mirror of https://github.com/microsoft/autogen.git
add warmstart test (#298)
* add warmstart test * remove redundancy * add more types of hps * revise comments * simplify name * reduce redundancy
This commit is contained in:
parent
db1fb9b47b
commit
49f9e9f86b
|
@ -0,0 +1,130 @@
|
|||
import unittest
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from flaml import AutoML
|
||||
from flaml.model import LGBMEstimator
|
||||
from flaml import tune
|
||||
|
||||
|
||||
class TestWarmStart(unittest.TestCase):
|
||||
def test_fit_w_freezinghp_starting_point(self, as_frame=True):
|
||||
automl_experiment = AutoML()
|
||||
automl_settings = {
|
||||
"time_budget": 1,
|
||||
"metric": "accuracy",
|
||||
"task": "classification",
|
||||
"estimator_list": ["lgbm"],
|
||||
"log_file_name": "test/iris.log",
|
||||
"log_training_metric": True,
|
||||
"n_jobs": 1,
|
||||
"model_history": True,
|
||||
}
|
||||
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
||||
if as_frame:
|
||||
# test drop column
|
||||
X_train.columns = range(X_train.shape[1])
|
||||
X_train[X_train.shape[1]] = np.zeros(len(y_train))
|
||||
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
||||
automl_val_accuracy = 1.0 - automl_experiment.best_loss
|
||||
print("Best ML leaner:", automl_experiment.best_estimator)
|
||||
print("Best hyperparmeter config:", automl_experiment.best_config)
|
||||
print("Best accuracy on validation data: {0:.4g}".format(automl_val_accuracy))
|
||||
print(
|
||||
"Training duration of best run: {0:.4g} s".format(
|
||||
automl_experiment.best_config_train_time
|
||||
)
|
||||
)
|
||||
# 1. Get starting points from previous experiments.
|
||||
starting_points = automl_experiment.best_config_per_estimator
|
||||
print("starting_points", starting_points)
|
||||
print("loss of the starting_points", automl_experiment.best_loss_per_estimator)
|
||||
starting_point = starting_points['lgbm']
|
||||
hps_to_freeze = ["colsample_bytree", "reg_alpha", "reg_lambda", "log_max_bin"]
|
||||
|
||||
# 2. Constrct a new class:
|
||||
# a. write the hps you want to freeze as hps with constant 'domain';
|
||||
# b. specify the new search space of the other hps accrodingly.
|
||||
|
||||
class MyPartiallyFreezedLargeLGBM(LGBMEstimator):
|
||||
@classmethod
|
||||
def search_space(cls, **params):
|
||||
# (1) Get the hps in the original search space
|
||||
space = LGBMEstimator.search_space(**params)
|
||||
# (2) Set up the fixed value from hps from the starting point
|
||||
for hp_name in hps_to_freeze:
|
||||
# if an hp is specifed to be freezed, use tine value provided in the starting_point
|
||||
# otherwise use the setting from the original search space
|
||||
if hp_name in starting_point:
|
||||
space[hp_name] = {
|
||||
"domain": starting_point[hp_name]
|
||||
}
|
||||
# (3.1) Configure the search space for hps that are in the original search space
|
||||
# but you want to change something, for example the range.
|
||||
revised_hps_to_search = {
|
||||
"n_estimators": {
|
||||
"domain": tune.lograndint(lower=10, upper=32768),
|
||||
"init_value": starting_point.get(
|
||||
"n_estimators"
|
||||
)
|
||||
or space["n_estimators"].get("init_value", 10),
|
||||
"low_cost_init_value": space["n_estimators"].get(
|
||||
"low_cost_init_value", 10
|
||||
),
|
||||
},
|
||||
"num_leaves": {
|
||||
"domain": tune.lograndint(lower=10, upper=3276),
|
||||
"init_value": starting_point.get(
|
||||
"num_leaves"
|
||||
)
|
||||
or space["num_leaves"].get("init_value", 10),
|
||||
"low_cost_init_value": space["num_leaves"].get(
|
||||
"low_cost_init_value", 10
|
||||
),
|
||||
},
|
||||
# (3.2) Add a new hp which is not in the original search space
|
||||
"subsample": {
|
||||
"domain": tune.uniform(lower=0.1, upper=1.0),
|
||||
"init_value": 0.1,
|
||||
},
|
||||
}
|
||||
space.update(revised_hps_to_search)
|
||||
return space
|
||||
|
||||
new_estimator_name = "large_lgbm"
|
||||
new_automl_experiment = AutoML()
|
||||
new_automl_experiment.add_learner(
|
||||
learner_name=new_estimator_name, learner_class=MyPartiallyFreezedLargeLGBM
|
||||
)
|
||||
|
||||
automl_settings_resume = {
|
||||
"time_budget": 3,
|
||||
"metric": "accuracy",
|
||||
"task": "classification",
|
||||
"estimator_list": [new_estimator_name],
|
||||
"log_file_name": "test/iris_resume.log",
|
||||
"log_training_metric": True,
|
||||
"n_jobs": 1,
|
||||
"model_history": True,
|
||||
"log_type": "all",
|
||||
"starting_points": {new_estimator_name: starting_point},
|
||||
}
|
||||
|
||||
new_automl_experiment.fit(
|
||||
X_train=X_train, y_train=y_train, **automl_settings_resume
|
||||
)
|
||||
|
||||
new_automl_val_accuracy = 1.0 - new_automl_experiment.best_loss
|
||||
print("Best ML leaner:", new_automl_experiment.best_estimator)
|
||||
print("Best hyperparmeter config:", new_automl_experiment.best_config)
|
||||
print(
|
||||
"Best accuracy on validation data: {0:.4g}".format(new_automl_val_accuracy)
|
||||
)
|
||||
print(
|
||||
"Training duration of best run: {0:.4g} s".format(
|
||||
new_automl_experiment.best_config_train_time
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue