(options, messages);
var reply = await this.chatCompletionsClient.CompleteAsync(settings, cancellationToken: cancellationToken);
return new MessageEnvelope<ChatCompletions>(reply, from: this.Name);
}
public async IAsyncEnumerable<IMessage> GenerateStreamingReplyAsync(
IEnumerable<IMessage> messages,
GenerateReplyOptions? options = null,
[EnumeratorCancellation] CancellationToken cancellationToken = default)
{
var settings = this.CreateChatCompletionsOptions(options, messages);
var response = await this.chatCompletionsClient.CompleteStreamingAsync(settings, cancellationToken);
await foreach (var update in response.WithCancellation(cancellationToken))
{
yield return new MessageEnvelope<StreamingChatCompletionsUpdate>(update, from: this.Name);
}
}
private ChatCompletionsOptions CreateChatCompletionsOptions(GenerateReplyOptions? options, IEnumerable<IMessage> messages)
{
var oaiMessages = messages.Select(m => m switch
{
IMessage<ChatRequestMessage> chatRequestMessage => chatRequestMessage.Content,
_ => throw new ArgumentException("Invalid message type")
});
// add system message if there's no system message in messages
if (!oaiMessages.Any(m => m is ChatRequestSystemMessage))
{
oaiMessages = new[] { new ChatRequestSystemMessage(systemMessage) }.Concat(oaiMessages);
}
// clone the options by serializing and deserializing
var json = JsonSerializer.Serialize(this.options);
var settings = JsonSerializer.Deserialize<ChatCompletionsOptions>(json) ?? throw new InvalidOperationException("Failed to clone options");
foreach (var m in oaiMessages)
{
settings.Messages.Add(m);
}
settings.Temperature = options?.Temperature ?? settings.Temperature;
settings.MaxTokens = options?.MaxToken ?? settings.MaxTokens;
foreach (var functions in this.options.Tools)
{
settings.Tools.Add(functions);
}
foreach (var stopSequence in this.options.StopSequences)
{
settings.StopSequences.Add(stopSequence);
}
var openAIFunctionDefinitions = options?.Functions?.Select(f => f.ToAzureAIInferenceFunctionDefinition()).ToList();
if (openAIFunctionDefinitions is { Count: > 0 })
{
foreach (var f in openAIFunctionDefinitions)
{
settings.Tools.Add(new ChatCompletionsFunctionToolDefinition(f));
}
}
if (options?.StopSequence is var sequence && sequence is { Length: > 0 })
{
foreach (var seq in sequence)
{
settings.StopSequences.Add(seq);
}
}
return settings;
}
private static ChatCompletionsOptions CreateChatCompletionOptions(
string modelName,
float temperature = 0.7f,
int maxTokens = 1024,
int? seed = null,
ChatCompletionsResponseFormat? responseFormat = null,
IEnumerable<FunctionDefinition>? functions = null)
{
var options = new ChatCompletionsOptions()
{
Model = modelName,
Temperature = temperature,
MaxTokens = maxTokens,
Seed = seed,
ResponseFormat = responseFormat,
};
if (functions is not null)
{
foreach (var f in functions)
{
options.Tools.Add(new ChatCompletionsFunctionToolDefinition(f));
}
}
return options;
}
}

View File

@ -0,0 +1,25 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<TargetFrameworks>$(PackageTargetFrameworks)</TargetFrameworks>
<RootNamespace>AutoGen.AzureAIInference</RootNamespace>
</PropertyGroup>
<Import Project="$(RepoRoot)/nuget/nuget-package.props" />
<PropertyGroup>
<!-- NuGet Package Settings -->
<Title>AutoGen.AzureAIInference</Title>
<Description>
Azure AI Inference Intergration for AutoGen.
</Description>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Azure.AI.Inference" Version="$(AzureAIInferenceVersion)" />
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\AutoGen.Core\AutoGen.Core.csproj" />
</ItemGroup>
</Project>

View File

@ -0,0 +1,39 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// ChatComptionClientAgentExtension.cs
using AutoGen.Core;
namespace AutoGen.AzureAIInference.Extension;
public static class ChatComptionClientAgentExtension
{
/// <summary>
/// Register an <see cref="AzureAIInferenceChatRequestMessageConnector"/> to the <see cref="ChatCompletionsClientAgent"/>
/// </summary>
/// <param name="connector">the connector to use. If null, a new instance of <see cref="AzureAIInferenceChatRequestMessageConnector"/> will be created.</param>
public static MiddlewareStreamingAgent<ChatCompletionsClientAgent> RegisterMessageConnector(
this ChatCompletionsClientAgent agent, AzureAIInferenceChatRequestMessageConnector? connector = null)
{
if (connector == null)
{
connector = new AzureAIInferenceChatRequestMessageConnector();
}
return agent.RegisterStreamingMiddleware(connector);
}
/// <summary>
/// Register an <see cref="AzureAIInferenceChatRequestMessageConnector"/> to the <see cref="MiddlewareAgent{T}"/> where T is <see cref="ChatCompletionsClientAgent"/>
/// </summary>
/// <param name="connector">the connector to use. If null, a new instance of <see cref="AzureAIInferenceChatRequestMessageConnector"/> will be created.</param>
public static MiddlewareStreamingAgent<ChatCompletionsClientAgent> RegisterMessageConnector(
this MiddlewareStreamingAgent<ChatCompletionsClientAgent> agent, AzureAIInferenceChatRequestMessageConnector? connector = null)
{
if (connector == null)
{
connector = new AzureAIInferenceChatRequestMessageConnector();
}
return agent.RegisterStreamingMiddleware(connector);
}
}

View File

@ -0,0 +1,64 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// FunctionContractExtension.cs
using System;
using System.Collections.Generic;
using AutoGen.Core;
using Azure.AI.Inference;
using Json.Schema;
using Json.Schema.Generation;
namespace AutoGen.AzureAIInference.Extension;
public static class FunctionContractExtension
{
/// <summary>
/// Convert a <see cref="FunctionContract"/> to a <see cref="FunctionDefinition"/> that can be used in gpt funciton call.
/// </summary>
/// <param name="functionContract">function contract</param>
/// <returns><see cref="FunctionDefinition"/></returns>
public static FunctionDefinition ToAzureAIInferenceFunctionDefinition(this FunctionContract functionContract)
{
var functionDefinition = new FunctionDefinition
{
Name = functionContract.Name,
Description = functionContract.Description,
};
var requiredParameterNames = new List<string>();
var propertiesSchemas = new Dictionary<string, JsonSchema>();
var propertySchemaBuilder = new JsonSchemaBuilder().Type(SchemaValueType.Object);
foreach (var param in functionContract.Parameters ?? [])
{
if (param.Name is null)
{
throw new InvalidOperationException("Parameter name cannot be null");
}
var schemaBuilder = new JsonSchemaBuilder().FromType(param.ParameterType ?? throw new ArgumentNullException(nameof(param.ParameterType)));
if (param.Description != null)
{
schemaBuilder = schemaBuilder.Description(param.Description);
}
if (param.IsRequired)
{
requiredParameterNames.Add(param.Name);
}
var schema = schemaBuilder.Build();
propertiesSchemas[param.Name] = schema;
}
propertySchemaBuilder = propertySchemaBuilder.Properties(propertiesSchemas);
propertySchemaBuilder = propertySchemaBuilder.Required(requiredParameterNames);
var option = new System.Text.Json.JsonSerializerOptions()
{
PropertyNamingPolicy = System.Text.Json.JsonNamingPolicy.CamelCase
};
functionDefinition.Parameters = BinaryData.FromObjectAsJson(propertySchemaBuilder.Build(), option);
return functionDefinition;
}
}

