Use script-friendly example in README and quickstart (#3728)

* Use script-friendly example in README and quickstart

* Remove accidentally commited file

* Update instruction
This commit is contained in:
Eric Zhu 2024-10-09 16:02:42 -07:00 committed by GitHub
parent d7ae970c87
commit 498854aed3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 46 additions and 27 deletions

View File

@ -106,12 +106,21 @@ The following code uses code execution, you need to have [Docker installed](http
and running on your machine. and running on your machine.
```python ```python
import asyncio
import logging
from autogen_agentchat import EVENT_LOGGER_NAME
from autogen_agentchat.agents import CodeExecutorAgent, CodingAssistantAgent from autogen_agentchat.agents import CodeExecutorAgent, CodingAssistantAgent
from autogen_agentchat.logging import ConsoleLogHandler
from autogen_agentchat.teams import RoundRobinGroupChat, StopMessageTermination from autogen_agentchat.teams import RoundRobinGroupChat, StopMessageTermination
from autogen_core.components.code_executor import DockerCommandLineCodeExecutor from autogen_core.components.code_executor import DockerCommandLineCodeExecutor
from autogen_core.components.models import OpenAIChatCompletionClient from autogen_core.components.models import OpenAIChatCompletionClient
async with DockerCommandLineCodeExecutor(work_dir="coding") as code_executor: logger = logging.getLogger(EVENT_LOGGER_NAME)
logger.addHandler(ConsoleLogHandler())
logger.setLevel(logging.INFO)
async def main() -> None:
async with DockerCommandLineCodeExecutor(work_dir="coding") as code_executor:
code_executor_agent = CodeExecutorAgent("code_executor", code_executor=code_executor) code_executor_agent = CodeExecutorAgent("code_executor", code_executor=code_executor)
coding_assistant_agent = CodingAssistantAgent( coding_assistant_agent = CodingAssistantAgent(
"coding_assistant", model_client=OpenAIChatCompletionClient(model="gpt-4o") "coding_assistant", model_client=OpenAIChatCompletionClient(model="gpt-4o")
@ -121,6 +130,8 @@ async with DockerCommandLineCodeExecutor(work_dir="coding") as code_executor:
task="Create a plot of NVDIA and TSLA stock returns YTD from 2024-01-01 and save it to 'nvidia_tesla_2024_ytd.png'.", task="Create a plot of NVDIA and TSLA stock returns YTD from 2024-01-01 and save it to 'nvidia_tesla_2024_ytd.png'.",
termination_condition=StopMessageTermination(), termination_condition=StopMessageTermination(),
) )
asyncio.run(main())
``` ```
### C# ### C#

View File

@ -34,7 +34,7 @@ When using code, you must indicate the script type in the code block. The user c
If you want the user to save the code in a file before executing it, put # filename: <filename> inside the code block as the first line. Don't include multiple code blocks in one response. Do not ask users to copy and paste the result. Instead, use 'print' function for the output when relevant. Check the execution result returned by the user. If you want the user to save the code in a file before executing it, put # filename: <filename> inside the code block as the first line. Don't include multiple code blocks in one response. Do not ask users to copy and paste the result. Instead, use 'print' function for the output when relevant. Check the execution result returned by the user.
If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can't be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try. If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can't be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try.
When you find an answer, verify the answer carefully. Include verifiable evidence in your response if possible. When you find an answer, verify the answer carefully. Include verifiable evidence in your response if possible.
Reply "TERMINATE" in the end when everything is done.""", Reply "TERMINATE" in the end when code has been executed and task is complete.""",
): ):
super().__init__(name=name, description=description) super().__init__(name=name, description=description)
self._model_client = model_client self._model_client = model_client

View File

@ -3,7 +3,6 @@ import logging
import sys import sys
from datetime import datetime from datetime import datetime
from .. import EVENT_LOGGER_NAME
from ..agents import ChatMessage, StopMessage, TextMessage from ..agents import ChatMessage, StopMessage, TextMessage
from ..teams._events import ( from ..teams._events import (
ContentPublishEvent, ContentPublishEvent,
@ -68,8 +67,3 @@ class ConsoleLogHandler(logging.Handler):
sys.stdout.flush() sys.stdout.flush()
else: else:
raise ValueError(f"Unexpected log record: {record.msg}") raise ValueError(f"Unexpected log record: {record.msg}")
logger = logging.getLogger(EVENT_LOGGER_NAME)
logger.setLevel(logging.INFO)
logger.addHandler(ConsoleLogHandler())

View File

@ -29,6 +29,9 @@ The following example illustrates creating a simple agent team with two agents t
1. `CodingAssistantAgent` that generates responses using an LLM model. 1. `CodingAssistantAgent` that generates responses using an LLM model.
2. `CodeExecutorAgent` that executes code snippets and returns the output. 2. `CodeExecutorAgent` that executes code snippets and returns the output.
Because the `CodeExecutorAgent` uses a Docker command-line code executor to execute code snippets,
you need to have [Docker installed](https://docs.docker.com/engine/install/) and running on your machine.
The task is to "Create a plot of NVIDIA and TESLA stock returns YTD from 2024-01-01 and save it to 'nvidia_tesla_2024_ytd.png'." The task is to "Create a plot of NVIDIA and TESLA stock returns YTD from 2024-01-01 and save it to 'nvidia_tesla_2024_ytd.png'."
```{include} stocksnippet.md ```{include} stocksnippet.md

View File

@ -2,21 +2,32 @@
`````{tab-item} AgentChat (v0.4x) `````{tab-item} AgentChat (v0.4x)
```python ```python
import asyncio
import logging
from autogen_agentchat import EVENT_LOGGER_NAME
from autogen_agentchat.agents import CodeExecutorAgent, CodingAssistantAgent from autogen_agentchat.agents import CodeExecutorAgent, CodingAssistantAgent
from autogen_agentchat.logging import ConsoleLogHandler
from autogen_agentchat.teams import RoundRobinGroupChat, StopMessageTermination from autogen_agentchat.teams import RoundRobinGroupChat, StopMessageTermination
from autogen_core.components.code_executor import DockerCommandLineCodeExecutor from autogen_core.components.code_executor import DockerCommandLineCodeExecutor
from autogen_core.components.models import OpenAIChatCompletionClient from autogen_core.components.models import OpenAIChatCompletionClient
async with DockerCommandLineCodeExecutor(work_dir="coding") as code_executor: logger = logging.getLogger(EVENT_LOGGER_NAME)
logger.addHandler(ConsoleLogHandler())
logger.setLevel(logging.INFO)
async def main() -> None:
async with DockerCommandLineCodeExecutor(work_dir="coding") as code_executor:
code_executor_agent = CodeExecutorAgent("code_executor", code_executor=code_executor) code_executor_agent = CodeExecutorAgent("code_executor", code_executor=code_executor)
coding_assistant_agent = CodingAssistantAgent( coding_assistant_agent = CodingAssistantAgent(
"coding_assistant", model_client=OpenAIChatCompletionClient(model="gpt-4") "coding_assistant", model_client=OpenAIChatCompletionClient(model="gpt-4o")
) )
group_chat = RoundRobinGroupChat([coding_assistant_agent, code_executor_agent]) group_chat = RoundRobinGroupChat([coding_assistant_agent, code_executor_agent])
result = await group_chat.run( result = await group_chat.run(
task="Create a plot of NVIDIA and TESLA stock returns YTD from 2024-01-01 and save it to 'nvidia_tesla_2024_ytd.png'.", task="Create a plot of NVDIA and TSLA stock returns YTD from 2024-01-01 and save it to 'nvidia_tesla_2024_ytd.png'.",
termination_condition=StopMessageTermination(), termination_condition=StopMessageTermination(),
) )
asyncio.run(main())
``` ```
````` `````