mirror of https://github.com/microsoft/autogen.git
roc_auc_weighted metric addition (#827)
* Pending changes exported from your codespace * Update flaml/automl.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/automl.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/ml.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/ml.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update website/docs/Examples/Integrate - Scikit-learn Pipeline.md Co-authored-by: Chi Wang <wang.chi@microsoft.com> * added documentation for new metric * Update flaml/ml.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * minor notebook changes * Update Integrate - Scikit-learn Pipeline.md * Update notebook/automl_classification.ipynb Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update integrate_azureml.ipynb Co-authored-by: Chi Wang <wang.chi@microsoft.com>
This commit is contained in:
parent
d213ae8f39
commit
3b3b0bfa8e
|
@ -498,9 +498,9 @@ class AutoML(BaseEstimator):
|
|||
|
||||
Args:
|
||||
metric: A string of the metric name or a function,
|
||||
e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo',
|
||||
'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2',
|
||||
'mape'. Default is 'auto'.
|
||||
e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_weighted',
|
||||
'roc_auc_ovo_weighted', 'roc_auc_ovr_weighted', 'f1', 'micro_f1', 'macro_f1',
|
||||
'log_loss', 'mae', 'mse', 'r2', 'mape'. Default is 'auto'.
|
||||
If passing a customized metric function, the function needs to
|
||||
have the following input arguments:
|
||||
|
||||
|
@ -2172,9 +2172,9 @@ class AutoML(BaseEstimator):
|
|||
dataframe and label are ignored;
|
||||
If not, dataframe and label must be provided.
|
||||
metric: A string of the metric name or a function,
|
||||
e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo',
|
||||
'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2',
|
||||
'mape'. Default is 'auto'.
|
||||
e.g., 'accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_weighted',
|
||||
'roc_auc_ovo_weighted', 'roc_auc_ovr_weighted', 'f1', 'micro_f1', 'macro_f1',
|
||||
'log_loss', 'mae', 'mse', 'r2', 'mape'. Default is 'auto'.
|
||||
If passing a customized metric function, the function needs to
|
||||
have the following input arguments:
|
||||
|
||||
|
@ -2699,6 +2699,9 @@ class AutoML(BaseEstimator):
|
|||
"roc_auc",
|
||||
"roc_auc_ovr",
|
||||
"roc_auc_ovo",
|
||||
"roc_auc_weighted",
|
||||
"roc_auc_ovr_weighted",
|
||||
"roc_auc_ovo_weighted",
|
||||
"f1",
|
||||
"ap",
|
||||
"micro_f1",
|
||||
|
|
38
flaml/ml.py
38
flaml/ml.py
|
@ -54,6 +54,9 @@ sklearn_metric_name_set = {
|
|||
"roc_auc",
|
||||
"roc_auc_ovr",
|
||||
"roc_auc_ovo",
|
||||
"roc_auc_weighted",
|
||||
"roc_auc_ovr_weighted",
|
||||
"roc_auc_ovo_weighted",
|
||||
"log_loss",
|
||||
"mape",
|
||||
"f1",
|
||||
|
@ -239,8 +242,8 @@ def sklearn_metric_loss_score(
|
|||
Args:
|
||||
metric_name: A string of the metric name, one of
|
||||
'r2', 'rmse', 'mae', 'mse', 'accuracy', 'roc_auc', 'roc_auc_ovr',
|
||||
'roc_auc_ovo', 'log_loss', 'mape', 'f1', 'ap', 'ndcg',
|
||||
'micro_f1', 'macro_f1'.
|
||||
'roc_auc_ovo', 'roc_auc_weighted', 'roc_auc_ovo_weighted', 'roc_auc_ovr_weighted',
|
||||
'log_loss', 'mape', 'f1', 'ap', 'ndcg', 'micro_f1', 'macro_f1'.
|
||||
y_predict: A 1d or 2d numpy array of the predictions which can be
|
||||
used to calculate the metric. E.g., 2d for log_loss and 1d
|
||||
for others.
|
||||
|
@ -276,6 +279,26 @@ def sklearn_metric_loss_score(
|
|||
score = 1.0 - roc_auc_score(
|
||||
y_true, y_predict, sample_weight=sample_weight, multi_class="ovo"
|
||||
)
|
||||
elif metric_name == "roc_auc_weighted":
|
||||
score = 1.0 - roc_auc_score(
|
||||
y_true, y_predict, sample_weight=sample_weight, average="weighted"
|
||||
)
|
||||
elif metric_name == "roc_auc_ovo_weighted":
|
||||
score = 1.0 - roc_auc_score(
|
||||
y_true,
|
||||
y_predict,
|
||||
sample_weight=sample_weight,
|
||||
average="weighted",
|
||||
multi_class="ovo",
|
||||
)
|
||||
elif metric_name == "roc_auc_ovr_weighted":
|
||||
score = 1.0 - roc_auc_score(
|
||||
y_true,
|
||||
y_predict,
|
||||
sample_weight=sample_weight,
|
||||
average="weighted",
|
||||
multi_class="ovr",
|
||||
)
|
||||
elif "log_loss" == metric_name:
|
||||
score = log_loss(y_true, y_predict, labels=labels, sample_weight=sample_weight)
|
||||
elif "mape" == metric_name:
|
||||
|
@ -318,10 +341,17 @@ def sklearn_metric_loss_score(
|
|||
|
||||
|
||||
def get_y_pred(estimator, X, eval_metric, obj):
|
||||
if eval_metric in ["roc_auc", "ap"] and "binary" in obj:
|
||||
if eval_metric in ["roc_auc", "ap", "roc_auc_weighted"] and "binary" in obj:
|
||||
y_pred_classes = estimator.predict_proba(X)
|
||||
y_pred = y_pred_classes[:, 1] if y_pred_classes.ndim > 1 else y_pred_classes
|
||||
elif eval_metric in ["log_loss", "roc_auc", "roc_auc_ovr", "roc_auc_ovo"]:
|
||||
elif eval_metric in [
|
||||
"log_loss",
|
||||
"roc_auc",
|
||||
"roc_auc_ovr",
|
||||
"roc_auc_ovo",
|
||||
"roc_auc_ovo_weighted",
|
||||
"roc_auc_ovr_weighted",
|
||||
]:
|
||||
y_pred = estimator.predict_proba(X)
|
||||
else:
|
||||
y_pred = estimator.predict(X)
|
||||
|
|
|
@ -112,12 +112,12 @@
|
|||
"source": [
|
||||
"settings = {\n",
|
||||
" \"time_budget\": 600, # total running time in seconds\n",
|
||||
" \"metric\": 'accuracy', # can be: 'r2', 'rmse', 'mae', 'mse', 'accuracy', 'roc_auc', 'roc_auc_ovr',\n",
|
||||
" # 'roc_auc_ovo', 'log_loss', 'mape', 'f1', 'ap', 'ndcg', 'micro_f1', 'macro_f1'\n",
|
||||
" \"metric\": 'accuracy', ",
|
||||
" # check the documentation for options of metrics (https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#optimization-metric)\n",
|
||||
" \"task\": 'classification', # task type\n",
|
||||
" \"log_file_name\": 'airlines_experiment.log', # flaml log file\n",
|
||||
" \"seed\": 7654321, # random seed\n",
|
||||
"}"
|
||||
"}\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1269,7 +1269,7 @@
|
|||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.9.15 64-bit",
|
||||
"display_name": "Python 3.9.7 ('base')",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
|
@ -1283,11 +1283,11 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.15"
|
||||
"version": "3.9.7"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
|
||||
"hash": "e811209110f5aa4d8c2189eeb3ff7b9b4d146931cb9189ef6041ff71605c541d"
|
||||
}
|
||||
}
|
||||
},
|
||||
|
|
|
@ -130,13 +130,13 @@
|
|||
"source": [
|
||||
"settings = {\n",
|
||||
" \"time_budget\": 60, # total running time in seconds\n",
|
||||
" \"metric\": 'accuracy', # can be: 'r2', 'rmse', 'mae', 'mse', 'accuracy', 'roc_auc', 'roc_auc_ovr',\n",
|
||||
" # 'roc_auc_ovo', 'log_loss', 'mape', 'f1', 'ap', 'ndcg', 'micro_f1', 'macro_f1'\n",
|
||||
" \"metric\": 'accuracy', \n",
|
||||
" # check the documentation for options of metrics (https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#optimization-metric)\n",
|
||||
" \"estimator_list\": ['lgbm', 'rf', 'xgboost'], # list of ML learners\n",
|
||||
" \"task\": 'classification', # task type \n",
|
||||
" \"sample\": False, # whether to subsample training data\n",
|
||||
" \"log_file_name\": 'airlines_experiment.log', # flaml log file\n",
|
||||
"}"
|
||||
"}\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -202,11 +202,9 @@
|
|||
}
|
||||
],
|
||||
"metadata": {
|
||||
"interpreter": {
|
||||
"hash": "0cfea3304185a9579d09e0953576b57c8581e46e6ebc6dfeb681bc5a511f7544"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.8.0 64-bit ('blend': conda)",
|
||||
"display_name": "Python 3.9.7 ('base')",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
|
@ -219,7 +217,12 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.2"
|
||||
