mirror of https://github.com/microsoft/autogen.git
Merge "Gemini" feature into the main branch (#2360)
* Start Gemini integration: works ok with Text now * Gemini notebook lint * try catch "import" for Gemini * Debug: id issue for chat completion in Gemini * Add RAG example * Update docs for RAG * Fix missing pydash * Remove temp folder * Fix test error in runs/7206014032/job/19630042864 * Fix tqdm warning * Fix notebook output * Gemini's vision model is supported now * Install instructions for the Gemini branch * Catch and retry when see Interval Server Error 500 * Allow gemini to take more flexible messages i.e., it can take messages where "user" is not the last role. * Use int time for Gemini client * Handle other exceptions in gemini call * rename to "create" function for gemini * GeminiClient compatible with ModelClient now * Lint * Update instructions in Gemini notebook * Lint * Remove empty blocks from Gemini notebook * Add gemini into example page * self.create instead of call * Add py and Py into python execution * Remove error code from merging * Remove pydash dependency for gemini * Add cloud-gemini doc * Remove temp file * cache import update * Add test case for summary with mm input * Lint: warnings instead of print * Add test cases for gemini * Gemini test config * Disable default model for gemini * Typo fix in gemini workflow * Correct grammar in example notebook * Raise if "model" is not provided in create(...) * Move TODOs into a roadmap * Update .github/workflows/contrib-tests.yml Co-authored-by: Davor Runje <davor@airt.ai> * Gemini test config update * Update setup.py Co-authored-by: Davor Runje <davor@airt.ai> * Update test/oai/test_gemini.py Co-authored-by: Davor Runje <davor@airt.ai> * Update test/oai/test_gemini.py Co-authored-by: Davor Runje <davor@airt.ai> * Remove python 3.8 from gemini No google's generativeai for Windows with Python 3.8 * Update import error handling for gemini * Count tokens and cost for gemini --------- Co-authored-by: Li Jiang <bnujli@gmail.com> Co-authored-by: Davor Runje <davor@airt.ai>
This commit is contained in:
parent
f4977e2263
commit
0aaf30a8da
|
@ -256,6 +256,44 @@ jobs:
|
|||
file: ./coverage.xml
|
||||
flags: unittests
|
||||
|
||||
GeminiTest:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||
python-version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install packages and dependencies for all tests
|
||||
run: |
|
||||
python -m pip install --upgrade pip wheel
|
||||
pip install pytest
|
||||
- name: Install packages and dependencies for Gemini
|
||||
run: |
|
||||
pip install -e .[gemini,test]
|
||||
- name: Set AUTOGEN_USE_DOCKER based on OS
|
||||
shell: bash
|
||||
run: |
|
||||
if [[ ${{ matrix.os }} != ubuntu-latest ]]; then
|
||||
echo "AUTOGEN_USE_DOCKER=False" >> $GITHUB_ENV
|
||||
fi
|
||||
- name: Coverage
|
||||
run: |
|
||||
coverage run -a -m pytest test/oai/test_gemini.py --skip-openai
|
||||
coverage xml
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
with:
|
||||
file: ./coverage.xml
|
||||
flags: unittests
|
||||
|
||||
ContextHandling:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
|
|
|
@ -172,6 +172,10 @@ test/my_tmp/*
|
|||
# Storage for the AgentEval output
|
||||
test/test_files/agenteval-in-out/out/
|
||||
|
||||
# local cache or coding foler
|
||||
local_cache/
|
||||
coding/
|
||||
|
||||
# Files created by tests
|
||||
*tmp_code_*
|
||||
test/agentchat/test_agent_scripts/*
|
||||
|
|
|
@ -43,6 +43,7 @@ repos:
|
|||
website/static/img/ag.svg |
|
||||
website/yarn.lock |
|
||||
website/docs/tutorial/code-executors.ipynb |
|
||||
website/docs/topics/non-openai-models/cloud-gemini.ipynb |
|
||||
notebook/.*
|
||||
)$
|
||||
# See https://jaredkhan.com/blog/mypy-pre-commit
|
||||
|
|
|
@ -1121,7 +1121,15 @@ class ConversableAgent(LLMAgent):
|
|||
def _last_msg_as_summary(sender, recipient, summary_args) -> str:
|
||||
"""Get a chat summary from the last message of the recipient."""
|
||||
try:
|
||||
summary = recipient.last_message(sender)["content"].replace("TERMINATE", "")
|
||||
content = recipient.last_message(sender)["content"]
|
||||
if isinstance(content, str):
|
||||
summary = content.replace("TERMINATE", "")
|
||||
elif isinstance(content, list):
|
||||
# Remove the `TERMINATE` word in the content list.
|
||||
summary = [
|
||||
{**x, "text": x["text"].replace("TERMINATE", "")} if isinstance(x, dict) and "text" in x else x
|
||||
for x in content
|
||||
]
|
||||
except (IndexError, AttributeError) as e:
|
||||
warnings.warn(f"Cannot extract summary using last_msg: {e}. Using an empty str as summary.", UserWarning)
|
||||
summary = ""
|
||||
|
|
|
@ -42,6 +42,13 @@ else:
|
|||
TOOL_ENABLED = True
|
||||
ERROR = None
|
||||
|
||||
try:
|
||||
from autogen.oai.gemini import GeminiClient
|
||||
|
||||
gemini_import_exception: Optional[ImportError] = None
|
||||
except ImportError as e:
|
||||
gemini_import_exception = e
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
if not logger.handlers:
|
||||
# Add the console handler.
|
||||
|
@ -425,6 +432,10 @@ class OpenAIWrapper:
|
|||
self._configure_azure_openai(config, openai_config)
|
||||
client = AzureOpenAI(**openai_config)
|
||||
self._clients.append(OpenAIClient(client))
|
||||
elif api_type is not None and api_type.startswith("google"):
|
||||
if gemini_import_exception:
|
||||
raise ImportError("Please install `google-generativeai` to use Google OpenAI API.")
|
||||
self._clients.append(GeminiClient(**openai_config))
|
||||
else:
|
||||
client = OpenAI(**openai_config)
|
||||
self._clients.append(OpenAIClient(client))
|
||||
|
|
|
@ -0,0 +1,310 @@
|
|||
"""Create a OpenAI-compatible client for Gemini features.
|
||||
|
||||
|
||||
Example:
|
||||
llm_config={
|
||||
"config_list": [{
|
||||
"api_type": "google",
|
||||
"model": "models/gemini-pro",
|
||||
"api_key": os.environ.get("GOOGLE_API_KEY")
|
||||
}
|
||||
]}
|
||||
|
||||
agent = autogen.AssistantAgent("my_agent", llm_config=llm_config)
|
||||
|
||||
Resources:
|
||||
- https://ai.google.dev/docs
|
||||
- https://cloud.google.com/vertex-ai/docs/generative-ai/migrate-from-azure
|
||||
- https://blog.google/technology/ai/google-gemini-pro-imagen-duet-ai-update/
|
||||
- https://ai.google.dev/api/python/google/generativeai/ChatSession
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import base64
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import time
|
||||
import warnings
|
||||
from io import BytesIO
|
||||
from typing import Any, Dict, List, Mapping, Union
|
||||
|
||||
import google.generativeai as genai
|
||||
import requests
|
||||
from google.ai.generativelanguage import Content, Part
|
||||
from google.api_core.exceptions import InternalServerError
|
||||
from openai.types.chat import ChatCompletion
|
||||
from openai.types.chat.chat_completion import ChatCompletionMessage, Choice
|
||||
from openai.types.completion_usage import CompletionUsage
|
||||
from PIL import Image
|
||||
|
||||
|
||||
class GeminiClient:
|
||||
"""Client for Google's Gemini API.
|
||||
|
||||
Please visit this [page](https://github.com/microsoft/autogen/issues/2387) for the roadmap of Gemini integration
|
||||
of AutoGen.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
self.api_key = kwargs.get("api_key", None)
|
||||
if not self.api_key:
|
||||
self.api_key = os.getenv("GOOGLE_API_KEY")
|
||||
|
||||
assert (
|
||||
self.api_key
|
||||
), "Please provide api_key in your config list entry for Gemini or set the GOOGLE_API_KEY env variable."
|
||||
|
||||
def message_retrieval(self, response) -> List:
|
||||
"""
|
||||
Retrieve and return a list of strings or a list of Choice.Message from the response.
|
||||
|
||||
NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object,
|
||||
since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used.
|
||||
"""
|
||||
return [choice.message for choice in response.choices]
|
||||
|
||||
def cost(self, response) -> float:
|
||||
return response.cost
|
||||
|
||||
@staticmethod
|
||||
def get_usage(response) -> Dict:
|
||||
"""Return usage summary of the response using RESPONSE_USAGE_KEYS."""
|
||||
# ... # pragma: no cover
|
||||
return {
|
||||
"prompt_tokens": response.usage.prompt_tokens,
|
||||
"completion_tokens": response.usage.completion_tokens,
|
||||
"total_tokens": response.usage.total_tokens,
|
||||
"cost": response.cost,
|
||||
"model": response.model,
|
||||
}
|
||||
|
||||
def create(self, params: Dict) -> ChatCompletion:
|
||||
model_name = params.get("model", "gemini-pro")
|
||||
if not model_name:
|
||||
raise ValueError(
|
||||
"Please provide a model name for the Gemini Client. "
|
||||
"You can configurate it in the OAI Config List file. "
|
||||
"See this [LLM configuration tutorial](https://microsoft.github.io/autogen/docs/topics/llm_configuration/) for more details."
|
||||
)
|
||||
|
||||
params.get("api_type", "google") # not used
|
||||
messages = params.get("messages", [])
|
||||
stream = params.get("stream", False)
|
||||
n_response = params.get("n", 1)
|
||||
params.get("temperature", 0.5)
|
||||
params.get("top_p", 1.0)
|
||||
params.get("max_tokens", 4096)
|
||||
|
||||
if stream:
|
||||
# warn user that streaming is not supported
|
||||
warnings.warn(
|
||||
"Streaming is not supported for Gemini yet, and it will have no effect. Please set stream=False.",
|
||||
UserWarning,
|
||||
)
|
||||
|
||||
if n_response > 1:
|
||||
warnings.warn("Gemini only supports `n=1` for now. We only generate one response.", UserWarning)
|
||||
|
||||
if "vision" not in model_name:
|
||||
# A. create and call the chat model.
|
||||
gemini_messages = oai_messages_to_gemini_messages(messages)
|
||||
|
||||
# we use chat model by default
|
||||
model = genai.GenerativeModel(model_name)
|
||||
genai.configure(api_key=self.api_key)
|
||||
chat = model.start_chat(history=gemini_messages[:-1])
|
||||
max_retries = 5
|
||||
for attempt in range(max_retries):
|
||||
ans = None
|
||||
try:
|
||||
response = chat.send_message(gemini_messages[-1].parts[0].text, stream=stream)
|
||||
except InternalServerError:
|
||||
delay = 5 * (2**attempt)
|
||||
warnings.warn(
|
||||
f"InternalServerError `500` occurs when calling Gemini's chat model. Retry in {delay} seconds...",
|
||||
UserWarning,
|
||||
)
|
||||
time.sleep(delay)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Google GenAI exception occurred while calling Gemini API: {e}")
|
||||
else:
|
||||
# `ans = response.text` is unstable. Use the following code instead.
|
||||
ans: str = chat.history[-1].parts[0].text
|
||||
break
|
||||
|
||||
if ans is None:
|
||||
raise RuntimeError(f"Fail to get response from Google AI after retrying {attempt + 1} times.")
|
||||
|
||||
prompt_tokens = model.count_tokens(chat.history[:-1]).total_tokens
|
||||
completion_tokens = model.count_tokens(ans).total_tokens
|
||||
elif model_name == "gemini-pro-vision":
|
||||
# B. handle the vision model
|
||||
# Gemini's vision model does not support chat history yet
|
||||
model = genai.GenerativeModel(model_name)
|
||||
genai.configure(api_key=self.api_key)
|
||||
# chat = model.start_chat(history=gemini_messages[:-1])
|
||||
# response = chat.send_message(gemini_messages[-1])
|
||||
user_message = oai_content_to_gemini_content(messages[-1]["content"])
|
||||
if len(messages) > 2:
|
||||
warnings.warn(
|
||||
"Warning: Gemini's vision model does not support chat history yet.",
|
||||
"We only use the last message as the prompt.",
|
||||
UserWarning,
|
||||
)
|
||||
|
||||
response = model.generate_content(user_message, stream=stream)
|
||||
# ans = response.text
|
||||
ans: str = response._result.candidates[0].content.parts[0].text
|
||||
|
||||
prompt_tokens = model.count_tokens(user_message).total_tokens
|
||||
completion_tokens = model.count_tokens(ans).total_tokens
|
||||
|
||||
# 3. convert output
|
||||
message = ChatCompletionMessage(role="assistant", content=ans, function_call=None, tool_calls=None)
|
||||
choices = [Choice(finish_reason="stop", index=0, message=message)]
|
||||
|
||||
response_oai = ChatCompletion(
|
||||
id=str(random.randint(0, 1000)),
|
||||
model=model_name,
|
||||
created=int(time.time() * 1000),
|
||||
object="chat.completion",
|
||||
choices=choices,
|
||||
usage=CompletionUsage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
),
|
||||
cost=calculate_gemini_cost(prompt_tokens, completion_tokens, model_name),
|
||||
)
|
||||
|
||||
return response_oai
|
||||
|
||||
|
||||
def calculate_gemini_cost(input_tokens: int, output_tokens: int, model_name: str) -> float:
|
||||
if "1.5" in model_name or "gemini-experimental" in model_name:
|
||||
# "gemini-1.5-pro-preview-0409"
|
||||
# Cost is $7 per million input tokens and $21 per million output tokens
|
||||
return 7.0 * input_tokens / 1e6 + 21.0 * output_tokens / 1e6
|
||||
|
||||
if "gemini-pro" not in model_name and "gemini-1.0-pro" not in model_name:
|
||||
warnings.warn(f"Cost calculation is not implemented for model {model_name}. Using Gemini-1.0-Pro.", UserWarning)
|
||||
|
||||
# Cost is $0.5 per million input tokens and $1.5 per million output tokens
|
||||
return 0.5 * input_tokens / 1e6 + 1.5 * output_tokens / 1e6
|
||||
|
||||
|
||||
def oai_content_to_gemini_content(content: Union[str, List]) -> List:
|
||||
"""Convert content from OAI format to Gemini format"""
|
||||
rst = []
|
||||
if isinstance(content, str):
|
||||
rst.append(Part(text=content))
|
||||
return rst
|
||||
|
||||
assert isinstance(content, list)
|
||||
|
||||
for msg in content:
|
||||
if isinstance(msg, dict):
|
||||
assert "type" in msg, f"Missing 'type' field in message: {msg}"
|
||||
if msg["type"] == "text":
|
||||
rst.append(Part(text=msg["text"]))
|
||||
elif msg["type"] == "image_url":
|
||||
b64_img = get_image_data(msg["image_url"]["url"])
|
||||
img = _to_pil(b64_img)
|
||||
rst.append(img)
|
||||
else:
|
||||
raise ValueError(f"Unsupported message type: {msg['type']}")
|
||||
else:
|
||||
raise ValueError(f"Unsupported message type: {type(msg)}")
|
||||
return rst
|
||||
|
||||
|
||||
def concat_parts(parts: List[Part]) -> List:
|
||||
"""Concatenate parts with the same type.
|
||||
If two adjacent parts both have the "text" attribute, then it will be joined into one part.
|
||||
"""
|
||||
if not parts:
|
||||
return []
|
||||
|
||||
concatenated_parts = []
|
||||
previous_part = parts[0]
|
||||
|
||||
for current_part in parts[1:]:
|
||||
if previous_part.text != "":
|
||||
previous_part.text += current_part.text
|
||||
else:
|
||||
concatenated_parts.append(previous_part)
|
||||
previous_part = current_part
|
||||
|
||||
if previous_part.text == "":
|
||||
previous_part.text = "empty" # Empty content is not allowed.
|
||||
concatenated_parts.append(previous_part)
|
||||
|
||||
return concatenated_parts
|
||||
|
||||
|
||||
def oai_messages_to_gemini_messages(messages: list[Dict[str, Any]]) -> list[dict[str, Any]]:
|
||||
"""Convert messages from OAI format to Gemini format.
|
||||
Make sure the "user" role and "model" role are interleaved.
|
||||
Also, make sure the last item is from the "user" role.
|
||||
"""
|
||||
prev_role = None
|
||||
rst = []
|
||||
curr_parts = []
|
||||
for i, message in enumerate(messages):
|
||||
parts = oai_content_to_gemini_content(message["content"])
|
||||
role = "user" if message["role"] in ["user", "system"] else "model"
|
||||
|
||||
if prev_role is None or role == prev_role:
|
||||
curr_parts += parts
|
||||
elif role != prev_role:
|
||||
rst.append(Content(parts=concat_parts(curr_parts), role=prev_role))
|
||||
curr_parts = parts
|
||||
prev_role = role
|
||||
|
||||
# handle the last message
|
||||
rst.append(Content(parts=concat_parts(curr_parts), role=role))
|
||||
|
||||
# The Gemini is restrict on order of roles, such that
|
||||
# 1. The messages should be interleaved between user and model.
|
||||
# 2. The last message must be from the user role.
|
||||
# We add a dummy message "continue" if the last role is not the user.
|
||||
if rst[-1].role != "user":
|
||||
rst.append(Content(parts=oai_content_to_gemini_content("continue"), role="user"))
|
||||
|
||||
return rst
|
||||
|
||||
|
||||
def _to_pil(data: str) -> Image.Image:
|
||||
"""
|
||||
Converts a base64 encoded image data string to a PIL Image object.
|
||||
|
||||
This function first decodes the base64 encoded string to bytes, then creates a BytesIO object from the bytes,
|
||||
and finally creates and returns a PIL Image object from the BytesIO object.
|
||||
|
||||
Parameters:
|
||||
data (str): The base64 encoded image data string.
|
||||
|
||||
Returns:
|
||||
Image.Image: The PIL Image object created from the input data.
