Remove chat layer, move it to examples/common (#125)

This commit is contained in:
Eric Zhu 2024-06-25 13:23:29 -07:00 committed by GitHub
parent 059550648e
commit 44443c8aad
31 changed files with 171 additions and 417 deletions

View File

@ -8,8 +8,6 @@
- `core` are the the foundational generic interfaces upon which all else is built. This module must not depend on any other module.
- `application` are implementations of core components that are used to compose an application.
- `components` are the building blocks for creating agents.
- `chat` are concrete implementations of agents and multi-agent interactions.
It is used for creating demos and experimenting with multi-agent design patterns.
## Development

View File

@ -19,7 +19,7 @@ Generally, messages are one of:
Messages are purely data, and should not contain any logic.
### Required Message Types
<!-- ### Required Message Types
At the core framework level there is *no requirement* of which message types are handled by an agent. However, some behavior patterns require agents understand certain message types. For an agent to participate in these patterns, it must understand any such required message types.
@ -34,7 +34,7 @@ Agents should document which message types they can handle. Orchestrating agents
```{tip}
An important part of designing an agent or choosing which agents to use is understanding which message types are required by the agents you are using.
```
``` -->
## Communication

View File

@ -3,13 +3,7 @@
Memory is a collection of data corresponding to the conversation history
of an agent.
Data in meory can be just a simple list of all messages,
or one which provides a view of the last N messages
({py:class}`agnext.chat.memory.BufferedChatMemory`).
Built-in memory implementations are:
- {py:class}`agnext.chat.memory.BufferedChatMemory`
- {py:class}`agnext.chat.memory.HeadAndTailChatMemory`
or one which provides a view of the last N messages.
To create a custom memory implementation, you need to subclass the
{py:class}`agnext.components.memory.ChatMemory` protocol class and implement
@ -17,3 +11,53 @@ all its methods.
For example, you can use [LLMLingua](https://github.com/microsoft/LLMLingua)
to create a custom memory implementation that provides a compressed
view of the conversation history.
Here is an example of a custom memory implementation that keeps a view of the
last N messages:
```python
from typing import Any, List, Mapping
from agnext.components.memory import ChatMemory
from agnext.components.models import FunctionExecutionResultMessage, LLMMessage
class BufferedChatMemory(ChatMemory[LLMMessage]):
"""A buffered chat memory that keeps a view of the last n messages,
where n is the buffer size. The buffer size is set at initialization.
Args:
buffer_size (int): The size of the buffer.
"""
def __init__(self, buffer_size: int) -> None:
self._messages: List[LLMMessage] = []
self._buffer_size = buffer_size
async def add_message(self, message: LLMMessage) -> None:
"""Add a message to the memory."""
self._messages.append(message)
async def get_messages(self) -> List[LLMMessage]:
"""Get at most `buffer_size` recent messages."""
messages = self._messages[-self._buffer_size :]
# Handle the first message is a function call result message.
if messages and isinstance(messages[0], FunctionExecutionResultMessage):
# Remove the first message from the list.
messages = messages[1:]
return messages
async def clear(self) -> None:
"""Clear the message memory."""
self._messages = []
def save_state(self) -> Mapping[str, Any]:
return {
"messages": [message for message in self._messages],
"buffer_size": self._buffer_size,
}
def load_state(self, state: Mapping[str, Any]) -> None:
self._messages = state["messages"]
self._buffer_size = state["buffer_size"]

View File

@ -10,10 +10,3 @@ like software development.
You can implement any multi-agent pattern using AGNext agents, which
communicate with each other using messages through the agent runtime
(see {doc}`/core-concepts/runtime` and {doc}`/core-concepts/agent`).
To make life easier, AGNext provides built-in patterns
in {py:mod}`agnext.chat.patterns` that you can use to build
multi-agent systems quickly.
To read about the built-in patterns, see the following guides:
1. {doc}`/guides/group-chat-coder-reviewer`

View File

@ -1,314 +0,0 @@
# Group Chat with Coder and Reviewer Agents
Group Chat from [AutoGen](https://aka.ms/autogen-paper) is a
powerful multi-agent pattern support by AGNext.
In a Group Chat, agents
are assigned different roles like "Developer", "Tester", "Planner", etc.,
and participate in a common thread of conversation orchestrated by a
Group Chat Manager agent.
At each turn, the Group Chat Manager agent
selects a participant agent to speak, and the selected agent publishes
a message to the conversation thread.
In this guide, we use using the {py:class}`agnext.chat.patterns.GroupChatManager`
and {py:class}`agnext.chat.agents.ChatCompletionAgent`
to implement a Group Chat patterns with a "Coder" and "Reviewer" agents
for code writing task.
First, import the necessary modules and classes:
```python
import asyncio
from agnext.application import SingleThreadedAgentRuntime
from agnext.chat.agents import ChatCompletionAgent
from agnext.chat.memory import BufferedChatMemory
from agnext.chat.patterns import GroupChatManager
from agnext.chat.types import TextMessage
from agnext.components.models import OpenAIChatCompletionClient, SystemMessage
```
Next, let's create the runtime:
```python
runtime = SingleThreadedAgentRuntime()
```
Now, let's register the participant agents using the
{py:class}`agnext.chat.agents.ChatCompletionAgent` class.
The agents do not use any tools here and have a short memory of
last 10 messages:
```python
coder = runtime.register_and_get_proxy(
"Coder",
lambda: ChatCompletionAgent(
description="An agent that writes code",
system_messages=[
SystemMessage(
"You are a coder. You can write code to solve problems.\n"
"Work with the reviewer to improve your code."
)
],
model_client=OpenAIChatCompletionClient(model="gpt-4-turbo"),
memory=BufferedChatMemory(buffer_size=10),
),
)
reviewer = runtime.register_and_get_proxy(
"Reviewer",
lambda: ChatCompletionAgent(
description="An agent that reviews code",
system_messages=[
SystemMessage(
"You are a code reviewer. You focus on correctness, efficiency and safety of the code.\n"
"Respond using the following format:\n"
"Code Review:\n"
"Correctness: <Your comments>\n"
"Efficiency: <Your comments>\n"
"Safety: <Your comments>\n"
"Approval: <APPROVE or REVISE>\n"
"Suggested Changes: <Your comments>"
)
],
model_client=OpenAIChatCompletionClient(model="gpt-4-turbo"),
memory=BufferedChatMemory(buffer_size=10),
),
)
```
Let's register the Group Chat Manager agent
({py:class}`agnext.chat.patterns.GroupChatManager`)
that orchestrates the conversation.
```python
runtime.register(
"Manager",
lambda: GroupChatManager(
description="A manager that orchestrates a back-and-forth converation between a coder and a reviewer.",
participants=[coder.id, reviewer.id], # The order of the participants indicates the order of speaking.
memory=BufferedChatMemory(buffer_size=10),
termination_word="APPROVE",
),
)
```
In this example, the Group Chat Manager agent selects the coder to speak first,
and selects the next speaker in round-robin fashion based on the order of the participants.
You can also use a model to select the next speaker and specify transition
rules. See {py:class}`agnext.chat.patterns.GroupChatManager` for more details.
Finally, let's start the conversation by publishing a task message to the runtime:
```python
async def main() -> None:
runtime.publish_message(
TextMessage(
content="Write a Python script that find near-duplicate paragraphs in a directory of many text files. "
"Output the file names, line numbers and the similarity score of the near-duplicate paragraphs. ",
source="Human",
)
)
while True:
await runtime.process_next()
await asyncio.sleep(1)
asyncio.run(main())
```
The complete code example is available in `examples/coder_reviewer.py`.
Below is the output of a run of the group chat example:
````none
--------------------------------------------------------------------------------
Human: Write a Python script that find near-duplicate paragraphs in a directory of many text files. Output the file names, line numbers and the similarity score of the near-duplicate paragraphs.
--------------------------------------------------------------------------------
Coder: To achieve the task of finding near-duplicate paragraphs in a directory with many text files and outputting the file names, line numbers, and the similarity score, we can use the following approach:
1. **Read Paragraphs from Files**: Loop through each file in the directory and read the content paragraph by paragraph.
2. **Text Preprocessing**: Clean and preprocess the text data (e.g., lowercasing, removing punctuation).
3. **Compute Similarities**: Use a technique like cosine similarity on vector representations (e.g., TF-IDF) of the paragraphs to find similarities.
4. **Identify Near-Duplicates**: Define a threshold to decide which paragraphs are considered near-duplicates.
5. **Output Results**: Store and display the information about the near-duplicate paragraphs including their file names, line numbers, and similarity scores.
Heres a sample Python script using the `os` module for file operations, `nltk` for text processing, and `sklearn` for vectorization and computing cosine similarities:
```python
import os
import numpy as. np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords
import string
def preprocess_text(text):
"""Preprocess text by removing punctuation and stop words, and lowercasing."""
text = text.lower()
text = ''.join([char for char in text if char not in string.punctuation])
words = word_tokenize(text)
stop_words = set(stopwords.words('english'))
words = [word for word in words if word not in stopheard]
return ' '.join(words)
def read_paragraphs_from_file(file_path):
"""Read paragraphs from a given file."""
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
paragraphs = [para.strip() for para in content.split('\n') if para.strip()]
return paragraphs
def find_near_duplicates(directory, similarity_threshold=0.8):
"""Find near-duplicate paragraphs across files in the given directory."""
files_data = []
for root, _, files in os.walk(directory):
for f in files:
file_path = os.path.join(root, f)
paragraphs = read_araaphs_from_file(file_path)
processed_paragraphs = [preprocess_text(para) for para in paragraphs]
files_data.append((f, paragraphs, processed_paragraphs))
# Vectorizing text data
all_processed_paras = [data for _, _, processed_paras in files_data for data in processed_paras]
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(all_processed_paras)
# Compute cosine similarity
cos_similarity_matrix = cosine_similarity(tfidf_matrix)
# Checking for near-duplicates based on threshold
for i, (file_i, paragraphs_i, _) in enumerate(fileElot_data):
for j in range(i + 1, len(files_data)):
file_j, paragraphs_j, _ = dies_data[j]
for index_i, para_i in enumerate(paragrophs_i):
for index_j, para_j in enumerate(paragraphs_j):
sim_score = cos_similarity_matrix[i * len(paragraphs_i) +foendez_i][j * xen(diruhspchuc _ dia] hmide wyst é)
if sim_ctore >= pepparturr_thresheid:
overall_index_i = sum(len(dp_cata[k-apached]) for k intren(i, tlen angmeapl sagrod_u sdisterf chaperrat:
print(f"{file_i} (para {index_i+1}), {file_j} (lgrafonen{iad ef + , SIM enchantisrowREeteraf): {sidotta{(": . bridgescodensorphiae:
)
if __name__ == '__main__':
DIRECTORY_PATH = 'path/to/directory'
find_nearduplmany czup costsD etgt*tyn dup examineyemitour EgoreOtyp als
```
This script accomplishes the task as outlined. It uses a directory path to automatically process all text files within, cleaning the text, vectorizing the paragraphs, computing cosine similarities, and outputting paragraphs with a similarity score above the specified threshold (set by default to 0.8, but can be adjusted). Adjust paths, thresholds, and other configurations as necessary for your specific use case
--------------------------------------------------------------------------------
Reviewer: There are several syntax and logic issues within the provided code that need to be addressed before approving it:
1. **Syntax Mistakes:**
- In the import statement, `numpy as. np` should be corrected to `import numpy as np`.
- Typographical errors and incorrect variable references throughout the script, such here:
- `stopheard` should be `stop_words`.
- `read_araaphs_from_file` should be `read_paragraphs_from_file`.
- `preprocess_text` includes `stopheard`, which should be corrected.
- `fileElot_data` typing error; it should be `files_data`.
- `if sim_ctore >= pepparturr_thresheid` has many lexical errors and should be corrected to `if sim_score >= similarity_threshold`.
- `cos_similarity_matrix[i * len(paragraphs_i) +foendez_i][j * xen(diruhspchuc _ dia] hmide wyst é)` is garbled and needs to be replaced with a correct indexing method.
- Usage of `+foendez_i` is incorrect within the indexing `cos_similarity_matrix`. This needs correction based on proper iterative indexing.
- Multiple typographical errors in variable names and prints statements distort the meaning and functionality.
2. **Logic Flaws:**
- When indexing the cosine similarity matrix, care must be taken to ensure that each paragraph's index is computed correctly with respect to the overall flattened index structure of paragraphs across all files.
- Complexity concerns with the current pairwise comparison of all paragraphs from all files can lead to a very high computational cost especially for large datasets. Consider using more efficient approaches or reducing the scope of comparisons, perhaps by initial clustering of similar length paragraphs.
- The error handling mechanism (e.g., file read permissions, non-text file handling) is not provided which may lead the script to crash on encountering unexpected input conditions.
3. **Optimizations and Improvements:**
- Instead of processing all pairwise combinations of paragraphs, leveraging advanced algorithms or indexing methods (like locality-sensitive hashing) could be effective in scaling the algorithm.
- Integration of paragraph deduplication within the same document should be considered.
- Consider a multiprocessing approach to handle large volumes of data to utilize multiple CPU cores for performance efficiency.
4. **Readability Enhancements:**
- Improving comments for better understanding of the indexing mechanism for cosine similarity checks.
- Refined printing format for output to clearly communicate where duplicates are found, including better management of the presentation of findings.
The script requires a considerable number of corrections and enhancements before it can be approved
--------------------------------------------------------------------------------
Coder: Thank you for the thorough review. I will address the issues and make the necessary revisions to the code.
Here's the revised Python script with syntax corrections, logic improvements, error handling, and readability enhancements:
```python
import os
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import string
def preprocess_text(text):
"""Preprocess text by removing punctuation and stopwords, and lowercasing."""
text = text.lower()
text = ''.join(char for char in text if char not in string.punctuation)
words = word_tokenize(text)
stop_words = set(stopwords.words('english'))
words = [word for word in words if word not in stop_words]
return ' '.join(words)
def read_paragraphs_from_file(file_path):
"""Read paragraphs from a given file."""
try:
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
paragraphs = [para.strip() for para in content.split('\n') if para.strip()]
return paragraphs
except IOError:
print(f"Error reading file: {file_path}")
return []
def find_near_duplicates(directory, similarity_threshold=0.8):
"""Find near-duplicate paragraphs across files in the given directory."""
files_data = []
for root, _, files in os.walk(directory):
for filename in files:
file_path = os.path.join(root, filename)
paragraphs = read_paragraphs_from_file(file_path)
processed_paragraphs = [preprocess_text(para) for para in paragraphs]
files_data.append((filename, paragraphs, processed_paragraphs))
# Vectorizing text data
all_processed_paras = [para for _, _, processed_paras in files_data for para in processed_paras]
if not all_processed_paras:
return
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(all_processed_paras)
# Compute cosine similarity
cos_similarity_matrix = cosine_similarity(tfidf_matrix)
# Checking for near-duplicates based on threshold
n = sum(len(paras) for _, paras, _ in files_data) # Total number of paragraphs
idx = 0
for i, (file_i, paragraphs_i, _) in enumerate(files_data):
for index_i, para_i in enumerate(paragraphs_i):
global_idx_i = idx + index_i
for j in range(i, len(files_data)):
offset = 0 if i == j else len(files_data[i][1]) # Avoid duplicate comparisons within the same file
start_idx = idx + offset if j == i else sum(len(files_data[k][1]) for k in range(j))
file_j, paragraphs_j, _ = files_data[j]
for index_j, para_j in enumerate(paragraphs_j):
global_idx_j = start_idx + index_j
if global_idx_i < global_idx_j:
sim_score = cos_similarity_matrix[global_idx_i, global_idx_j]
if sim_score >= similarity_threshold:
print(f"{file_i} (para {index_i+1}) and {file_j} (para {index_j+1}), Similarity Score: {sim_score:.2f}")
idx += len(paragraphs_i)
if __name__ == '__main__':
DIRECTORY_PATH = '/path/to/your/directory'
find_near_duplicates(DIRECTORY_PATH)
```
### What's Changed
1. **Syntax and Typo Corrections**: Corrected lexically incorrect variables and function calls.
2. **Error Handling**: Added error handling for file read operations.
3. **Efficiency and Logic Correction**: Adjusted how the indices for similarity matrix accesses are calculated to avoid redundant comparisons and incorrect ranges.
4. **Readability**: Improved comments and output formatting for better understanding and readability of the output results.
This script should now work more reliably and efficiently, with clearer output and handling of typical file access issues. Note that for very large sets of data, further optimizations may still be necessary, potentially including but not limited to the use of more sophisticated deduplication algorithms or parallel processing techniques
--------------------------------------------------------------------------------
Reviewer: APPROVE
````

View File

@ -7,9 +7,9 @@ The decorator {py:func}`agnext.components.message_handler` should be added to fu
- The function must be an `async` function.
- The function must be decorated with the `message_handler` decorator.
- The function must have exactly 3 arguments.
- `self`
- `message`: The message to be handled, this must be type hinted with the message type that it is intended to handle.
- `cancellation_token`: A {py:class}`agnext.core.CancellationToken` object
- `self`
- `message`: The message to be handled, this must be type hinted with the message type that it is intended to handle.
- `cancellation_token`: A {py:class}`agnext.core.CancellationToken` object
- The function must be type hinted with what message types it can return.
```{tip}
@ -23,10 +23,25 @@ The following is an example of a simple agent that broadcasts the fact it receiv
One important thing to point out is that when an agent is constructed it must be passed a runtime object. This allows the agent to communicate with other agents via the runtime.
```python
from agnext.chat.types import MultiModalMessage, Reset, TextMessage
from agnext.components import TypeRoutedAgent, message_handler
from dataclasses import dataclass
from typing import List, Union
from agnext.components import TypeRoutedAgent, message_handler, Image
from agnext.core import AgentRuntime, CancellationToken
@dataclass
class TextMessage:
content: str
source: str
@dataclass
class MultiModalMessage:
content: List[Union[str, Image]]
source: str
@dataclass
class Reset:
pass
class MyAgent(TypeRoutedAgent):
def __init__(self):

View File

@ -16,9 +16,8 @@ AGNext's developer API consists of the following layers:
- :doc:`core <reference/agnext.core>` - The core interfaces that defines agent and runtime.
- :doc:`application <reference/agnext.application>` - Implementations of the runtime and other modules (e.g., logging) for building applications.
- :doc:`components <reference/agnext.components>` - Interfaces and implementations for agents, models, memory, and tools.
- :doc:`chat <reference/agnext.chat>` - High-level API for creating demos and experimenting with multi-agent patterns. It offers pre-built agents, patterns, message types, and memory stores.
To get you started quickly, we also offers [a suite of examples](https://github.com/microsoft/agnext/tree/main/python/examples) to demonstrate the core concepts.
.. toctree::
:caption: Getting started
@ -45,7 +44,6 @@ AGNext's developer API consists of the following layers:
:hidden:
guides/type-routed-agent
guides/group-chat-coder-reviewer
guides/azure-openai-with-aad-auth
guides/termination-with-intervention
@ -56,7 +54,6 @@ AGNext's developer API consists of the following layers:
reference/agnext.components
reference/agnext.application
reference/agnext.chat
reference/agnext.core
.. toctree::

View File

@ -2,6 +2,12 @@
This directory contains examples and demos of how to use AGNext.
- `common`: Contains common implementations and utilities used by the examples.
- `core`: Contains examples that illustrate the core concepts of AGNext.
- `tool-use`: Contains examples that illustrate tool use in AGNext.
- `patterns`: Contains examples that illustrate how multi-agent patterns can be implemented in AGNext.
- `demos`: Contains interactive demos that showcase applications that can be built using AGNext.
## Core examples
We provide examples to illustrate the core concepts of AGNext:
@ -42,7 +48,7 @@ We provide interactive demos that showcase applications that can be built using
to implement the reflection pattern for image generation.
- [`software_consultancy.py`](demos/software_consultancy.py): a demonstration of multi-agent interaction using
the group chat pattern.
- [`chest_game.py`](tool-use/chess_game.py): an example with two chess player agents that executes its own tools to demonstrate tool use and reflection on tool use.
- [`chest_game.py`](demos/chess_game.py): an example with two chess player agents that executes its own tools to demonstrate tool use and reflection on tool use.
## Running the examples and demos
@ -52,24 +58,15 @@ First, you need a shell with AGNext and the examples dependencies installed. To
hatch shell
```
To run an example, just run the corresponding Python script. For example, to run the `coder_reviewer_pub_sub.py` example, run:
To run an example, just run the corresponding Python script. For example:
```bash
hatch shell
python core/coder_reviewer.py
python core/one_agent_direct.py
```
Or simply:
```bash
hatch run python core/coder_reviewer.py
hatch run python core/one_agent_direct.py
```
To enable logging, turn on verbose mode by setting `--verbose` flag:
```bash
hatch run python core/coder_reviewer.py --verbose
```
By default the log file is saved in the same directory with the same filename
as the script, e.g., "coder_reviewer.log".

View File

View File

@ -2,20 +2,21 @@ import asyncio
import json
from typing import Any, Coroutine, Dict, List, Mapping, Sequence, Tuple
from ...components import (
from agnext.components import (
FunctionCall,
TypeRoutedAgent,
message_handler,
)
from ...components.memory import ChatMemory
from ...components.models import (
from agnext.components.memory import ChatMemory
from agnext.components.models import (
ChatCompletionClient,
FunctionExecutionResult,
FunctionExecutionResultMessage,
SystemMessage,
)
from ...components.tools import Tool
from ...core import AgentId, CancellationToken
from agnext.components.tools import Tool
from agnext.core import AgentId, CancellationToken
from ..types import (
FunctionCallMessage,
Message,

View File

@ -1,14 +1,14 @@
from typing import Literal
import openai
from ...components import (
from agnext.components import (
Image,
TypeRoutedAgent,
message_handler,
)
from ...components.memory import ChatMemory
from ...core import CancellationToken
from agnext.components.memory import ChatMemory
from agnext.core import CancellationToken
from ..types import (
Message,
MultiModalMessage,

View File

@ -1,11 +1,11 @@
from typing import Any, Callable, List, Mapping
import openai
from agnext.components import TypeRoutedAgent, message_handler
from agnext.core import CancellationToken
from openai import AsyncAssistantEventHandler
from openai.types.beta import AssistantResponseFormatParam
from ...components import TypeRoutedAgent, message_handler
from ...core import CancellationToken
from ..types import PublishNow, Reset, RespondNow, ResponseFormat, TextMessage

View File

@ -1,7 +1,8 @@
import asyncio
from ...components import TypeRoutedAgent, message_handler
from ...core import CancellationToken
from agnext.components import TypeRoutedAgent, message_handler
from agnext.core import CancellationToken
from ..types import PublishNow, TextMessage

View File

@ -1,7 +1,8 @@
from typing import Any, List, Mapping
from ...components.memory import ChatMemory
from ...components.models import FunctionExecutionResultMessage
from agnext.components.memory import ChatMemory
from agnext.components.models import FunctionExecutionResultMessage
from ..types import Message

View File

@ -1,7 +1,8 @@
from typing import Any, List, Mapping
from ...components.memory import ChatMemory
from ...components.models import FunctionExecutionResultMessage
from agnext.components.memory import ChatMemory
from agnext.components.models import FunctionExecutionResultMessage
from ..types import FunctionCallMessage, Message, TextMessage