"version": "3.9.7"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "e811209110f5aa4d8c2189eeb3ff7b9b4d146931cb9189ef6041ff71605c541d"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
@ -177,6 +177,23 @@ class TestClassification(unittest.TestCase):
|
|||
automl.fit(X, y, **automl_settings)
|
||||
del automl
|
||||
|
||||
automl = AutoML()
|
||||
automl_settings = {
|
||||
"time_budget": 3,
|
||||
"task": "classification",
|
||||
"n_jobs": 1,
|
||||
"estimator_list": ["kneighbor"],
|
||||
"eval_method": "cv",
|
||||
"n_splits": 3,
|
||||
"metric": "roc_auc_weighted",
|
||||
"log_training_metric": True,
|
||||
# "verbose": 4,
|
||||
"ensemble": True,
|
||||
"skip_transform": True,
|
||||
}
|
||||
automl.fit(X, y, **automl_settings)
|
||||
del automl
|
||||
|
||||
def test_binary(self):
|
||||
automl_experiment = AutoML()
|
||||
automl_settings = {
|
||||
|
|
|
@ -318,6 +318,34 @@ class TestMultiClass(unittest.TestCase):
|
|||
X_train, y_train = load_iris(return_X_y=True)
|
||||
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
||||
|
||||
def test_roc_auc_ovr_weighted(self):
|
||||
automl_experiment = AutoML()
|
||||
automl_settings = {
|
||||
"time_budget": 1,
|
||||
"metric": "roc_auc_ovr_weighted",
|
||||
"task": "classification",
|
||||
"log_file_name": "test/roc_auc_weighted.log",
|
||||
"log_training_metric": True,
|
||||
"n_jobs": 1,
|
||||
"model_history": True,
|
||||
}
|
||||
X_train, y_train = load_iris(return_X_y=True)
|
||||
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
||||
|
||||
def test_roc_auc_ovo_weighted(self):
|
||||
automl_experiment = AutoML()
|
||||
automl_settings = {
|
||||
"time_budget": 1,
|
||||
"metric": "roc_auc_ovo_weighted",
|
||||
"task": "classification",
|
||||
"log_file_name": "test/roc_auc_weighted.log",
|
||||
"log_training_metric": True,
|
||||
"n_jobs": 1,
|
||||
"model_history": True,
|
||||
}
|
||||
X_train, y_train = load_iris(return_X_y=True)
|
||||
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
||||
|
||||
def test_sparse_matrix_classification(self):
|
||||
automl_experiment = AutoML()
|
||||
automl_settings = {
|
||||
|
|
|
@ -32,6 +32,7 @@ automl_pipeline = Pipeline([
|
|||
])
|
||||
automl_pipeline
|
||||
```
|
||||
|
||||
![png](images/pipeline.png)
|
||||
|
||||
### Run AutoML in the pipeline
|
||||
|
@ -39,7 +40,7 @@ automl_pipeline
|
|||
```python
|
||||
automl_settings = {
|
||||
"time_budget": 60, # total running time in seconds
|
||||
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy','roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'f1','log_loss','mae','mse','r2']
|
||||
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy', 'roc_auc', 'roc_auc_weighted', 'roc_auc_ovr', 'roc_auc_ovo', 'f1', 'log_loss', 'mae', 'mse', 'r2'] Check the documentation for more details (https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#optimization-metric)
|
||||
"task": "classification", # task type
|
||||
"estimator_list": ["xgboost", "catboost", "lgbm"],
|
||||
"log_file_name": "airlines_experiment.log", # flaml log file
|
||||
|
@ -61,4 +62,4 @@ print('Best accuracy on validation data: {0:.4g}'.format(1 - automl.best_loss))
|
|||
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))
|
||||
```
|
||||
|
||||
[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_sklearn.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_sklearn.ipynb)
|
||||
[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_sklearn.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_sklearn.ipynb)
|
||||
|
|
|
@ -59,6 +59,9 @@ The optimization metric is specified via the `metric` argument. It can be either
|
|||
- 'roc_auc': minimize 1 - roc_auc_score. Default metric for binary classification.
|
||||
- 'roc_auc_ovr': minimize 1 - roc_auc_score with `multi_class="ovr"`.
|
||||
- 'roc_auc_ovo': minimize 1 - roc_auc_score with `multi_class="ovo"`.
|
||||
- 'roc_auc_weighted': minimize 1 - roc_auc_score with `average="weighted"`.
|
||||
- 'roc_auc_ovr_weighted': minimize 1 - roc_auc_score with `multi_class="ovr"` and `average="weighted"`.
|
||||
- 'roc_auc_ovo_weighted': minimize 1 - roc_auc_score with `multi_class="ovo"` and `average="weighted"`.
|
||||
- 'f1': minimize 1 - f1_score.
|
||||
- 'micro_f1': minimize 1 - f1_score with `average="micro"`.
|
||||
- 'macro_f1': minimize 1 - f1_score with `average="macro"`.
|
||||
|
|
Loading…
Reference in New Issue