View File

@ -0,0 +1,302 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// AzureAIInferenceChatRequestMessageConnector.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Threading;
using System.Threading.Tasks;
using AutoGen.Core;
using Azure.AI.Inference;
namespace AutoGen.AzureAIInference;
/// <summary>
/// This middleware converts the incoming <see cref="IMessage"/> to <see cref="IMessage{ChatRequestMessage}" /> where T is <see cref="ChatRequestMessage"/> before sending to agent. And converts the output <see cref="ChatResponseMessage"/> to <see cref="IMessage"/> after receiving from agent.
/// <para>Supported <see cref="IMessage"/> are</para>
/// <para>- <see cref="TextMessage"/></para>
/// <para>- <see cref="ImageMessage"/></para>
/// <para>- <see cref="MultiModalMessage"/></para>
/// <para>- <see cref="ToolCallMessage"/></para>
/// <para>- <see cref="ToolCallResultMessage"/></para>
/// <para>- <see cref="IMessage{ChatRequestMessage}"/> where T is <see cref="ChatRequestMessage"/></para>
/// <para>- <see cref="AggregateMessage{TMessage1, TMessage2}"/> where TMessage1 is <see cref="ToolCallMessage"/> and TMessage2 is <see cref="ToolCallResultMessage"/></para>
/// </summary>
public class AzureAIInferenceChatRequestMessageConnector : IStreamingMiddleware
{
private bool strictMode = false;
/// <summary>
/// Create a new instance of <see cref="AzureAIInferenceChatRequestMessageConnector"/>.
/// </summary>
/// <param name="strictMode">If true, <see cref="AzureAIInferenceChatRequestMessageConnector"/> will throw an <see cref="InvalidOperationException"/>
/// When the message type is not supported. If false, it will ignore the unsupported message type.</param>
public AzureAIInferenceChatRequestMessageConnector(bool strictMode = false)
{
this.strictMode = strictMode;
}
public string? Name => nameof(AzureAIInferenceChatRequestMessageConnector);
public async Task<IMessage> InvokeAsync(MiddlewareContext context, IAgent agent, CancellationToken cancellationToken = default)
{
var chatMessages = ProcessIncomingMessages(agent, context.Messages);
var reply = await agent.GenerateReplyAsync(chatMessages, context.Options, cancellationToken);
return PostProcessMessage(reply);
}
public async IAsyncEnumerable<IMessage> InvokeAsync(
MiddlewareContext context,
IStreamingAgent agent,
[EnumeratorCancellation] CancellationToken cancellationToken = default)
{
var chatMessages = ProcessIncomingMessages(agent, context.Messages);
var streamingReply = agent.GenerateStreamingReplyAsync(chatMessages, context.Options, cancellationToken);
string? currentToolName = null;
await foreach (var reply in streamingReply)
{
if (reply is IMessage<StreamingChatCompletionsUpdate> update)
{
if (update.Content.FunctionName is string functionName)
{
currentToolName = functionName;
}
else if (update.Content.ToolCallUpdate is StreamingFunctionToolCallUpdate toolCallUpdate && toolCallUpdate.Name is string toolCallName)
{
currentToolName = toolCallName;
}
var postProcessMessage = PostProcessStreamingMessage(update, currentToolName);
if (postProcessMessage != null)
{
yield return postProcessMessage;
}
}
else
{
if (this.strictMode)
{
throw new InvalidOperationException($"Invalid streaming message type {reply.GetType().Name}");
}
else
{
yield return reply;
}
}
}
}
public IMessage PostProcessMessage(IMessage message)
{
return message switch
{
IMessage<ChatResponseMessage> m => PostProcessChatResponseMessage(m.Content, m.From),
IMessage<ChatCompletions> m => PostProcessChatCompletions(m),
_ when strictMode is false => message,
_ => throw new InvalidOperationException($"Invalid return message type {message.GetType().Name}"),
};
}
public IMessage? PostProcessStreamingMessage(IMessage<StreamingChatCompletionsUpdate> update, string? currentToolName)
{
if (update.Content.ContentUpdate is string contentUpdate && string.IsNullOrEmpty(contentUpdate) == false)
{
// text message
return new TextMessageUpdate(Role.Assistant, contentUpdate, from: update.From);
}
else if (update.Content.FunctionName is string functionName)
{
return new ToolCallMessageUpdate(functionName, string.Empty, from: update.From);
}
else if (update.Content.FunctionArgumentsUpdate is string functionArgumentsUpdate && currentToolName is string)
{
return new ToolCallMessageUpdate(currentToolName, functionArgumentsUpdate, from: update.From);
}
else if (update.Content.ToolCallUpdate is StreamingFunctionToolCallUpdate tooCallUpdate && currentToolName is string)
{
return new ToolCallMessageUpdate(tooCallUpdate.Name ?? currentToolName, tooCallUpdate.ArgumentsUpdate, from: update.From);
}
else
{
return null;
}
}
private IMessage PostProcessChatCompletions(IMessage<ChatCompletions> message)
{
// throw exception if prompt filter results is not null
if (message.Content.Choices[0].FinishReason == CompletionsFinishReason.ContentFiltered)
{
throw new InvalidOperationException("The content is filtered because its potential risk. Please try another input.");
}
return PostProcessChatResponseMessage(message.Content.Choices[0].Message, message.From);
}
private IMessage PostProcessChatResponseMessage(ChatResponseMessage chatResponseMessage, string? from)
{
var textContent = chatResponseMessage.Content;
if (chatResponseMessage.ToolCalls.Where(tc => tc is ChatCompletionsFunctionToolCall).Any())
{
var functionToolCalls = chatResponseMessage.ToolCalls
.Where(tc => tc is ChatCompletionsFunctionToolCall)
.Select(tc => (ChatCompletionsFunctionToolCall)tc);
var toolCalls = functionToolCalls.Select(tc => new ToolCall(tc.Name, tc.Arguments) { ToolCallId = tc.Id });
return new ToolCallMessage(toolCalls, from)
{
Content = textContent,
};
}
if (textContent is string content && !string.IsNullOrEmpty(content))
{
return new TextMessage(Role.Assistant, content, from);
}
throw new InvalidOperationException("Invalid ChatResponseMessage");
}
public IEnumerable<IMessage> ProcessIncomingMessages(IAgent agent, IEnumerable<IMessage> messages)
{
return messages.SelectMany<IMessage, IMessage>(m =>
{
if (m is IMessage<ChatRequestMessage> crm)
{
return [crm];
}
else
{
var chatRequestMessages = m switch
{
TextMessage textMessage => ProcessTextMessage(agent, textMessage),
ImageMessage imageMessage when (imageMessage.From is null || imageMessage.From != agent.Name) => ProcessImageMessage(agent, imageMessage),
MultiModalMessage multiModalMessage when (multiModalMessage.From is null || multiModalMessage.From != agent.Name) => ProcessMultiModalMessage(agent, multiModalMessage),
ToolCallMessage toolCallMessage when (toolCallMessage.From is null || toolCallMessage.From == agent.Name) => ProcessToolCallMessage(agent, toolCallMessage),
ToolCallResultMessage toolCallResultMessage => ProcessToolCallResultMessage(toolCallResultMessage),
AggregateMessage<ToolCallMessage, ToolCallResultMessage> aggregateMessage => ProcessFunctionCallMiddlewareMessage(agent, aggregateMessage),
_ when strictMode is false => [],
_ => throw new InvalidOperationException($"Invalid message type: {m.GetType().Name}"),
};
if (chatRequestMessages.Any())
{
return chatRequestMessages.Select(cm => MessageEnvelope.Create(cm, m.From));
}
else
{
return [m];
}
}
});
}
private IEnumerable<ChatRequestMessage> ProcessTextMessage(IAgent agent, TextMessage message)
{
if (message.Role == Role.System)
{
return [new ChatRequestSystemMessage(message.Content)];
}
if (agent.Name == message.From)
{
return [new ChatRequestAssistantMessage { Content = message.Content }];
}
else
{
return message.From switch
{
null when message.Role == Role.User => [new ChatRequestUserMessage(message.Content)],
null when message.Role == Role.Assistant => [new ChatRequestAssistantMessage() { Content = message.Content }],
null => throw new InvalidOperationException("Invalid Role"),
_ => [new ChatRequestUserMessage(message.Content)]
};
}
}
private IEnumerable<ChatRequestMessage> ProcessImageMessage(IAgent agent, ImageMessage message)
{
if (agent.Name == message.From)
{
// image message from assistant is not supported
throw new ArgumentException("ImageMessage is not supported when message.From is the same with agent");
}
var imageContentItem = this.CreateChatMessageImageContentItemFromImageMessage(message);
return [new ChatRequestUserMessage([imageContentItem])];
}
private IEnumerable<ChatRequestMessage> ProcessMultiModalMessage(IAgent agent, MultiModalMessage message)
{
if (agent.Name == message.From)
{
// image message from assistant is not supported
throw new ArgumentException("MultiModalMessage is not supported when message.From is the same with agent");
}
IEnumerable<ChatMessageContentItem> items = message.Content.Select<IMessage, ChatMessageContentItem>(ci => ci switch
{
TextMessage text => new ChatMessageTextContentItem(text.Content),
ImageMessage image => this.CreateChatMessageImageContentItemFromImageMessage(image),
_ => throw new NotImplementedException(),
});
return [new ChatRequestUserMessage(items)];
}
private ChatMessageImageContentItem CreateChatMessageImageContentItemFromImageMessage(ImageMessage message)
{
return message.Data is null && message.Url is not null
? new ChatMessageImageContentItem(new Uri(message.Url))
: new ChatMessageImageContentItem(message.Data, message.Data?.MediaType);
}
private IEnumerable<ChatRequestMessage> ProcessToolCallMessage(IAgent agent, ToolCallMessage message)
{
if (message.From is not null && message.From != agent.Name)
{
throw new ArgumentException("ToolCallMessage is not supported when message.From is not the same with agent");
}
var toolCall = message.ToolCalls.Select((tc, i) => new ChatCompletionsFunctionToolCall(tc.ToolCallId ?? $"{tc.FunctionName}_{i}", tc.FunctionName, tc.FunctionArguments));
var textContent = message.GetContent() ?? string.Empty;
var chatRequestMessage = new ChatRequestAssistantMessage() { Content = textContent };
foreach (var tc in toolCall)
{
chatRequestMessage.ToolCalls.Add(tc);
}
return [chatRequestMessage];
}
private IEnumerable<ChatRequestMessage> ProcessToolCallResultMessage(ToolCallResultMessage message)
{
return message.ToolCalls
.Where(tc => tc.Result is not null)
.Select((tc, i) => new ChatRequestToolMessage(tc.Result, tc.ToolCallId ?? $"{tc.FunctionName}_{i}"));
}
private IEnumerable<ChatRequestMessage> ProcessFunctionCallMiddlewareMessage(IAgent agent, AggregateMessage<ToolCallMessage, ToolCallResultMessage> aggregateMessage)
{
if (aggregateMessage.From is not null && aggregateMessage.From != agent.Name)
{
// convert as user message
var resultMessage = aggregateMessage.Message2;
return resultMessage.ToolCalls.Select(tc => new ChatRequestUserMessage(tc.Result));
}
else
{
var toolCallMessage1 = aggregateMessage.Message1;
var toolCallResultMessage = aggregateMessage.Message2;
var assistantMessage = this.ProcessToolCallMessage(agent, toolCallMessage1);
var toolCallResults = this.ProcessToolCallResultMessage(toolCallResultMessage);
return assistantMessage.Concat(toolCallResults);
}
}
}