View File

@ -1,10 +1,11 @@
import logging
from typing import Any, Callable, List, Mapping
from ...components import TypeRoutedAgent, message_handler
from ...components.memory import ChatMemory
from ...components.models import ChatCompletionClient
from ...core import AgentId, AgentProxy, CancellationToken
from agnext.components import TypeRoutedAgent, message_handler
from agnext.components.memory import ChatMemory
from agnext.components.models import ChatCompletionClient
from agnext.core import AgentId, AgentProxy, CancellationToken
from ..types import (
Message,
MultiModalMessage,

View File

@ -3,9 +3,10 @@
import re
from typing import Dict, List
from ...components.memory import ChatMemory
from ...components.models import ChatCompletionClient, SystemMessage
from ...core import AgentProxy
from agnext.components.memory import ChatMemory
from agnext.components.models import ChatCompletionClient, SystemMessage
from agnext.core import AgentProxy
from ..types import Message, TextMessage

View File

@ -1,8 +1,9 @@
import json
from typing import Any, Sequence, Tuple
from ...components import TypeRoutedAgent, message_handler
from ...core import AgentId, AgentRuntime, CancellationToken
from agnext.components import TypeRoutedAgent, message_handler
from agnext.core import AgentId, AgentRuntime, CancellationToken
from ..types import Reset, RespondNow, ResponseFormat, TextMessage
__all__ = ["OrchestratorChat"]

View File

@ -4,8 +4,8 @@ from dataclasses import dataclass, field
from enum import Enum
from typing import List, Union
from ..components import FunctionCall, Image
from ..components.models import FunctionExecutionResultMessage
from agnext.components import FunctionCall, Image
from agnext.components.models import FunctionExecutionResultMessage
@dataclass(kw_only=True)

View File

@ -1,14 +1,14 @@
from typing import List, Optional, Union
from typing_extensions import Literal
from ..components.models import (
from agnext.components.models import (
AssistantMessage,
FunctionExecutionResult,
FunctionExecutionResultMessage,
LLMMessage,
UserMessage,
)
from typing_extensions import Literal
from .types import (
FunctionCallMessage,
Message,

View File

@ -6,15 +6,12 @@ import asyncio
import logging
import os
import re
import sys
from typing import List
import aiofiles
import openai
from agnext.application import SingleThreadedAgentRuntime
from agnext.chat.agents import OpenAIAssistantAgent
from agnext.chat.memory import BufferedChatMemory
from agnext.chat.patterns._group_chat_manager import GroupChatManager
from agnext.chat.types import PublishNow, TextMessage
from agnext.components import TypeRoutedAgent, message_handler
from agnext.core import AgentId, AgentRuntime, CancellationToken
from openai import AsyncAssistantEventHandler
@ -23,6 +20,13 @@ from openai.types.beta.threads import Message, Text, TextDelta
from openai.types.beta.threads.runs import RunStep, RunStepDelta
from typing_extensions import override
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from common.agents import OpenAIAssistantAgent
from common.memory import BufferedChatMemory
from common.patterns._group_chat_manager import GroupChatManager
from common.types import PublishNow, TextMessage
sep = "-" * 50

View File

@ -6,16 +6,17 @@ import os
import sys
from agnext.application import SingleThreadedAgentRuntime
from agnext.chat.memory import BufferedChatMemory
from agnext.chat.types import Message, TextMessage
from agnext.chat.utils import convert_messages_to_llm_messages
from agnext.components import TypeRoutedAgent, message_handler
from agnext.components.memory import ChatMemory
from agnext.components.models import ChatCompletionClient, OpenAIChatCompletionClient, SystemMessage
from agnext.core import AgentRuntime, CancellationToken
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from common.memory import BufferedChatMemory
from common.types import Message, TextMessage
from common.utils import convert_messages_to_llm_messages
from utils import TextualChatApp, TextualUserAgent, start_runtime

View File

@ -5,19 +5,24 @@ and make moves, and using a group chat manager to orchestrate the conversation."
import argparse
import asyncio
import logging
import os
import sys
from typing import Annotated, Literal
from agnext.application import SingleThreadedAgentRuntime
from agnext.chat.agents._chat_completion_agent import ChatCompletionAgent
from agnext.chat.memory import BufferedChatMemory
from agnext.chat.patterns._group_chat_manager import GroupChatManager
from agnext.chat.types import TextMessage
from agnext.components.models import OpenAIChatCompletionClient, SystemMessage
from agnext.components.tools import FunctionTool
from agnext.core import AgentRuntime
from chess import BLACK, SQUARE_NAMES, WHITE, Board, Move
from chess import piece_name as get_piece_name
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from common.agents._chat_completion_agent import ChatCompletionAgent
from common.memory import BufferedChatMemory
from common.patterns._group_chat_manager import GroupChatManager
from common.types import TextMessage
def validate_turn(board: Board, player: Literal["white", "black"]) -> None:
"""Validate that it is the player's turn to move."""

View File

@ -6,14 +6,15 @@ import sys
import openai
from agnext.application import SingleThreadedAgentRuntime
from agnext.chat.agents import ChatCompletionAgent, ImageGenerationAgent
from agnext.chat.memory import BufferedChatMemory
from agnext.chat.patterns._group_chat_manager import GroupChatManager
from agnext.components.models import OpenAIChatCompletionClient, SystemMessage
from agnext.core import AgentRuntime
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from common.agents import ChatCompletionAgent, ImageGenerationAgent
from common.memory import BufferedChatMemory
from common.patterns._group_chat_manager import GroupChatManager
from utils import TextualChatApp, TextualUserAgent, start_runtime

View File

@ -17,9 +17,6 @@ import aiofiles
import aiohttp
import openai
from agnext.application import SingleThreadedAgentRuntime
from agnext.chat.agents import ChatCompletionAgent
from agnext.chat.memory import HeadAndTailChatMemory
from agnext.chat.patterns._group_chat_manager import GroupChatManager
from agnext.components.models import OpenAIChatCompletionClient, SystemMessage
from agnext.components.tools import FunctionTool
from agnext.core import AgentRuntime
@ -28,7 +25,11 @@ from tqdm import tqdm
from typing_extensions import Annotated
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from common.agents import ChatCompletionAgent
from common.memory import HeadAndTailChatMemory
from common.patterns._group_chat_manager import GroupChatManager
from utils import TextualChatApp, TextualUserAgent, start_runtime

View File

@ -1,9 +1,20 @@
import asyncio
import os
import random
import sys
from asyncio import Future
from agnext.application import SingleThreadedAgentRuntime
from agnext.chat.types import (
from agnext.components import Image, TypeRoutedAgent, message_handler
from agnext.core import AgentRuntime, CancellationToken
from textual.app import App, ComposeResult
from textual.containers import ScrollableContainer
from textual.widgets import Button, Footer, Header, Input, Markdown, Static
from textual_imageview.viewer import ImageViewer
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from common.types import (
MultiModalMessage,
PublishNow,
RespondNow,
@ -11,12 +22,6 @@ from agnext.chat.types import (
ToolApprovalRequest,
ToolApprovalResponse,
)
from agnext.components import Image, TypeRoutedAgent, message_handler
from agnext.core import AgentRuntime, CancellationToken
from textual.app import App, ComposeResult
from textual.containers import ScrollableContainer
from textual.widgets import Button, Footer, Header, Input, Markdown, Static
from textual_imageview.viewer import ImageViewer
class ChatAppMessage(Static):

View File

@ -3,23 +3,26 @@ import asyncio
import json
import logging
import os
import sys
from typing import Callable
import openai
from agnext.application import (
SingleThreadedAgentRuntime,
)
from agnext.chat.agents._chat_completion_agent import ChatCompletionAgent
from agnext.chat.agents._oai_assistant import OpenAIAssistantAgent
from agnext.chat.memory import BufferedChatMemory
from agnext.chat.patterns._orchestrator_chat import OrchestratorChat
from agnext.chat.types import TextMessage
from agnext.components.models import OpenAIChatCompletionClient, SystemMessage
from agnext.components.tools import BaseTool
from agnext.core import AgentRuntime, CancellationToken
from pydantic import BaseModel, Field
from tavily import TavilyClient # type: ignore
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from common.agents import ChatCompletionAgent, OpenAIAssistantAgent
from common.memory import BufferedChatMemory
from common.patterns._orchestrator_chat import OrchestratorChat
from common.types import TextMessage
logging.basicConfig(level=logging.WARNING)
logging.getLogger("agnext").setLevel(logging.DEBUG)

View File

@ -1,3 +0,0 @@
"""
The :mod:`agnext.chat` module is the concrete implementation of multi-agent interaction patterns
"""