|
||||
"""
|
||||
return Image.open(BytesIO(base64.b64decode(data)))
|
||||
|
||||
|
||||
def get_image_data(image_file: str, use_b64=True) -> bytes:
|
||||
if image_file.startswith("http://") or image_file.startswith("https://"):
|
||||
response = requests.get(image_file)
|
||||
content = response.content
|
||||
elif re.match(r"data:image/(?:png|jpeg);base64,", image_file):
|
||||
return re.sub(r"data:image/(?:png|jpeg);base64,", "", image_file)
|
||||
else:
|
||||
image = Image.open(image_file).convert("RGB")
|
||||
buffered = BytesIO()
|
||||
image.save(buffered, format="PNG")
|
||||
content = buffered.getvalue()
|
||||
|
||||
if use_b64:
|
||||
return base64.b64encode(content).decode("utf-8")
|
||||
else:
|
||||
return content
|
|
@ -66,7 +66,7 @@ def count_token(input: Union[str, List, Dict], model: str = "gpt-3.5-turbo-0613"
|
|||
elif isinstance(input, list) or isinstance(input, dict):
|
||||
return _num_token_from_messages(input, model=model)
|
||||
else:
|
||||
raise ValueError("input must be str, list or dict")
|
||||
raise ValueError(f"input must be str, list or dict, but we got {type(input)}")
|
||||
|
||||
|
||||
def _num_token_from_text(text: str, model: str = "gpt-3.5-turbo-0613"):
|
||||
|
@ -111,6 +111,9 @@ def _num_token_from_messages(messages: Union[List, Dict], model="gpt-3.5-turbo-0
|
|||
elif "gpt-4" in model:
|
||||
logger.info("gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
|
||||
return _num_token_from_messages(messages, model="gpt-4-0613")
|
||||
elif "gemini" in model:
|
||||
logger.info("Gemini is not supported in tiktoken. Returning num tokens assuming gpt-4-0613.")
|
||||
return _num_token_from_messages(messages, model="gpt-4-0613")
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"""_num_token_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
|
||||
|
|
1
setup.py
1
setup.py
|
@ -64,6 +64,7 @@ setuptools.setup(
|
|||
"teachable": ["chromadb"],
|
||||
"lmm": ["replicate", "pillow"],
|
||||
"graph": ["networkx", "matplotlib"],
|
||||
"gemini": ["google-generativeai>=0.5,<1", "pillow", "pydantic"],
|
||||
"websurfer": ["beautifulsoup4", "markdownify", "pdfminer.six", "pathvalidate"],
|
||||
"redis": ["redis"],
|
||||
"cosmosdb": ["azure-cosmos>=4.2.0"],
|
||||
|
|
|
@ -0,0 +1,148 @@
|
|||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
try:
|
||||
from google.api_core.exceptions import InternalServerError
|
||||
|
||||
from autogen.oai.gemini import GeminiClient
|
||||
|
||||
skip = False
|
||||
except ImportError:
|
||||
GeminiClient = object
|
||||
InternalServerError = object
|
||||
skip = True
|
||||
|
||||
|
||||
# Fixtures for mock data
|
||||
@pytest.fixture
|
||||
def mock_response():
|
||||
class MockResponse:
|
||||
def __init__(self, text, choices, usage, cost, model):
|
||||
self.text = text
|
||||
self.choices = choices
|
||||
self.usage = usage
|
||||
self.cost = cost
|
||||
self.model = model
|
||||
|
||||
return MockResponse
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def gemini_client():
|
||||
return GeminiClient(api_key="fake_api_key")
|
||||
|
||||
|
||||
# Test initialization and configuration
|
||||
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
||||
def test_initialization():
|
||||
with pytest.raises(AssertionError):
|
||||
GeminiClient() # Should raise an AssertionError due to missing API key
|
||||
|
||||
|
||||
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
||||
def test_valid_initialization(gemini_client):
|
||||
assert gemini_client.api_key == "fake_api_key", "API Key should be correctly set"
|
||||
|
||||
|
||||
# Test error handling
|
||||
@patch("autogen.oai.gemini.genai")
|
||||
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
||||
def test_internal_server_error_retry(mock_genai, gemini_client):
|
||||
mock_genai.GenerativeModel.side_effect = [InternalServerError("Test Error"), None] # First call fails
|
||||
# Mock successful response
|
||||
mock_chat = MagicMock()
|
||||
mock_chat.send_message.return_value = "Successful response"