View File

@ -15,6 +15,8 @@
</PropertyGroup>
<ItemGroup>
<ProjectReference Include="..\AutoGen.Anthropic\AutoGen.Anthropic.csproj" />
<ProjectReference Include="..\AutoGen.AzureAIInference\AutoGen.AzureAIInference.csproj" />
<ProjectReference Include="..\AutoGen.LMStudio\AutoGen.LMStudio.csproj" />
<ProjectReference Include="..\AutoGen.Mistral\AutoGen.Mistral.csproj" />
<ProjectReference Include="..\AutoGen.Ollama\AutoGen.Ollama.csproj" />

View File

@ -0,0 +1,16 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<TargetFrameworks>$(TestTargetFrameworks)</TargetFrameworks>
<IsPackable>false</IsPackable>
<IsTestProject>True</IsTestProject>
<GenerateDocumentationFile>True</GenerateDocumentationFile>
</PropertyGroup>
<ItemGroup>
<ProjectReference Include="..\..\src\AutoGen.AzureAIInference\AutoGen.AzureAIInference.csproj" />
<ProjectReference Include="..\..\src\AutoGen.SourceGenerator\AutoGen.SourceGenerator.csproj" OutputItemType="Analyzer" ReferenceOutputAssembly="false" />
<ProjectReference Include="..\AutoGen.Test.Share\AutoGen.Tests.Share.csproj" />
</ItemGroup>
</Project>

View File

@ -0,0 +1,533 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// ChatCompletionClientAgentTests.cs
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using AutoGen.AzureAIInference.Extension;
using AutoGen.Core;
using AutoGen.Tests;
using Azure.AI.Inference;
using FluentAssertions;
using Xunit;
namespace AutoGen.AzureAIInference.Tests;
public partial class ChatCompletionClientAgentTests
{
/// <summary>
/// Get the weather for a location.
/// </summary>
/// <param name="location">location</param>
/// <returns></returns>
[Function]
public async Task<string> GetWeatherAsync(string location)
{
return $"The weather in {location} is sunny.";
}
[ApiKeyFact("GH_API_KEY")]
public async Task ChatCompletionAgent_LLaMA3_1()
{
var client = CreateChatCompletionClient();
var model = "meta-llama-3-8b-instruct";
var agent = new ChatCompletionsClientAgent(client, "assistant", model)
.RegisterMessageConnector();
var reply = await this.BasicChatAsync(agent);
reply.Should().BeOfType<TextMessage>();
reply = await this.BasicChatWithContinuousMessageFromSameSenderAsync(agent);
reply.Should().BeOfType<TextMessage>();
}
[ApiKeyFact("GH_API_KEY")]
public async Task BasicConversation_Mistra_Small()
{
var deployName = "Mistral-small";
var client = CreateChatCompletionClient();
var openAIChatAgent = new ChatCompletionsClientAgent(
chatCompletionsClient: client,
name: "assistant",
modelName: deployName);
// By default, ChatCompletionClientAgent supports the following message types
// - IMessage<ChatRequestMessage>
var chatMessageContent = MessageEnvelope.Create(new ChatRequestUserMessage("Hello"));
var reply = await openAIChatAgent.SendAsync(chatMessageContent);
reply.Should().BeOfType<MessageEnvelope<ChatCompletions>>();
reply.As<MessageEnvelope<ChatCompletions>>().From.Should().Be("assistant");
reply.As<MessageEnvelope<ChatCompletions>>().Content.Choices.First().Message.Role.Should().Be(ChatRole.Assistant);
reply.As<MessageEnvelope<ChatCompletions>>().Content.Usage.TotalTokens.Should().BeGreaterThan(0);
// test streaming
var streamingReply = openAIChatAgent.GenerateStreamingReplyAsync(new[] { chatMessageContent });
await foreach (var streamingMessage in streamingReply)
{
streamingMessage.Should().BeOfType<MessageEnvelope<StreamingChatCompletionsUpdate>>();
streamingMessage.As<MessageEnvelope<StreamingChatCompletionsUpdate>>().From.Should().Be("assistant");
}
}
[ApiKeyFact("GH_API_KEY")]
public async Task ChatCompletionsMessageContentConnector_Phi3_Mini()
{
var deployName = "Phi-3-mini-4k-instruct";
var openaiClient = CreateChatCompletionClient();
var chatCompletionAgent = new ChatCompletionsClientAgent(
chatCompletionsClient: openaiClient,
name: "assistant",
modelName: deployName);
MiddlewareStreamingAgent<ChatCompletionsClientAgent> assistant = chatCompletionAgent
.RegisterMessageConnector();
var messages = new IMessage[]
{
MessageEnvelope.Create(new ChatRequestUserMessage("Hello")),
new TextMessage(Role.Assistant, "Hello", from: "user"),
new MultiModalMessage(Role.Assistant,
[
new TextMessage(Role.Assistant, "Hello", from: "user"),
],
from: "user"),
};
foreach (var message in messages)
{
var reply = await assistant.SendAsync(message);
reply.Should().BeOfType<TextMessage>();
reply.As<TextMessage>().From.Should().Be("assistant");
}
// test streaming
foreach (var message in messages)
{
var reply = assistant.GenerateStreamingReplyAsync([message]);
await foreach (var streamingMessage in reply)
{
streamingMessage.Should().BeOfType<TextMessageUpdate>();
streamingMessage.As<TextMessageUpdate>().From.Should().Be("assistant");
}
}
}
[ApiKeyFact("GH_API_KEY")]
public async Task ChatCompletionClientAgentToolCall_Mistral_Nemo()
{
var deployName = "Mistral-nemo";
var chatCompletionClient = CreateChatCompletionClient();
var agent = new ChatCompletionsClientAgent(
chatCompletionsClient: chatCompletionClient,
name: "assistant",
modelName: deployName);
var functionCallMiddleware = new FunctionCallMiddleware(
functions: [this.GetWeatherAsyncFunctionContract]);
MiddlewareStreamingAgent<ChatCompletionsClientAgent> assistant = agent
.RegisterMessageConnector();
assistant.StreamingMiddlewares.Count().Should().Be(1);
var functionCallAgent = assistant
.RegisterStreamingMiddleware(functionCallMiddleware);
var question = "What's the weather in Seattle";
var messages = new IMessage[]
{
MessageEnvelope.Create(new ChatRequestUserMessage(question)),
new TextMessage(Role.Assistant, question, from: "user"),
new MultiModalMessage(Role.Assistant,
[
new TextMessage(Role.Assistant, question, from: "user"),
],
from: "user"),
};
foreach (var message in messages)
{
var reply = await functionCallAgent.SendAsync(message);
reply.Should().BeOfType<ToolCallMessage>();
reply.As<ToolCallMessage>().From.Should().Be("assistant");
reply.As<ToolCallMessage>().ToolCalls.Count().Should().Be(1);
reply.As<ToolCallMessage>().ToolCalls.First().FunctionName.Should().Be(this.GetWeatherAsyncFunctionContract.Name);
}
// test streaming
foreach (var message in messages)
{
var reply = functionCallAgent.GenerateStreamingReplyAsync([message]);
ToolCallMessage? toolCallMessage = null;
await foreach (var streamingMessage in reply)
{
streamingMessage.Should().BeOfType<ToolCallMessageUpdate>();
streamingMessage.As<ToolCallMessageUpdate>().From.Should().Be("assistant");
if (toolCallMessage is null)
{
toolCallMessage = new ToolCallMessage(streamingMessage.As<ToolCallMessageUpdate>());
}
else
{
toolCallMessage.Update(streamingMessage.As<ToolCallMessageUpdate>());
}
}
toolCallMessage.Should().NotBeNull();
toolCallMessage!.From.Should().Be("assistant");
toolCallMessage.ToolCalls.Count().Should().Be(1);
toolCallMessage.ToolCalls.First().FunctionName.Should().Be(this.GetWeatherAsyncFunctionContract.Name);
}
}
[ApiKeyFact("GH_API_KEY")]
public async Task ChatCompletionClientAgentToolCallInvoking_gpt_4o_mini()
{
var deployName = "gpt-4o-mini";
var client = CreateChatCompletionClient();
var agent = new ChatCompletionsClientAgent(
chatCompletionsClient: client,
name: "assistant",
modelName: deployName);
var functionCallMiddleware = new FunctionCallMiddleware(
functions: [this.GetWeatherAsyncFunctionContract],
functionMap: new Dictionary<string, Func<string, Task<string>>> { { this.GetWeatherAsyncFunctionContract.Name!, this.GetWeatherAsyncWrapper } });
MiddlewareStreamingAgent<ChatCompletionsClientAgent> assistant = agent
.RegisterMessageConnector();
var functionCallAgent = assistant
.RegisterStreamingMiddleware(functionCallMiddleware);
var question = "What's the weather in Seattle";
var messages = new IMessage[]
{
MessageEnvelope.Create(new ChatRequestUserMessage(question)),
new TextMessage(Role.Assistant, question, from: "user"),
new MultiModalMessage(Role.Assistant,
[
new TextMessage(Role.Assistant, question, from: "user"),
],
from: "user"),
};
foreach (var message in messages)
{
var reply = await functionCallAgent.SendAsync(message);
reply.Should().BeOfType<ToolCallAggregateMessage>();
reply.From.Should().Be("assistant");
reply.GetToolCalls()!.Count().Should().Be(1);
reply.GetToolCalls()!.First().FunctionName.Should().Be(this.GetWeatherAsyncFunctionContract.Name);
reply.GetContent()!.ToLower().Should().Contain("seattle");
}
// test streaming
foreach (var message in messages)
{
var reply = functionCallAgent.GenerateStreamingReplyAsync([message]);
await foreach (var streamingMessage in reply)
{
if (streamingMessage is not IMessage)
{
streamingMessage.Should().BeOfType<ToolCallMessageUpdate>();
streamingMessage.As<ToolCallMessageUpdate>().From.Should().Be("assistant");
}
else
{
streamingMessage.Should().BeOfType<ToolCallAggregateMessage>();
streamingMessage.As<IMessage>().GetContent()!.ToLower().Should().Contain("seattle");
}
}
}
}
[ApiKeyFact("GH_API_KEY")]
public async Task ItCreateChatCompletionClientAgentWithChatCompletionOption_AI21_Jamba_Instruct()
{
var deployName = "AI21-Jamba-Instruct";
var chatCompletionsClient = CreateChatCompletionClient();
var options = new ChatCompletionsOptions()
{
Model = deployName,
Temperature = 0.7f,
MaxTokens = 1,
};
var openAIChatAgent = new ChatCompletionsClientAgent(
chatCompletionsClient: chatCompletionsClient,
name: "assistant",
options: options)
.RegisterMessageConnector();
var respond = await openAIChatAgent.SendAsync("hello");
respond.GetContent()?.Should().NotBeNullOrEmpty();
}
[Fact]
public async Task ItThrowExceptionWhenChatCompletionOptionContainsMessages()
{
var client = new ChatCompletionsClient(new Uri("https://dummy.com"), new Azure.AzureKeyCredential("dummy"));
var options = new ChatCompletionsOptions([new ChatRequestUserMessage("hi")])
{
Model = "dummy",
Temperature = 0.7f,
MaxTokens = 1,
};
var action = () => new ChatCompletionsClientAgent(
chatCompletionsClient: client,
name: "assistant",
options: options)
.RegisterMessageConnector();
action.Should().ThrowExactly<ArgumentException>().WithMessage("Messages should not be provided in options");
}
private ChatCompletionsClient CreateChatCompletionClient()
{
var apiKey = Environment.GetEnvironmentVariable("GH_API_KEY") ?? throw new Exception("Please set GH_API_KEY environment variable.");
var endpoint = "https://models.inference.ai.azure.com";
return new ChatCompletionsClient(new Uri(endpoint), new Azure.AzureKeyCredential(apiKey));
}
/// <summary>
/// The agent should return a text message based on the chat history.
/// </summary>
/// <param name="agent"></param>
/// <returns></returns>
private async Task<IMessage> BasicChatEndWithSelfMessageAsync(IAgent agent)
{
IMessage[] chatHistory = [
new TextMessage(Role.Assistant, "Hello", from: "user"),
new TextMessage(Role.Assistant, "Hello", from: "user2"),
new TextMessage(Role.Assistant, "Hello", from: "user3"),
new TextMessage(Role.Assistant, "Hello", from: agent.Name),
];
return await agent.GenerateReplyAsync(chatHistory);
}
/// <summary>
/// The agent should return a text message based on the chat history.
/// </summary>
/// <param name="agent"></param>
/// <returns></returns>
private async Task<IMessage> BasicChatAsync(IAgent agent)
{
IMessage[] chatHistory = [
new TextMessage(Role.Assistant, "Hello", from: agent.Name),
new TextMessage(Role.Assistant, "Hello", from: "user"),
new TextMessage(Role.Assistant, "Hello", from: "user1"),
];
return await agent.GenerateReplyAsync(chatHistory);
}
/// <summary>
/// The agent should return a text message based on the chat history. This test the generate reply with continuous message from the same sender.
/// </summary>
private async Task<IMessage> BasicChatWithContinuousMessageFromSameSenderAsync(IAgent agent)
{
IMessage[] chatHistory = [
new TextMessage(Role.Assistant, "Hello", from: "user"),
new TextMessage(Role.Assistant, "Hello", from: "user"),
new TextMessage(Role.Assistant, "Hello", from: agent.Name),
new TextMessage(Role.Assistant, "Hello", from: agent.Name),
];
return await agent.GenerateReplyAsync(chatHistory);
}
/// <summary>
/// The agent should return a text message based on the chat history.
/// </summary>
/// <param name="agent"></param>
/// <returns></returns>
private async Task<IMessage> ImageChatAsync(IAgent agent)
{
var image = Path.Join("testData", "images", "square.png");
var binaryData = File.ReadAllBytes(image);
var imageMessage = new ImageMessage(Role.Assistant, BinaryData.FromBytes(binaryData, "image/png"), from: "user");
IMessage[] chatHistory = [
imageMessage,
new TextMessage(Role.Assistant, "What's in the picture", from: "user"),
];
return await agent.GenerateReplyAsync(chatHistory);
}
/// <summary>
/// The agent should return a text message based on the chat history. This test the generate reply with continuous image messages.
/// </summary>
/// <param name="agent"></param>
/// <returns></returns>
private async Task<IMessage> MultipleImageChatAsync(IAgent agent)
{
var image1 = Path.Join("testData", "images", "square.png");
var image2 = Path.Join("testData", "images", "background.png");
var binaryData1 = File.ReadAllBytes(image1);
var binaryData2 = File.ReadAllBytes(image2);
var imageMessage1 = new ImageMessage(Role.Assistant, BinaryData.FromBytes(binaryData1, "image/png"), from: "user");
var imageMessage2 = new ImageMessage(Role.Assistant, BinaryData.FromBytes(binaryData2, "image/png"), from: "user");
IMessage[] chatHistory = [
imageMessage1,
imageMessage2,
new TextMessage(Role.Assistant, "What's in the picture", from: "user"),
];
return await agent.GenerateReplyAsync(chatHistory);
}
/// <summary>
/// The agent should return a text message based on the chat history.
/// </summary>
/// <param name="agent"></param>
/// <returns></returns>
private async Task<IMessage> MultiModalChatAsync(IAgent agent)
{
var image = Path.Join("testData", "images", "square.png");
var binaryData = File.ReadAllBytes(image);
var question = "What's in the picture";
var imageMessage = new ImageMessage(Role.Assistant, BinaryData.FromBytes(binaryData, "image/png"), from: "user");
var textMessage = new TextMessage(Role.Assistant, question, from: "user");
IMessage[] chatHistory = [
new MultiModalMessage(Role.Assistant, [imageMessage, textMessage], from: "user"),
];
return await agent.GenerateReplyAsync(chatHistory);
}
/// <summary>
/// The agent should return a tool call message based on the chat history.
/// </summary>
/// <param name="agent"></param>
/// <returns></returns>
private async Task<IMessage> ToolCallChatAsync(IAgent agent)
{
var question = "What's the weather in Seattle";
var messages = new IMessage[]
{
new TextMessage(Role.Assistant, question, from: "user"),
};
return await agent.GenerateReplyAsync(messages);
}
/// <summary>
/// The agent should throw an exception because tool call result is not available.
/// </summary>
private async Task<IMessage> ToolCallFromSelfChatAsync(IAgent agent)
{
var question = "What's the weather in Seattle";
var messages = new IMessage[]
{
new TextMessage(Role.Assistant, question, from: "user"),
new ToolCallMessage("GetWeatherAsync", "Seattle", from: agent.Name),
};
return await agent.GenerateReplyAsync(messages);
}
/// <summary>
/// mimic the further chat after tool call. The agent should return a text message based on the tool call result.
/// </summary>
private async Task<IMessage> ToolCallWithResultChatAsync(IAgent agent)
{
var question = "What's the weather in Seattle";
var messages = new IMessage[]
{
new TextMessage(Role.Assistant, question, from: "user"),
new ToolCallMessage("GetWeatherAsync", "Seattle", from: "user"),
new ToolCallResultMessage("sunny", "GetWeatherAsync", "Seattle", from: agent.Name),
};
return await agent.GenerateReplyAsync(messages);
}
/// <summary>
/// the agent should return a text message based on the tool call result.
/// </summary>
/// <param name="agent"></param>
/// <returns></returns>
private async Task<IMessage> AggregateToolCallFromSelfChatAsync(IAgent agent)
{
var textMessage = new TextMessage(Role.Assistant, "What's the weather in Seattle", from: "user");
var toolCallMessage = new ToolCallMessage("GetWeatherAsync", "Seattle", from: agent.Name);
var toolCallResultMessage = new ToolCallResultMessage("sunny", "GetWeatherAsync", "Seattle", from: agent.Name);
var aggregateToolCallMessage = new ToolCallAggregateMessage(toolCallMessage, toolCallResultMessage, from: agent.Name);
var messages = new IMessage[]
{
textMessage,
aggregateToolCallMessage,
};
return await agent.GenerateReplyAsync(messages);
}
/// <summary>
/// the agent should return a text message based on the tool call result. Because the aggregate tool call message is from other, the message would be treated as an ordinary text message.
/// </summary>
private async Task<IMessage> AggregateToolCallFromOtherChatWithContinuousMessageAsync(IAgent agent)
{
var textMessage = new TextMessage(Role.Assistant, "What's the weather in Seattle", from: "user");
var toolCallMessage = new ToolCallMessage("GetWeatherAsync", "Seattle", from: "other");
var toolCallResultMessage = new ToolCallResultMessage("sunny", "GetWeatherAsync", "Seattle", from: "other");
var aggregateToolCallMessage = new ToolCallAggregateMessage(toolCallMessage, toolCallResultMessage, "other");
var messages = new IMessage[]
{
textMessage,
aggregateToolCallMessage,
};
return await agent.GenerateReplyAsync(messages);
}
/// <summary>
/// The agent should throw an exception because tool call message from other is not allowed.
/// </summary>
private async Task<IMessage> ToolCallMessaageFromOtherChatAsync(IAgent agent)
{
var textMessage = new TextMessage(Role.Assistant, "What's the weather in Seattle", from: "user");
var toolCallMessage = new ToolCallMessage("GetWeatherAsync", "Seattle", from: "other");
var messages = new IMessage[]
{
textMessage,
toolCallMessage,
};
return await agent.GenerateReplyAsync(messages);
}
/// <summary>
/// The agent should throw an exception because multi-modal message from self is not allowed.
/// </summary>
/// <param name="agent"></param>
/// <returns></returns>
private async Task<IMessage> MultiModalMessageFromSelfChatAsync(IAgent agent)
{
var image = Path.Join("testData", "images", "square.png");
var binaryData = File.ReadAllBytes(image);
var question = "What's in the picture";
var imageMessage = new ImageMessage(Role.Assistant, BinaryData.FromBytes(binaryData, "image/png"), from: agent.Name);
var textMessage = new TextMessage(Role.Assistant, question, from: agent.Name);
IMessage[] chatHistory = [
new MultiModalMessage(Role.Assistant, [imageMessage, textMessage], from: agent.Name),
];
return await agent.GenerateReplyAsync(chatHistory);
}
}

View File

@ -0,0 +1,568 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// ChatRequestMessageTests.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
using System.Text.Json;
using System.Threading.Tasks;
using AutoGen.Core;
using AutoGen.Tests;
using Azure.AI.Inference;
using FluentAssertions;
using Xunit;
namespace AutoGen.AzureAIInference.Tests;
public class ChatRequestMessageTests
{
private readonly JsonSerializerOptions jsonSerializerOptions = new JsonSerializerOptions
{
WriteIndented = true,
IgnoreReadOnlyProperties = false,
};
[Fact]
public async Task ItProcessUserTextMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestUserMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().Be("Hello");
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
IMessage message = new TextMessage(Role.User, "Hello", "user");
await agent.GenerateReplyAsync([message]);
}
[Fact]
public async Task ItShortcutChatRequestMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestUserMessage>>();
var chatRequestMessage = (ChatRequestUserMessage)((MessageEnvelope<ChatRequestUserMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().Be("hello");
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
var userMessage = new ChatRequestUserMessage("hello");
var chatRequestMessage = MessageEnvelope.Create(userMessage);
await agent.GenerateReplyAsync([chatRequestMessage]);
}
[Fact]
public async Task ItShortcutMessageWhenStrictModelIsFalseAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<string>>();
var chatRequestMessage = ((MessageEnvelope<string>)innerMessage!).Content;
chatRequestMessage.Should().Be("hello");
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
var userMessage = "hello";
var chatRequestMessage = MessageEnvelope.Create(userMessage);
await agent.GenerateReplyAsync([chatRequestMessage]);
}
[Fact]
public async Task ItThrowExceptionWhenStrictModeIsTrueAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector(true);
var agent = new EchoAgent("assistant")
.RegisterMiddleware(middleware);
// user message
var userMessage = "hello";
var chatRequestMessage = MessageEnvelope.Create(userMessage);
Func<Task> action = async () => await agent.GenerateReplyAsync([chatRequestMessage]);
await action.Should().ThrowAsync<InvalidOperationException>().WithMessage("Invalid message type: MessageEnvelope`1");
}
[Fact]
public async Task ItProcessAssistantTextMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestAssistantMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().Be("How can I help you?");
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// assistant message
IMessage message = new TextMessage(Role.Assistant, "How can I help you?", "assistant");
await agent.GenerateReplyAsync([message]);
}
[Fact]
public async Task ItProcessSystemTextMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestSystemMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().Be("You are a helpful AI assistant");
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// system message
IMessage message = new TextMessage(Role.System, "You are a helpful AI assistant");
await agent.GenerateReplyAsync([message]);
}
[Fact]
public async Task ItProcessImageMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestUserMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().BeNullOrEmpty();
chatRequestMessage.MultimodalContentItems.Count().Should().Be(1);
chatRequestMessage.MultimodalContentItems.First().Should().BeOfType<ChatMessageImageContentItem>();
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
IMessage message = new ImageMessage(Role.User, "https://example.com/image.png", "user");
await agent.GenerateReplyAsync([message]);
}
[Fact]
public async Task ItThrowExceptionWhenProcessingImageMessageFromSelfAndStrictModeIsTrueAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector(true);
var agent = new EchoAgent("assistant")
.RegisterMiddleware(middleware);
var imageMessage = new ImageMessage(Role.Assistant, "https://example.com/image.png", "assistant");
Func<Task> action = async () => await agent.GenerateReplyAsync([imageMessage]);
await action.Should().ThrowAsync<InvalidOperationException>().WithMessage("Invalid message type: ImageMessage");
}
[Fact]
public async Task ItProcessMultiModalMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestUserMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().BeNullOrEmpty();
chatRequestMessage.MultimodalContentItems.Count().Should().Be(2);
chatRequestMessage.MultimodalContentItems.First().Should().BeOfType<ChatMessageTextContentItem>();
chatRequestMessage.MultimodalContentItems.Last().Should().BeOfType<ChatMessageImageContentItem>();
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
IMessage message = new MultiModalMessage(
Role.User,
[
new TextMessage(Role.User, "Hello", "user"),
new ImageMessage(Role.User, "https://example.com/image.png", "user"),
], "user");
await agent.GenerateReplyAsync([message]);
}
[Fact]
public async Task ItThrowExceptionWhenProcessingMultiModalMessageFromSelfAndStrictModeIsTrueAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector(true);
var agent = new EchoAgent("assistant")
.RegisterMiddleware(middleware);
var multiModalMessage = new MultiModalMessage(
Role.Assistant,
[
new TextMessage(Role.User, "Hello", "assistant"),
new ImageMessage(Role.User, "https://example.com/image.png", "assistant"),
], "assistant");
Func<Task> action = async () => await agent.GenerateReplyAsync([multiModalMessage]);
await action.Should().ThrowAsync<InvalidOperationException>().WithMessage("Invalid message type: MultiModalMessage");
}
[Fact]
public async Task ItProcessToolCallMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestAssistantMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.ToolCalls.Count().Should().Be(1);
chatRequestMessage.Content.Should().Be("textContent");
chatRequestMessage.ToolCalls.First().Should().BeOfType<ChatCompletionsFunctionToolCall>();
var functionToolCall = (ChatCompletionsFunctionToolCall)chatRequestMessage.ToolCalls.First();
functionToolCall.Name.Should().Be("test");
functionToolCall.Id.Should().Be("test");
functionToolCall.Arguments.Should().Be("test");
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
IMessage message = new ToolCallMessage("test", "test", "assistant")
{
Content = "textContent",
};
await agent.GenerateReplyAsync([message]);
}
[Fact]
public async Task ItProcessParallelToolCallMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestAssistantMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().BeNullOrEmpty();
chatRequestMessage.ToolCalls.Count().Should().Be(2);
for (int i = 0; i < chatRequestMessage.ToolCalls.Count(); i++)
{
chatRequestMessage.ToolCalls.ElementAt(i).Should().BeOfType<ChatCompletionsFunctionToolCall>();
var functionToolCall = (ChatCompletionsFunctionToolCall)chatRequestMessage.ToolCalls.ElementAt(i);
functionToolCall.Name.Should().Be("test");
functionToolCall.Id.Should().Be($"test_{i}");
functionToolCall.Arguments.Should().Be("test");
}
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
var toolCalls = new[]
{
new ToolCall("test", "test"),
new ToolCall("test", "test"),
};
IMessage message = new ToolCallMessage(toolCalls, "assistant");
await agent.GenerateReplyAsync([message]);
}
[Fact]
public async Task ItThrowExceptionWhenProcessingToolCallMessageFromUserAndStrictModeIsTrueAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector(strictMode: true);
var agent = new EchoAgent("assistant")
.RegisterMiddleware(middleware);
var toolCallMessage = new ToolCallMessage("test", "test", "user");
Func<Task> action = async () => await agent.GenerateReplyAsync([toolCallMessage]);
await action.Should().ThrowAsync<InvalidOperationException>().WithMessage("Invalid message type: ToolCallMessage");
}
[Fact]
public async Task ItProcessToolCallResultMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestToolMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().Be("result");
chatRequestMessage.ToolCallId.Should().Be("test");
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
IMessage message = new ToolCallResultMessage("result", "test", "test", "user");
await agent.GenerateReplyAsync([message]);
}
[Fact]
public async Task ItProcessParallelToolCallResultMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
msgs.Count().Should().Be(2);
for (int i = 0; i < msgs.Count(); i++)
{
var innerMessage = msgs.ElementAt(i);
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestToolMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().Be("result");
chatRequestMessage.ToolCallId.Should().Be($"test_{i}");
}
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
var toolCalls = new[]
{
new ToolCall("test", "test", "result"),
new ToolCall("test", "test", "result"),
};
IMessage message = new ToolCallResultMessage(toolCalls, "user");
await agent.GenerateReplyAsync([message]);
}
[Fact]
public async Task ItProcessFunctionCallMiddlewareMessageFromUserAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
msgs.Count().Should().Be(1);
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestUserMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().Be("result");
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
var toolCallMessage = new ToolCallMessage("test", "test", "user");
var toolCallResultMessage = new ToolCallResultMessage("result", "test", "test", "user");
var aggregateMessage = new AggregateMessage<ToolCallMessage, ToolCallResultMessage>(toolCallMessage, toolCallResultMessage, "user");
await agent.GenerateReplyAsync([aggregateMessage]);
}
[Fact]
public async Task ItProcessFunctionCallMiddlewareMessageFromAssistantAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
msgs.Count().Should().Be(2);
var innerMessage = msgs.Last();
innerMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var chatRequestMessage = (ChatRequestToolMessage)((MessageEnvelope<ChatRequestMessage>)innerMessage!).Content;
chatRequestMessage.Content.Should().Be("result");
chatRequestMessage.ToolCallId.Should().Be("test");
var toolCallMessage = msgs.First();
toolCallMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var toolCallRequestMessage = (ChatRequestAssistantMessage)((MessageEnvelope<ChatRequestMessage>)toolCallMessage!).Content;
toolCallRequestMessage.Content.Should().BeNullOrEmpty();
toolCallRequestMessage.ToolCalls.Count().Should().Be(1);
toolCallRequestMessage.ToolCalls.First().Should().BeOfType<ChatCompletionsFunctionToolCall>();
var functionToolCall = (ChatCompletionsFunctionToolCall)toolCallRequestMessage.ToolCalls.First();
functionToolCall.Name.Should().Be("test");
functionToolCall.Id.Should().Be("test");
functionToolCall.Arguments.Should().Be("test");
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
var toolCallMessage = new ToolCallMessage("test", "test", "assistant");
var toolCallResultMessage = new ToolCallResultMessage("result", "test", "test", "assistant");
var aggregateMessage = new ToolCallAggregateMessage(toolCallMessage, toolCallResultMessage, "assistant");
await agent.GenerateReplyAsync([aggregateMessage]);
}
[Fact]
public async Task ItProcessParallelFunctionCallMiddlewareMessageFromAssistantAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(async (msgs, _, innerAgent, _) =>
{
msgs.Count().Should().Be(3);
var toolCallMessage = msgs.First();
toolCallMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var toolCallRequestMessage = (ChatRequestAssistantMessage)((MessageEnvelope<ChatRequestMessage>)toolCallMessage!).Content;
toolCallRequestMessage.Content.Should().BeNullOrEmpty();
toolCallRequestMessage.ToolCalls.Count().Should().Be(2);
for (int i = 0; i < toolCallRequestMessage.ToolCalls.Count(); i++)
{
toolCallRequestMessage.ToolCalls.ElementAt(i).Should().BeOfType<ChatCompletionsFunctionToolCall>();
var functionToolCall = (ChatCompletionsFunctionToolCall)toolCallRequestMessage.ToolCalls.ElementAt(i);
functionToolCall.Name.Should().Be("test");
functionToolCall.Id.Should().Be($"test_{i}");
functionToolCall.Arguments.Should().Be("test");
}
for (int i = 1; i < msgs.Count(); i++)
{
var toolCallResultMessage = msgs.ElementAt(i);
toolCallResultMessage!.Should().BeOfType<MessageEnvelope<ChatRequestMessage>>();
var toolCallResultRequestMessage = (ChatRequestToolMessage)((MessageEnvelope<ChatRequestMessage>)toolCallResultMessage!).Content;
toolCallResultRequestMessage.Content.Should().Be("result");
toolCallResultRequestMessage.ToolCallId.Should().Be($"test_{i - 1}");
}
return await innerAgent.GenerateReplyAsync(msgs);
})
.RegisterMiddleware(middleware);
// user message
var toolCalls = new[]
{
new ToolCall("test", "test", "result"),
new ToolCall("test", "test", "result"),
};
var toolCallMessage = new ToolCallMessage(toolCalls, "assistant");
var toolCallResultMessage = new ToolCallResultMessage(toolCalls, "assistant");
var aggregateMessage = new AggregateMessage<ToolCallMessage, ToolCallResultMessage>(toolCallMessage, toolCallResultMessage, "assistant");
await agent.GenerateReplyAsync([aggregateMessage]);
}
[Fact]
public async Task ItConvertChatResponseMessageToTextMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(middleware);
// text message
var textMessage = CreateInstance<ChatResponseMessage>(ChatRole.Assistant, "hello");
var chatRequestMessage = MessageEnvelope.Create(textMessage);
var message = await agent.GenerateReplyAsync([chatRequestMessage]);
message.Should().BeOfType<TextMessage>();
message.GetContent().Should().Be("hello");
message.GetRole().Should().Be(Role.Assistant);
}
[Fact]
public async Task ItConvertChatResponseMessageToToolCallMessageAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(middleware);
// tool call message
var toolCallMessage = CreateInstance<ChatResponseMessage>(ChatRole.Assistant, "textContent", new[] { new ChatCompletionsFunctionToolCall("test", "test", "test") }, new Dictionary<string, BinaryData>());
var chatRequestMessage = MessageEnvelope.Create(toolCallMessage);
var message = await agent.GenerateReplyAsync([chatRequestMessage]);
message.Should().BeOfType<ToolCallMessage>();
message.GetToolCalls()!.Count().Should().Be(1);
message.GetToolCalls()!.First().FunctionName.Should().Be("test");
message.GetToolCalls()!.First().FunctionArguments.Should().Be("test");
message.GetContent().Should().Be("textContent");
}
[Fact]
public async Task ItReturnOriginalMessageWhenStrictModeIsFalseAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector();
var agent = new EchoAgent("assistant")
.RegisterMiddleware(middleware);
// text message
var textMessage = "hello";
var messageToSend = MessageEnvelope.Create(textMessage);
var message = await agent.GenerateReplyAsync([messageToSend]);
message.Should().BeOfType<MessageEnvelope<string>>();
}
[Fact]
public async Task ItThrowInvalidOperationExceptionWhenStrictModeIsTrueAsync()
{
var middleware = new AzureAIInferenceChatRequestMessageConnector(true);
var agent = new EchoAgent("assistant")
.RegisterMiddleware(middleware);
// text message
var textMessage = new ChatRequestUserMessage("hello");
var messageToSend = MessageEnvelope.Create(textMessage);
Func<Task> action = async () => await agent.GenerateReplyAsync([messageToSend]);
await action.Should().ThrowAsync<InvalidOperationException>().WithMessage("Invalid return message type MessageEnvelope`1");
}
[Fact]
public void ToOpenAIChatRequestMessageShortCircuitTest()
{
var agent = new EchoAgent("assistant");
var middleware = new AzureAIInferenceChatRequestMessageConnector();
ChatRequestMessage[] messages =
[
new ChatRequestUserMessage("Hello"),
new ChatRequestAssistantMessage()
{
Content = "How can I help you?",
},
new ChatRequestSystemMessage("You are a helpful AI assistant"),
new ChatRequestToolMessage("test", "test"),
];
foreach (var oaiMessage in messages)
{
IMessage message = new MessageEnvelope<ChatRequestMessage>(oaiMessage);
var oaiMessages = middleware.ProcessIncomingMessages(agent, [message]);
oaiMessages.Count().Should().Be(1);
//oaiMessages.First().Should().BeOfType<IMessage<ChatRequestMessage>>();
if (oaiMessages.First() is IMessage<ChatRequestMessage> chatRequestMessage)
{
chatRequestMessage.Content.Should().Be(oaiMessage);
}
else
{
// fail the test
Assert.True(false);
}
}
}
private static T CreateInstance<T>(params object[] args)
{
var type = typeof(T);
var instance = type.Assembly.CreateInstance(
type.FullName!, false,
BindingFlags.Instance | BindingFlags.NonPublic,
null, args, null, null);
return (T)instance!;
}
}

View File

@ -0,0 +1,31 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// EnvironmentSpecificFactAttribute.cs
using Xunit;
namespace AutoGen.Tests;
/// <summary>
/// A base class for environment-specific fact attributes.
/// </summary>
[AttributeUsage(AttributeTargets.Method, AllowMultiple = false, Inherited = true)]
public abstract class EnvironmentSpecificFactAttribute : FactAttribute
{
private readonly string _skipMessage;
/// <summary>
/// Creates a new instance of the <see cref="EnvironmentSpecificFactAttribute" /> class.
/// </summary>
/// <param name="skipMessage">The message to be used when skipping the test marked with this attribute.</param>
protected EnvironmentSpecificFactAttribute(string skipMessage)
{
_skipMessage = skipMessage ?? throw new ArgumentNullException(nameof(skipMessage));
}
public sealed override string Skip => IsEnvironmentSupported() ? string.Empty : _skipMessage;
/// <summary>
/// A method used to evaluate whether to skip a test marked with this attribute. Skips iff this method evaluates to false.
/// </summary>
protected abstract bool IsEnvironmentSupported();
}

View File

@ -0,0 +1,22 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// OpenAIFact.cs
namespace AutoGen.Tests;
/// <summary>
/// A fact for tests requiring OPENAI_API_KEY env.
/// </summary>
public sealed class ApiKeyFactAttribute : EnvironmentSpecificFactAttribute
{
private readonly string[] _envVariableNames;
public ApiKeyFactAttribute(params string[] envVariableNames) : base($"{envVariableNames} is not found in env")
{
_envVariableNames = envVariableNames;
}
/// <inheritdoc />
protected override bool IsEnvironmentSupported()
{
return _envVariableNames.All(Environment.GetEnvironmentVariables().Contains);
}
}

View File

@ -0,0 +1,15 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<TargetFrameworks>$(TestTargetFrameworks)</TargetFrameworks>
<ImplicitUsings>enable</ImplicitUsings>
<IsPackable>false</IsPackable>
<IsTestProject>True</IsTestProject>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<ProjectReference Include="..\..\src\AutoGen.Core\AutoGen.Core.csproj" />
</ItemGroup>
</Project>

View File

@ -0,0 +1,37 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// EchoAgent.cs
using System.Runtime.CompilerServices;
using AutoGen.Core;
namespace AutoGen.Tests;
public class EchoAgent : IStreamingAgent
{
public EchoAgent(string name)
{
Name = name;
}
public string Name { get; }
public Task<IMessage> GenerateReplyAsync(
IEnumerable<IMessage> conversation,
GenerateReplyOptions? options = null,
CancellationToken ct = default)
{
// return the most recent message
var lastMessage = conversation.Last();
lastMessage.From = this.Name;
return Task.FromResult(lastMessage);
}
public async IAsyncEnumerable<IMessage> GenerateStreamingReplyAsync(IEnumerable<IMessage> messages, GenerateReplyOptions? options = null, [EnumeratorCancellation] CancellationToken cancellationToken = default)
{
foreach (var message in messages)
{
message.From = this.Name;
yield return message;
}
}
}

View File

@ -1,33 +0,0 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// EnvironmentSpecificFactAttribute.cs
using System;
using Xunit;
namespace AutoGen.Tests
{
/// <summary>
/// A base class for environment-specific fact attributes.
/// </summary>
[AttributeUsage(AttributeTargets.Method, AllowMultiple = false, Inherited = true)]
public abstract class EnvironmentSpecificFactAttribute : FactAttribute
{
private readonly string _skipMessage;
/// <summary>
/// Creates a new instance of the <see cref="EnvironmentSpecificFactAttribute" /> class.
/// </summary>
/// <param name="skipMessage">The message to be used when skipping the test marked with this attribute.</param>
protected EnvironmentSpecificFactAttribute(string skipMessage)
{
_skipMessage = skipMessage ?? throw new ArgumentNullException(nameof(skipMessage));
}
public sealed override string Skip => IsEnvironmentSupported() ? string.Empty : _skipMessage;
/// <summary>
/// A method used to evaluate whether to skip a test marked with this attribute. Skips iff this method evaluates to false.
/// </summary>
protected abstract bool IsEnvironmentSupported();
}
}

View File

@ -1,26 +0,0 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// OpenAIFact.cs
using System;
using System.Linq;
namespace AutoGen.Tests
{
/// <summary>
/// A fact for tests requiring OPENAI_API_KEY env.
/// </summary>
public sealed class ApiKeyFactAttribute : EnvironmentSpecificFactAttribute
{
private readonly string[] _envVariableNames;
public ApiKeyFactAttribute(params string[] envVariableNames) : base($"{envVariableNames} is not found in env")
{
_envVariableNames = envVariableNames;
}
/// <inheritdoc />
protected override bool IsEnvironmentSupported()
{
return _envVariableNames.All(Environment.GetEnvironmentVariables().Contains);
}
}
}

View File

@ -12,6 +12,7 @@
<ProjectReference Include="..\..\src\AutoGen.Anthropic\AutoGen.Anthropic.csproj" />
<ProjectReference Include="..\..\src\AutoGen.SourceGenerator\AutoGen.SourceGenerator.csproj" OutputItemType="Analyzer" ReferenceOutputAssembly="false" />
<ProjectReference Include="..\..\src\AutoGen\AutoGen.csproj" />
<ProjectReference Include="..\AutoGen.Test.Share\AutoGen.Tests.Share.csproj" />
</ItemGroup>
<ItemGroup>

View File

@ -1,41 +0,0 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// EchoAgent.cs
using System.Collections.Generic;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Threading;
using System.Threading.Tasks;
namespace AutoGen.Tests
{
public class EchoAgent : IStreamingAgent
{
public EchoAgent(string name)
{
Name = name;
}
public string Name { get; }
public Task<IMessage> GenerateReplyAsync(
IEnumerable<IMessage> conversation,
GenerateReplyOptions? options = null,
CancellationToken ct = default)
{
// return the most recent message
var lastMessage = conversation.Last();
lastMessage.From = this.Name;
return Task.FromResult(lastMessage);
}
public async IAsyncEnumerable<IMessage> GenerateStreamingReplyAsync(IEnumerable<IMessage> messages, GenerateReplyOptions? options = null, [EnumeratorCancellation] CancellationToken cancellationToken = default)
{
foreach (var message in messages)
{
message.From = this.Name;
yield return message;
}
}
}
}

View File

@ -10,11 +10,14 @@ using System.Threading.Tasks;
using AutoGen.Anthropic;
using AutoGen.Anthropic.Extensions;
using AutoGen.Anthropic.Utils;
using AutoGen.AzureAIInference;
using AutoGen.AzureAIInference.Extension;
using AutoGen.Gemini;
using AutoGen.Mistral;
using AutoGen.Mistral.Extension;
using AutoGen.OpenAI;
using AutoGen.OpenAI.Extension;
using Azure.AI.Inference;
using Azure.AI.OpenAI;
using FluentAssertions;
using Moq;
@ -304,6 +307,22 @@ public class RolePlayOrchestratorTests
await CoderReviewerRunnerTestAsync(agent);
}
[ApiKeyFact("GH_API_KEY")]
public async Task LLaMA_3_1_CoderReviewerRunnerTestAsync()
{
var apiKey = Environment.GetEnvironmentVariable("GH_API_KEY") ?? throw new InvalidOperationException("GH_API_KEY is not set.");
var endPoint = "https://models.inference.ai.azure.com";
var chatCompletionClient = new ChatCompletionsClient(new Uri(endPoint), new Azure.AzureKeyCredential(apiKey));
var agent = new ChatCompletionsClientAgent(
chatCompletionsClient: chatCompletionClient,
name: "assistant",
modelName: "Meta-Llama-3.1-70B-Instruct")
.RegisterMessageConnector();
await CoderReviewerRunnerTestAsync(agent);
}
/// <summary>
/// This test is to mimic the conversation among coder, reviewer and runner.
/// The coder will write the code, the reviewer will review the code, and the runner will run the code.

View File

@ -8,7 +8,6 @@
- Create an @AutoGen.OpenAI.OpenAIChatAgent: [Create an OpenAI chat agent](./OpenAIChatAgent-simple-chat.md)
- Create a @AutoGen.SemanticKernel.SemanticKernelAgent: [Create a semantic kernel agent](./AutoGen.SemanticKernel/SemanticKernelAgent-simple-chat.md)
- Create a @AutoGen.LMStudio.LMStudioAgent: [Connect to LM Studio](./Consume-LLM-server-from-LM-Studio.md)
- Create your own agent: [Create your own agent](./Create-your-own-agent.md)
## Chat with an agent
To chat with an agent, typically you can invoke @AutoGen.Core.IAgent.GenerateReplyAsync*. On top of that, you can also use one of the extension methods like @AutoGen.Core.AgentExtension.SendAsync* as shortcuts.

View File

@ -13,8 +13,9 @@ AutoGen.Net provides the following packages, you can choose to install one or mo
- `AutoGen.LMStudio`: This package provides the integration agents from LM Studio.
- `AutoGen.SemanticKernel`: This package provides the integration agents over semantic kernel.
- `AutoGen.Gemini`: This package provides the integration agents from [Google Gemini](https://gemini.google.com/).
- `AutoGen.AzureAIInference`: This package provides the integration agents for [Azure AI Inference](https://www.nuget.org/packages/Azure.AI.Inference).
- `AutoGen.SourceGenerator`: This package carries a source generator that adds support for type-safe function definition generation.
- `AutoGen.DotnetInteractive`: This packages carries dotnet interactive support to execute dotnet code snippet.
- `AutoGen.DotnetInteractive`: This packages carries dotnet interactive support to execute code snippets. The current supported language is C#, F#, powershell and python.
>[!Note]
> Help me choose