|
||||
mock_genai.GenerativeModel.return_value.start_chat.return_value = mock_chat
|
||||
|
||||
with patch.object(gemini_client, "create", return_value="Retried Successfully"):
|
||||
response = gemini_client.create({"model": "gemini-pro", "messages": [{"content": "Hello"}]})
|
||||
assert response == "Retried Successfully", "Should retry on InternalServerError"
|
||||
|
||||
|
||||
# Test cost calculation
|
||||
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
||||
def test_cost_calculation(gemini_client, mock_response):
|
||||
response = mock_response(
|
||||
text="Example response",
|
||||
choices=[{"message": "Test message 1"}],
|
||||
usage={"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15},
|
||||
cost=0.01,
|
||||
model="gemini-pro",
|
||||
)
|
||||
assert gemini_client.cost(response) > 0, "Cost should be correctly calculated as zero"
|
||||
|
||||
|
||||
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
||||
@patch("autogen.oai.gemini.genai.GenerativeModel")
|
||||
@patch("autogen.oai.gemini.genai.configure")
|
||||
def test_create_response(mock_configure, mock_generative_model, gemini_client):
|
||||
# Mock the genai model configuration and creation process
|
||||
mock_chat = MagicMock()
|
||||
mock_model = MagicMock()
|
||||
mock_configure.return_value = None
|
||||
mock_generative_model.return_value = mock_model
|
||||
mock_model.start_chat.return_value = mock_chat
|
||||
|
||||
# Set up a mock for the chat history item access and the text attribute return
|
||||
mock_history_part = MagicMock()
|
||||
mock_history_part.text = "Example response"
|
||||
mock_chat.history.__getitem__.return_value.parts.__getitem__.return_value = mock_history_part
|
||||
|
||||
# Setup the mock to return a mocked chat response
|
||||
mock_chat.send_message.return_value = MagicMock(history=[MagicMock(parts=[MagicMock(text="Example response")])])
|
||||
|
||||
# Call the create method
|
||||
response = gemini_client.create(
|
||||
{"model": "gemini-pro", "messages": [{"content": "Hello", "role": "user"}], "stream": False}
|
||||
)
|
||||
|
||||
# Assertions to check if response is structured as expected
|
||||
assert response.choices[0].message.content == "Example response", "Response content should match expected output"
|
||||
|
||||
|
||||
@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed")
|
||||
@patch("autogen.oai.gemini.genai.GenerativeModel")
|
||||
@patch("autogen.oai.gemini.genai.configure")
|
||||
def test_create_vision_model_response(mock_configure, mock_generative_model, gemini_client):
|
||||
# Mock the genai model configuration and creation process
|
||||
mock_model = MagicMock()
|
||||
mock_configure.return_value = None
|
||||
mock_generative_model.return_value = mock_model
|
||||
|
||||
# Set up a mock to simulate the vision model behavior
|
||||
mock_vision_response = MagicMock()
|
||||
mock_vision_part = MagicMock(text="Vision model output")
|
||||
|
||||
# Setting up the chain of return values for vision model response
|
||||
mock_vision_response._result.candidates.__getitem__.return_value.content.parts.__getitem__.return_value = (
|
||||
mock_vision_part
|
||||
)
|
||||
mock_model.generate_content.return_value = mock_vision_response
|
||||
|
||||
# Call the create method with vision model parameters
|
||||
response = gemini_client.create(
|
||||
{
|
||||
"model": "gemini-pro-vision", # Vision model name
|
||||
"messages": [
|
||||
{
|
||||
"content": [
|
||||
{"type": "text", "text": "Let's play a game."},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": ""
|
||||
},
|
||||
},
|
||||
],
|
||||
"role": "user",
|
||||
}
|
||||
], # Assuming a simple content input for vision
|
||||
"stream": False,
|
||||
}
|
||||
)
|
||||
|
||||
# Assertions to check if response is structured as expected
|
||||
assert (
|
||||
response.choices[0].message.content == "Vision model output"
|
||||
), "Response content should match expected output from vision model"
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue